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is the increase in complexity of some of the angular
distributions at the higher energy. The pe, pt, ps groups
are not significantly diferent in the two cases, but the
ps, dp, dt, ds, and ds curves have more maxima and
minima at the higher energy. Even when the curves
are roughly similar in the two studies, the details con-
cerning the positions of maxima and minima are quite
diferent. This is in contrast to an earlier investigation
of the C"(Li' p)O" and C"(Li' d)O" reactions, ' where
the location of most of the peaks in the angular dis-
tributions were fairly constant as the lithium beam
energy was varied. The ratios of the various total cross
sections are approximately the same in the present
work as found earlier at lower energy. '

Although these reactions may involve the interactions
of deuteron-, triton-, and o.-like clusters of nucleons, as
suggested earlier, '' the data obtained in the present
experiment tend to emphasize the importance of the
compound-nucleus mechanism. The asymmetry of the
angular distributions about 90', which could be attrib-

uted to the importance of stripping reactions, could also
be due to the interference between levels of opposite
parity at the relatively high (26 MeV) excitation level
of the C" compound nucleus. The shapes of the angular
distribution curves observed at 3.50 MeV and their
variations from the shapes observed at 2.l MeV are not
particularly indicative of stripping reactions. Finally,
the magnitudes of the observed total cross sections are
well within the range which could be accounted for by
the formation of a compound nucleus. However, since
none of these indications are really definitive, the actual
reaction mechanism could well be a mixture of processes.
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Using the theory of molecular spectra to obtain an estimate of the higher-order corrections to the energy
levels of a nonrigid rotator, we sum the in6nite power series in I(I+1) to describe the energy levels in the
ground-state rotational bands of deformed even-even nuclei by the expression E(I)=A (I)I(I+1),where

A (I)=A f1+ (Itf 1)(B/A)I (I—+1)$/$1+ ItI (B/A) I(I+1)j,
with X=2.85—0.05I. The predictions of this two-parameter formula show surprisingly good agreement
with the experimentally observed energy levels in even-even nuclei in the rare-earth region, including Os
isotopes and X=90 nuclei. Comparison with other relatively successful models advanced during the recent
years, e.g., the Davydov-Chaban model as, adopted by the Berkeley group, the cranking-model extension

by Harris, the classical hydrodynamical model used by Moszkowski, the rotator-vibrator model, the asym-
metric-rotator model, etc., reveals a distinctly greater success of our description when it is applied to such
a wide range of nuclei.

1. IN'TRODUCTION

A CCORDING to the Bohr-Mottelson hydro-
dynamical model, ' the energy levels of deformed

nuclei are similar to those of an axially symmetric
rotator. In the strong-coupling limit, the energy levels
of the even-even nuclei in the lowest rotational band
are given by the relation

E(I)=A I(I+i),
where A=ttts/2d is the rotational parameter related
to the nuclear moment of inertia 8, and the total
angular momentum (spm) I follows the sequence 0,

' A. Bohr, Kgl. Danske Videnskab. Selskab, Mat. Fys. Medd.
26, 14 (1952). A. Bohr and B. R. Mottelson, ibid 27, 16 (1953.).

2, 4, 6, -, all with even parity. Equation (1) de-
scribes the energy levels for a rigid rotator under the
assumption that the deformation, and hence the mo-
ment of inertia, are not affected by the rotation.
Actually, the deformation increases with the rotational
angular momentum because of the centrifugal forces.
In principle, one may write the rotational energy as an
~~Rnite power series

E(I)=AI(I+ 1) BIs(I+1)'+CIs(I—+1)'
DI'(I+ 1)'+ —. (2)

For small values of I, the Grst-order correction may be
the only significant one. In analogy with the molecular
spectra, the coeKcient 8 can be related' to the energies
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of the nuclear P and 7 vibrations, but it was found'
that the values of 8 thus calculated do not agree with
those determined empirically.

