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Tmxz II. Operators Qg, for reduced nuclear matrix in Eq. (A1).
The spherical Bessel functions j z, (qre) are abbreviated by j z,.

Matrix element

$0L J]
(1L Jg
(OL Jpj
LILJPj

js'JJozru(rs) &z rj z'Jjiz, ru(ra, rrs)

ij z'JJozr~(rs) rrv pz&r r
ij z'JJiz. ru(re, rt~)

A similar relation holds for [5I.I p). Here Nr, .~' and
N~~~j' are nuclear wave functions of the initial and Gnal
states speci6ed by the spin and its projection M. w &~&

and Q~ are the isospin and the operator for the kth
nucleon. 5, 1., and J in brackets are the resultant spin,
the effective orbital angular momentum, and the
resultant total angular momentum of the lepton

system, respectively. J also speciGes the rank of the
matrix elements. The symbol p means that the relevant
matrix element includes the diGerential operator
p acting on the nuclear wave function. The parity
change is given by (—)~ for [SII], and (—)~' for
[5I.Ipg. Nucleon operators Qq in Eq. (A1) are
summarized in Table II, where the vector harmonics
are defined by

'JJBr,r (r,zr)
"=Q (5 I.rrt M—nt

~
IM) l r.zr (0,p)

with
'JJ»(tr) = (1/4&) "'
tf10(lr) = (3/4sr)' 'o „etc.

'tJsr~~(r, p) has a similar expression.
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A good angular-momentum wave function containing the maximum possible intrinsic angular momenta
leads to a microscopic description of the nuclear rotational spectra in terms of spherical shell-model states.
The rotational excitation energies arise from the residual two-body force. In the actual model calculations,
the only approximation was a partial violation of the exclusion principle. The computed departures from
the I(I+1) law are consistent with experiment. Reasons are given for the preference of positive over negative
intrinsic deformations.

I. THE STRETCH SCHEME

'HE collective model has been extremely successful
in giving a phenornenological description of the

characteristics of deformed nuclei in terms of macro-
scopic coordinates associated with the degrees of free-
dom of an average well. ' However, it is an outstanding
problem of nuclear physics to understand deformed nu-
clei in terms of the nucleon motion and the two-body
force. Up to now, this problem has been attacked in es-
sentially three ways. The first is an attempt to solve the
complete nuclear Hamiltonian approximately in as large
as possible a conGguration space. This method is practi-
cable only for very light nuclei and calculations of this
kind have been limited to the 1p shell. ' The second con-
sists in solving exactly an approximate Hamiltonian.
The problem here is to obtain a good guess of a simple
nuclear Hamiltonian which still is supposed to represent

' A. Faessler, W. Greiner, and R. K. Sheline, Nucl. Phys. 70,
33 (1965).

2D. Kurath, in Alpha-, Beta-, and Gamma-Ray Spectroscopy,
edited by Kai Siegbahn (North-Holland Publishing Company,
Amsterdam, 1965), p. 583.

the essential nuclear features. In order to be exactly
solvable, this Hamiltonian must be invariant under the
symmetry transformation of some groups. So, for ex-

ample, Elliott's mode13 4 is a nuclear Hamiltonian, in-
variant under SU(3).The exact solutions are then repre-
sentations of SU(3). However, to obtain this result, the
two-body force must be replaced by a separable, spin-
and isospin-independent quadrupole force, and the
average Geld must be an harmonic-oscillator potential.
In the third method, the deformed orbital method, ' one
applies the variational principle to a trial wave function
which is simple but violates rotational invariance. This
way one treats an important part of the nucleon-nucleon
interaction, namely the average field effect. Good angu-
lar-momentum states then must be obtained by pro-
jection. All these methods lead to spectra with rota-
tional features. However, in all these approaches, the

' J. P. Elliott, Proc. Roy. Soc. (London) 245, 128 (1958); 245,
562 (j.958).

H. J. Lipkin, Nucl. Phys. 26, 14'j (1961).
fl G. Ripka, The Hartree-Pock Theory and Nuclear Deforma-

tions (to be published).
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link between the collective rotational motion and the
individual particle motion is, at least to us, not very
transparent.

In the present paper we propose a wave function, the
stretch wave function, which is a single conhguration,
and has the following properties: (i) It is a good angular-
rnomentum state; (ii) it has a large binding energy and.

is stable against distortion; (iii) it has an intrinsic quad-
rupole moment; and (iv) its simplest excitations corre-
spond to a rotational spectrum. The principal merit of
the stretch wave function is to give a very simple and
direct physical picture of nuclear "rotations" in terms
of the nucleon motion and the two-body force. Further-
more it shows that the existence of rotations depends
essentially on the proton-neutron correlations,

Two nucleons in a same shell have maximum binding
energy when the angular overlap of their wave functions
is maximum. For two identical nucleons this is obtained
by coupling them to angular momentum J=0 (see Fig.
1). Breaking the pair and coupling to J=2 requires a
large energy as a result of the large loss of overlap. This
e6ect leads to the pairing wave function, which is spheri-
cally symmetric. It has the largest possible number of
pairs coupled to 7=0. It is stable against distortion in
that it requires a large energy gap for the breaking of a
pair. Its "elementary excitations" thus are the two-
quasiparticle states. The pairing wave function has
proven to be a reasonably good approximation for the
ground state of even single closed-shell nuclei.

On the other hand, a proton and a neutron have a
large binding energy both when they are paired (J=0)
and when they are aligned, i.e., coupled to the maximum
possible angular momentum J =2j (Fig. 1).For like
particles, the latter coupling is forbidden by the Pauli
principle. Experimentally this is reRected in the spectra
of nuclei with two valence nucleons. For like nucleons,
e.g., "0, "Ca, etc. , the lower two-particle spectrum is
always 0+, 2+, 4+, etc. On the other hand, for unlike
nucleons, e.g., "N, "F, 'Sc, etc. , there is competition in
the spectrum between the J=0 and the J=J states.
This suggests that in nuclei with open shells for both
protons and neutrons, a description of the ground state
should include the maximum number of aligned proton-
neutron pairs. This consideration leads to the stretch
wave function.

We shall consider for simplicity (and limited ability
on our part) the simplest case of 2X protons in a shell
with angular momentum j and of 2S neutrons in a shell
with angular momentum k. StiB, this model contains all
the relevant physical features. The stretch wave func-
tion is then constructed in the following way (see Fig. 2):
First, S protons and X neutrons are coupled to the
maximum possible angular momentum, say C, which is
allowed by the Pauli principle. We shall call this system
a "chain. " The wave function of a chain is unique.
Therefore, as illustrated in Fig. 2, whatever be the ap-
parent coupling order of the nucleons, the chain con-

The n n or p p system

l & 0 ' 100% overlap

The p-n sys t em

1=2, 4...., )max g2 J - )
5 m.a(l o vc rlap

1l

0 p 100 % overlap l ~ &max = 2J;100% overlap

tains in fact the maximum possible number of aligned
proton-neutron pairs. Next, the remaining S protons
and E neutrons are coupled to a similar chain. Finally,
the two chains are coupled to a state with total angular

"max

P+Q= C

ci

J=O I-"2 I=4 etc.

Fzo. 2. Top: the structure of a chain. The coupling of aligned
pairs to maximum angular momentum C is unique: both coupling
schemes shown are identical. Bottom: the stretch state and its
rotational excitations. In the rotational states with ISO, the
effective overlap between the wave functions of the two chains
decreases with increasing I in that more and more across-the-
chain pairs are broken.