The inadequacy of the two-parameter description
/corresponding to retaining only the first two terms in
Kq. (2)g for the transitional nuclei was demonstrated
by several investigators, e.g., for Os isotopes by the
Srookhaven group, ' for some borderline nuclei in the
actinide region by Stephens et al. ,4 for X=90 nuclei
and some neutron-deficient nuclei by the Copenhagen
group. ' A comprehensive survey of the role of second-
order corrections was undertaken by the author and a
number of his students' over the past few years, and one
of the conclusions was that the convergence of the
series is very poor (or even breaks down) for high-spin
states in transitional and moderately deformed nuclei.
Later it has been shown' that, in the limit of recently
identified high-spin states, the comparison with Eq. (2)
is not meaningful since 'such a power series expansion
would require almost as many ternis as there are points
to be 6tted if it is to be used for extrapolation. '

In view of the above situation, several models have
been proposed during the last few years for predicting
the nuclear rotational energies with varying degrees of
success. We have arrived at a very simple two-parame-
ter description of the rotational energies by an effective
summation of the infinite series guided by the relative
magnitudes of the successive terms in the expression
for the energy of a rotator vibrator. ' In the process we
obtain a simple analytical expression for the variation
of nuclear moment of inertia with angular momentum.

We begin by giving a very brief discussion of the con-
ventional two- and three-parameter fits followed by our
semiempirical formulation. The results of our calcula-
tions are then compared with the available experimental
data, and with the results from other theoretical
investigations.

2. CONVE5TIO5AL TWO- AND
THREE-PARAMETER FITS

For a rigid rotator, the energy ratio E(4+)/E(2+) has
the value 10/3, and the deviations from this value
roughly indicate a measure of the corrections to be
applied. In our formulation we shall describe all our

~ I. Marklund, B. van Nooijen, and Z. Grabowski, Nucl. Phys
15, 533 (1960); R. K. Sheline, Rev. Mod. Phys. 32, 1 (1960).' G. ScharA'-Goldhaber, D. E. Alburger, G. Harbottle, and M.
McKeown, Phys. Rev. 111, 913 (1958); W. R. Kane, G. T.
Emery, G. ScharG-Goldhaber, and M. McKeown, ibid. 119, 1953,
(1960); G. T. Emery, W. R. Kane, M. McKeown, M. L. Perlman,
and G. Scharff-Goldhaher, ibid. 129, 2597 (1963).

4 F. S. Stephens, Jr., R. M. Diamond, and I. Perlman, Phys.
Rev. Letters 3, 435 (1959).' J. Bjerregard, B. Elbek, O. Hansen, and P. Sailing, Nucl.
Phys. 44, 280 (1963); G. B. Hansen, B. Elbek, K. A. Hagemann,
and W. F. Hornyak, ibid. 47, 529 (1963).

P. C. Sood, in Proceed'ings of the XNcleur Physics Symposium
(Atomic Energy Establishment, Trombay, Bombay, India,
1964), p. 182; B.L. Gambhir, R. K. Gupta, and P. C. Sood, ibid.
p. 199; S. D. Sharma, R. K. Gupta, and P. C. Sood, ibid, p. 212;
R. K. Gupta, Ph.D. thesis, Pan jab University, Chandigarh,

results as a function of this energy ratio (denoted
hereafter by E).

In the conventional two-parameter fit, we have

J3 10—3R

200—18R
(3)

b0

50

40

20

3.30 3.20 3.10 3.00
E (4)/E (2)

Fro. I. The energy ratios E(I)/E(2) calculated from the con-
ventional two-parameter formula (given in the figure) plotted
as a function of the ratio E(4)/E(2).

India, 1965 (unpublished); R. K. Gupta and P. C. Sood, Bull. Am.
Phys. Soc. 11, 320 (1966).

F. S. Stephens, N. Lark, and R. M. Diamond, Nucl. Phys. 63,
82 (1965).

s J. L. Dunham, Phys. Rev. 41, 721 (1932).

and the corresponding ratios E(I)/E(2) for levels with
spin up to I= 20 are plotted in Fig. 1 for this case. It is
noticed that, particularly with the inclusion of very-
high-spin states, even the spin sequence of levels is
radically altered from the usual rotational sequence,
and the predicted level scheme is quite unlike that ob-
served in deformed nuclei.

The results for the energy ratio of the 10+ level are
shown in Fig. 2 for the conventional one-, two-, and
three-parameter fits (labelled A, AB, and ABC, re-
spectively) and the divergence of the series is quite
evident. As a speci6c example the level scheme for the
nucleus '"Hf is shown in Fig. 3. It is seen from this

figure that although the prediction for the 10+ level is
better from ABC than from A or AB, it is still off by
more than 7%. For the 14+ level, the predicted energy
from ABC is twice as bad as from A alone. The diverg-
ence of the series expansion can be seen by noting the
contributions of the various order terms to the energy
of the 16+ state

roHf F(16+)=4617—3935+5965=6647 keV. (4)
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The divergence is already in evidence for the 10+„level
in the transitional nucleus "'Sm.

»'Sm E(10+)=2353—2347+2709= 2715 keV. (5)

Thus we may conclude that, although one obtains
improved agreement with the experimental results for
the low-spin levels by including the 8 and C terms, this
is done Bt the cost of progressively worsening predic-
tions for the high-spin states. If all the high-spin levels
were known, the rms deviation with the inclusion of
so-called one or two correction terms would be much
larger than that obtained with no corrections. In other
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FIG. 3. The observed (the erst column on the left) and the
predicted energy levels for the nucleus "Hf. The column labeled S
is from our calculations, one labeled SLD is from Stephens etal.
(Ref. 7), and the following three columns labeled A, AB, and
ABC are the results from conventional one-, two-, and three-
parameter description.
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Fro. 2. The energy ratio E(10)/Z(2) plotted as a function of the
ratio E(4)/E(2). The conventional one-, two-, and three-parame-
ter results are shown by curves labelled A, AB, and ABC, re-
spectively. The solid circles represent the experimental points
and the line passing roughly through these points corresponds to
our calculated values from Eq. (9).

words, leaving aside a few 'very rigid' nuclei, it is
inappropriate to write an expression for the rotational
energy as in Eq. (2) with a cutoff at B or C terms.
Instead one may write

E(I)=A(I)I(I+1), (6)

where A (I) expresses the angular-momentum de-
pendence of the nuclear moment of inertia. Unfor-
tunately, no analytical expression for A(I) has been
available so far, and hence practically all the reason-
able successful recent models do not express the rota-
tional energy with explicit I(I+1) dependence. In the
following sections we derive, and apply with rather
remarkable success, a very simple analytical expression
for A(I) from semiempirical considerations,

3. SEMIEMPIRICAL FORMULATION

We may rewrite the series in Eq. (2) as follows:

Z(I) =AI(I+1){1—(B/A) I(I+1)[1 (C/B)I(I+—1)
+(D/B)I'(I+1)' "]). (7)

The relative order-of-magnitude estimates of the suc-
cessive coeKcients may be obtained from the expression
for the energy levels of a nonrigid rotator worked out
long ago for molecular spectra. Let us write

C/B =X(B/A) . (8)

Then from molecular spectra theory, ' we know that Ã
is of the order of 2 to 3, and that (D/B) is of the order of
(C/B)'. Following these guidelines, let us assume that
the terms within the square brackets in Eq. (7) fot~n
an ininite geometric series. This leads to the following
relations:

Z(I) = A I(I+1){1—(B/A )I(I+1)[1—X(B/A) I(I+1)

+[A (B/A)I(I+ 1)]'—[E(B/A) I(I+1)]s ]}
(B/A )I(I+1)

=AI(I+1) 1—
1+IV (B/A)I(I+1)