FzG. i. The overlap of the single-particle wave functions for a
two-nucleon system in a same shell. For a short-range force, the
binding energy is large only for I=0 for identical nucleons. For
nonidentical nucleons it is large also for I=2j.
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Namely, in states I&0 the angular-momentum vectors
Ci and Cs of the two chains precess about the direction
of I. This precessional motion is in fact equivalent to
the motion envisaged in the collective model, since the
axis of symmetry of the matter distribution is associated
with the direction Ct and Cs and rotates about the di-
rection I. The angular velocity of the precession is re-
lated to the excitation energies of the rotational states,
and increases with increasing I. (This point is illustrated
in term of a classical model in Fig. 3.) However, the
precession is purely kinematical. No dynamical effects
like RPC (Coriolis force) have to be added since the
problem is treated in the laboratory system; the treat-
ment is completely rotationally invariant. In order to
change the kinetic energy of the system, one has to admix
configurations in which some nucleons have been ele-
vated into higher shells, i.e., one has to "break" the
shells of the core. This effect has to be expected to take
place in real nuclei. Then the kinetic energy of the rota-
tional states can increase with increasing I in that the
admixture amplitudes of the different configurations
can be I-dependent. However, we are not going to con-
sider configuration mixing in this paper and continue
the discussion of the properties of a single stretch
configuration.

The wave function of the rotational states are of the
form

momentum I=O. This way the overlap between the
wave functions of the two chains is maximum. The
stretch wave function thus contains correlations be-
tween all nucleons.

Ke now give a more detailed discussion of the proper-
ties of the stretch wave function. The already-mentioned
stability against distortion has the following meaning.
Any other 0 state which could be generated from the
stretch wave function requires a rather large excitation
energy since, to this end, at least two aligned pairs must
be broken. By construction, the stretch state is spheri-
cally symmetric. The expectation values of all multipole
rnornent operators vanish; still it has large dynamic
moments. Thus, the expectation value of the square of,
e.g. , the quadrupole moment operator Qos, is large.

Finally, the stretch wave function exhibits two kinds
of "elementary excitations, " the "rotational" and the
"intrinsic" ones. The rotational excitations are obtained

by coupling the two chains to angular mornenta I&0
(see Fig. 2). The intrinsic excitations are obtained by
breaking a chain and coupling to an angular mornenturn
C'& C. The excitation energy for both these excitations
results from the loss of overlap in the single nucleon
wave functions.

%e now discuss the properties of the rotational exci-
tations. Since the angular momentum arises only from
a change in the coupling of the individual particle angu-
lar momenta, the kinetic energy of the system remains
unchanged; the excitation energy results purely from
a change of the potential energy of the system. Still,
these excitations deserve the name of rotational states.

They must be symmetric under the exchange of the two
chains, because of their indistinguishability. Since the
phase of the vector coupling coeKcients under exchange
is (—)'o r, the angular momenta I must be even. The
antisymmetrization operator has no bearing on this
symmetry.

The energies of the rotational states will be calculated
in Sec. III. They can be brought into the form

C C I C C I

Here A is the contribution to the energy from nucleons
in the same chain, while the sum arises from the interac-
tion between nucleons of the two chains. In other words
—,'A is the self-energy of each chain, while the second
term represents an effective chain-chain interaction en-

ergy. Asymptotically for large C and small I, E~
becomes'

Fr Eo+I(I+1)En. —-
In this formula higher terms in I I(I+1)/C(C+ 1))have
been dropped.

If one considers a chain to be representable by an
effective particle, then the interaction energy between

' U. Fano and G. Racah, Irreds&cible Tensorial Sets (Academic
Press Inc. , New York, 1958), Chap. XVI.

FIG. 3. A classical model for the nuclear rotations. The two
chains C behave like two gyroscopes with high angular momentum.
The interaction between the two chains which tends to align them
is represented by the spring. The torque exerted on the gyroscopes
induces a precessional motion of the whole system. The angular
velocity of the precession cop is proportional to the magnitude of
the torque, which, in turn, depends on the deviation from the
alignment, hence on I. In a linear system the potential energy of
the system, i.e., the compressional energy in the spring V is pro-
portional to P If I/C«. 1, and if V is small as compared to the
kinetic energy of the gyroscopes, a "moment of inertia" Jp can be
defined by the equation Er=-,'Jooip' or, equivalently, Fr= ,'I'/Jo. -
do "moment of inertia" can be meaningfully dined for nonlinear
systems, e.g., if V ~I4.
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the chains would be of the form