1+(1V—1)(B/A) I(I+1)
I(I jr 1)

1+5'(B/2 )I(I+1)
A (I)I(I+1),
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Tmzz I. The excitation-energy ratios E(I)/E(2) for a set of
nuclei with nearly the same ratio for the excitation energies of
the 4+ and 2+ states. A one-parameter model (such as ours) will
give identical values for each of these nuclei.
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FIG. 4. The energy ratios E(I)/E(2), as predicted from our
calculations, plotted as a function of the ratio E(4)/E(2).

observed energy ratios for four rare-earth nuclei with
approximately the same value of E(4)/E(2). The
predicted energy ratios for a given I will be nearly
identical for each of the four nuclei, whereas the varia-
tion of the experimental value is 0.7% for the 6+ level
and about 4% for the 10+ level. Thus it may be said
that in the one-parameter description of the type given
above we cannot expect exact numerical agreement for
all nuclei simultaneously.

which has the same form as Eq. (6), and thus yields
the following simple analytical expression for the
angular-momentum dependence of the nuclear moment
of inertia:

u(I) 1+1V(I3/A) I(I+1)
&o 1+(ct/ 1)(8/A) I(I+—1)

(10)

Ã= 2.85—0.05I.

The 6t obtained with this choice is shown in Fig. 2 for
I= 10, and the calculated energy ratios E(I)/E(2) for I
up to 20 are plotted in Fig. 4 (to be compared with
Fig. 1 from the conventional approach). This plot is
essentially a one-parameter description of the rotational
states for all nuclei.

It may be noted from the spread of the experimental
points in Fig. 2 that it is not possible to Gnd a single
smooth curve that passes through all the points. This
feature is further illustrated in Table I, which lists the

The expression for E was obtained from empirical
considerations. The experimental energy ratios E(I)/
E(2) were plotted for each I as a function of E(4)/E(2)
obtaining plots similar to Fig. 2—solid circles—for
I=10. When the energy ratios are considered, Eq. (9)
corresponds to a one-parameter description involving
(8/A) which is determined from the observed ratio
E(4)/E(2). The procedure used was to assume an ex-
pression for E, and then predict the energy ratios for
comparison with the experimental data. A constant E
for all I did not yield a satisfactory agreement, nor did
the I(I+1)-dependent form. The best Gt so far has been
obtained with the choice

4. COMPARISON WITH EXPERIMENTAL
RESULTS

The excitation energies for the levels in the ground-
state rotational bands in even-even nuclei have been
calculated using Eqs. (9) and (11) for comparison with
the available experimental data; this is presented in
Table II. The parameter I3/A was calculated from the
observed energy ratio E(4)/E(2), and the experimental
energy of the 2+ state was then used to determine A.
In order to smooth out the observed spread in energies
discussed above, the values of A and 8 were slightly
adjusted, wherever found desirable, to obtain a satis-
factory 6t to the observed energies.

Keeping in view the inherent limitations of calcula-
tions of this type (discussed in the previous section),
we find in Table II a surprisingly good agreement with
practically all the known levels of the nuclei considered.
The agreement with the experiment in each case is
within a fraction of 1%—usually within the limits of
the experimental uncertainties of the observed energies.
Even for the E=90 nuclei at one end of the deformation
region and for Os isotopes at the other end the agree-
ment is remarkably close, just about as good as for the
the nuclei in the middle of the deformation region.

These calculations do not give satisfactory results
for very highly neutron-deficient nuclei. Only four such
cases have been left out of Table II. They are '"Hf
'"W '"Os, and '"Os, although the over-all agreement
for these nuclei is still better than 2%. Better ftt may
be obtained by choosing a more rapid decrease of E
with I than that of Eq. (11).Preliminary analysis points
to the value S=2.85—0.07I for'these'nuclei. This prob-
lem will be discussed in a separate communication.
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TABLE II. Excitation energies (in keV) of the states in the ground-state rotational band of even-even nuclei in the rare-earth region.
The calculated values correspond to the two-parameter description based on 2+ and 4+ state energies as explained in the text.

Nucleus

'"Sm

"4Sm

1540d

166Gd

158Gd

160GQ

156Dy

158Dy

160Dy

162Dy

164Dy

160Er

162Er

164Er

'"Er

168Er

170Er

164Yb

166Yb

168Yb

170Yb

172Yb

174Yb

176

"8Hf

170Hf

172Hf

174Hf

176Hf

178H

"'Hf

174@7

Expt'
Calc
Exptb
Calc
Expta~b
Calc
Expt'
Calc
Exptb
Calc
Exptc
Calc
Exptb
Calc
Expt~ b

Calc
Exptb"
Calc
Expt'
Calc
Expt'
Calc
Exptb
Calc
Exptb
Calc
Expt"
Calc
Expta
Calc
Expt'
Calc
Expt'
Calc
Expt'
Calc
Expt'
Calc
Expt&
Calc
Exptb
Calc
Exptb
Calc
Expt'
Calc
Exptc
Calc
Expt'
Calc
Expt'
Calc
Expt'
Calc
Expt~
Calc
Exptb
Calc
Expt'
Calc
Exptb
Calc
Expt'
Calc

121.8
121.8
82.0
81.0

123.1
123.1
89.0
88.8
79.56
79.56
75.3
75.0

138
136
98.7
98.4
86.7
86.4
80.7
80.7
73.4
73.5

127
126
101
100.7
91.3
91.3
80.6
80.6
79.8
79.8
79
79

122.5
122.1
101.8
101.5
87.9
87.8
84.2
84.3
78.7
78.7
76.5
76.5
82.1
81.8

123.9
123.7
100.0
100.0
94.5
94.5
91.0
90.6
88.4
88.4
93.2
93.2
93.3
93.3

111.9
111.9

366.5
368.1
267
267
371.2
374.2
288.2
288.9
261.9
261.7
247
247
403
400
316.5
317.2
284
283.8
265.9
265.9
242.2
242.2
394
394
327
327
299.2
299.5
264.9
264.7
264
264
261
261
384.0
385.2
329.7
329.7
286.9
286.9
277.7
277.8
260.3
260.2
252
253
270
270
385.0
386.7
320.6
320.5
307.9
308.1
297.6
297.6
290.3
290.5
306.6
306.7
308.6
308.8
355.0
355.6

707
706
552
553
718
719
584
586
539
539
509
511
766
764
636
637
582
583
549
549
501
500
765
768
662
663
614
615
545
544
549
549
542
542
758
758
667
668
586
586
572
573
540
540
527
527
564
561
756
755
641
640
627
627
609
609
596
597
632
632
641
642
704
704

1125
1122
(934)
930

1146
1143
965
966
898
901

(863)
859

1212
1220
1041
1040
972
974
924
921
839
840

1228
1227
1090
1091
1024
1024
910
908

1219
1217
1097
1098
970.4
970.6
962
962
910
910
892
892
947
946

1212
1207
1041
1038
1036
1036
1010
1012
998
998

1058
1058
1085
1085
1137
1135

10+

1608
1609

(1379)
1389
1640
1638
1417
1413

1514
1509
1442
1443

1758
1758
1595
1594

(1534)
1515
1334
1344

1748
1747
1604
1604

(1439)
1428
1439
1433
1352
1364

1734
1730
1503
1500
1519
1519

(1502)
1492

(1492)
1479

1635
1634

12+

(2158)
2156

(2189)
2193
1924
1916

(2037)
2031
1977
1980

2172
2172

(1986)
1975

2304
2312
2013
2015
2063
2063

2186
2188

2602
2572

2564
2570
2651
2656

16+

3147
3154

& O. L5nsj5 and G. B. Hagemann, Nucl. Phys. 88, 624 (1966).
b H. Morinaga, Nucl. Phys. 75, 385 (1966).
0 Nuclear Data Sheets, compiled by K. Way et al. , (Printing and Publishing Office, National Academy of Sciences—National Research Council, Washing-

ton 25, D.C. 1965).
& R. Graetzer, G. B. Hagemann, K. A. Hagemann, and B. Elbek, Nucl. Phys. 76, 1 (1966).
e K. Kotajima and D. Vinciguerra, Phys, Letters 8, 68 (1964).
& F. S. Stephens, N. Lark, and R. M. Diamond, Nucl. Phys. 63, 82 (1965).
& N. L. Lark and H. Morinaga, Nucl. Phys. 63, 466 (1965).
h J. Burde, R. M. Diamond, and F. S. Stephens, Nucl. Phys. A92, 306 (1967).
& J. O. Newton, F. S. Stephens, and R. M. Diamond, Nucl. Phys. A95, 377 (1967),
& B. Harmatz and T. H. Handley, Nucl. Phys. 56, 1 (1964).
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TABLE II. (Cotttzngsd)

Nucleus

17BQT

178+7

180@7

182@7

184+7

186g7

Os

184OS

1860s

188Ps

190Qs

Expt'
Calc
Exptg
Calc
Expt"
Calc
Expt'
Calc
Expt'
Calc
Expt'
Calc
Expth
Calc
Expt&
Calc
Expt"
Calc
Expt'
Calc
Expt&
Calc

108.7
108.7
105+5
106
103.6
103.3
100.1
100.6
111.2
111.0
122.5
122.0
126.9
126.9
119.8
)18.0
137.2
134.5
155.0
152.0
186.7
186.7

348.5
349.4
342
344
337.6
337.6
329.4
330.0
364.0
364.3
399
399
400.2
401.2
383.6
383.4
433.9
433.9
477.9
478.8
547.9
547.8

699
699
697
697
688
689
680
677
748
748
818
817
794
791
774
777
869
872
940
941

1050
1047

1140
1138
1152
1145
1139
1142
1137~10
1127

1277
1271
1274
1278
1421
1424
1514
1509
1667
1674

10+

1648
1647
1679
1671

(1691}
1680
1645+20
1667

1810
1826
1871
1867
2068
2067

12+

2206
2214
2264
2261

2894+30
2901

16+

S. COMPARISON WITH OTHER CALCULATIONS

The best agreement to date for the high-spin states
has been obtained with the semiclassical treatment~ ' of
centrifugal stretching within the framework of the
Davydov-Chaban (DC) model. "Comparison between
their results and our calculations relative to the experi-
mental energies for the nucleus '7'lf is presented in
I ig. 3. Also included in this 6gure are the predictions
of the adiabatic Bohr-Mottelson theory with first- and
second-order corrections, all the three results being in
striking disagreement with the experiment. Our results
and those of Stephens ei at. t (SLD) exhibit just about
the same degree of 6t to the experimental data, ours
being somewhat better.

A more sensitive criterion for comparison has been
used by SLD wherein they remove the general I(I+1)
energy dependence of the levels by de6ning the transi-
tional rotational constant A~ as follows:

for Os isotopes, "whereas we find good agreement for
these nuclei as well.

Another formulation, which has met with comparable
success for the set of nuclei studied by Stephens et ul. ,

'
was suggested by Harris" as an extension of the crank-

1.00

Q,'tY'8-

172

0.9'6-

c4
+

0.94,-

Ar= &E(I & I—2)j(4I—2—), (12)
0.92-

and the scale parameter is eliminated by taking the
ratios of the adjacent rotational constants. These ratios
Ar+s/Ar are plotted against the intermediate spin I.
A comparison of our results with those of Stephens
et al t(labelled DC. in the 6gure) is shown in Fig. 5 for
the transitions in the nucleus '"Hf; the experimental
points are shown by solid circles. The better agreement
with our predictions is quite evident; whereas the DC
curve shows a reversal of slope for higher spins, our
curve follows the experimental trend rather well. The
advantage of our approach over theirs is also revealed
in that they did not consider their calculations suitable

F. S. Stephens, N. Lark, and R. M. Diamond, Phys. Rev.
Letters 12, 225 (1964);R. M. Diamond, F. S. Stephens, and W. J.
Swiatecki, Phys. Letters 11, 315 (1964).'t A. S. Davydov and A. A, Chaban, Nucl. Phys. 20, 499 (1960).
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Fzo. 5. The solid circles represent the experimental ratios of
successive rotational constants Ar~t/Ar for the nucleus "'Hf
plotted against the intermediate spin I. The solid line, labeled S,
is from our calculations, the dashed line labeled DC from Stephens
e$ al. (Ref. 7) and the dot-dashed line, labeled H, is from Harris
(Ref. 12).

"J.Surde, R. M. Diamond, and F. S. Stephens, Nucl. Phys.
A92, 306 (1967);J. O. Newton, F. S. Stephens, R. M. Diamond,
K. Kotajima, and E. Matthias, ibid. A95, 357 (1967);J. O. New-
ton, F. S. Stephens, and R. M. Diamond, ibid A95, 377 (1967). ."S.M. Harris, Phys. Rev. Letters IB, 663 (1964); Phys. Rev.
138, 8509 (1965).
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6. SUMMARY Am CONCLUSIONS

By summing an ininite power series in I(I+1)under
reasonable assumptions about the relative magnitudes
(obtained from the molecular spectra theory) of the
successive coeScients in the series, we have obtained
a very simple analytical expression, Eq. (9), for the
energies of the levels in the ground-state rotational
bands of even even nuclei. The expression explicitly
re-establishes the I(I+1) law for the description of the
rotational energies and provides an analytical relation
for the variation of the nuclear moment of inertia with
the nuclear spin (Eq. (10)J.

A detailed comparison of our predictions with the
known energy levels of deformed even even nuclei in
the rare-earth region, as given in Table II, reveals a
surprisingly good agreement in all cases (except for a
few highly neutron-deficient nuclei). Comparison has
also been given with the results of the calculations of
Stephens ef aL7 (Davydov-Chaban madel), Harris"

T.2

).0

(cranking model with corrections), Moszkowski"
(classical hydrodynamical model), rotation-vibration
model, "and the asyrrunetric rotator model, "in addition
to the conventional Bohr-Mottelson model. ' Our model
is shown to give a better description of the rotational
energies than any of the above models. It is rather re-
mark. able that this simple formula also gives correct
energies for X=90 nuclei which had not been satis-
factorily described by any model proposed so far.

The@expressions developed here are as yet on a
semiempirical basis, but provide a few guidelines for
developing a theory for rotational energies. Qf particular
interest is the predicted spin dependence of the nuclear
moment of inertia for comparison with an appropriate
theory. "Also the formulation presented above gives a
reliable 'experimental' measure of the rotation vibra-
tion coeKcient 8 for comparison with the existing and
forthcoming theories"" of this effect. It is seen from
Fig. 8 that the value of 8 obtained from our formulation
(solid. curve) is appreciably higher than the value ob-
tained from the conventional two-parameter calcula-
tions, the change being in the right direction and
approximately of the right order to explain earlier
anomalies. '

It may be remembered that Eq. (9) gives the basic
formula of our approach. The expression for S given in
Eq. (11) is by no means unique; it is expected that this
semiempirical 'constant' will be determined more ac-
curately as more and better data on high-spin states
becomes available for a wide range and variety of nuclei.
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FlG. 8. The rotation-vibration coeKcient B plotted versus the
energy ratio E(4)/E(2) as a percentage of the rotational paranm-
ter A. The dotted line, labeled AB, corresponds to the values
derived from the conventional two-parameter description and
solid line, labeled S, gives the results of our calculations using
Eq. (9).
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