C C I
Uls= Q CllI'&»IIC

C C k

which for large C as compared to I gives again the
I(I+1) law. r This law is a simple expression of the fact
that the interaction energy between the chains must be
proportional to the overlap between the chain wave
functions, i.e., to Ci C2. In terms of the angle n be-
tween C~ and C~, the interaction energy is proportional
to

I':~ cosn=1 —-'n2=1 —Isj2C2

The I(I+1) rule is evidently not exact and, in fact,
both the detailed calculations and the experiments show
quite large deviations from this rule.

The intrinsic excitations, i.e., those states which re-
sult from breaking a single chain to angular momentum
C'(C, are not unique for a given total. angular momen-
tum I.A description of the intrinsic excited states thus
requires a treatment of the configuration mixing be-
tween these excitations. Let us note that the two chains
can again be coupled to Is C—C', I——2+1, Is+2, etc.
The previous selection rule limiting I to even numbers
does not apply any more since the chains are not
identical.

The stretch rotational states are related to the Bohr-
Mottelson aligned scheme. ' This scheme consists in
constructing a Slater determinant where the single-
particle m states are filled in the order +j, +(j—1),
+(j—2), etc. leading to a negative intrinsic deforma-
tion, or in the order &» &» +-,', etc. leading to a posi-
tive deformation. The aligned state does not have a good
angular momentum. If we construct two such determi-
nants for the 2N protons and the 2S neutrons, respec-
tively, with the filhng order &j, &(j—1), &(j—2),
etc. , we obtain the identity'

@'1.s .S(P)@;i,,e(rt) =+C'"+-C'"
=Q (C C C —C

~
IO)42'r',

where the approximate equal sign has to be employed
instead of the equal sign because the right-hand side is
not antisymrnetric between 4&&~~ and 0 &~~'. Since the
particles in these both functions fill different m states,
the antisyrrUnetrization is here trivial. The stretch ro-
tationat. wave functions thus correspond to the angular-
momentum-projected products of two aligned-scheme
wave functions; they are states with good angular mo-
mentum. Furthermore, they incorporate proton-neutron
correlations which we believe to be the essential in-

This observation is due to U. Pano, who participated in the
preliminary discussions in 1958.

e B. Mottelson, in Proceediugs of the Iuteruatiorsal School of
Physics "Enrico Fe—rmi" Course XV (Academic Press Inc., New
York, 1960), p. 45.

9 This relationship was pointed out to us by C. Levinson.

gredient for the appearance of deformations, in accord
with experimental observation. Finally, from the above
correspondence with the aligned-scheme wave func-
tion one sees that the stretch wave functions built up
with holes have positive intrinsic deformations while
those built with particles have negative intrinsic
deformations.

@'~"'(p)=
(N~)'"

2 t-1(1)

~t-a+1(1)

(2)

and similarly 4 @t@', are good angular-momentum. states
since P and Q are the maximum possible angular mo-
menta of the S protons in the j shell and of the X neu-
trons in the i's shell. They are given by (see Fig. 2)

P=Nj ,'N(N 1)—, -Q=N—k ——',N(N —1).
The total angular momentum C is similarly given by

C=P+Q=NJ .„N(N 1),— —
Imsx= j+&~

An arbitrary M state then can be obtained from (1)
by applying the M-lowering operator a sufIicient num-
ber of times. This wave function is then also antisym-
metric for protons and neutrons amongst themselves,
respectively.

The stretch wave function then would be

P Q Cl
@irl= p P Q

LL' ~.L, L,'

yLgL@ti&l)(lgliplg[rly g)lgliol)(lgliol jir'ljv'l (3)

where we have written for the recoupling coeKcient the
abbreviation defined in term of the 9-j coefFicients

A 8 C
D F F =

t (2G+1)(2H+1) (2C+1)(2F+1)$'"
.G H I.

'A 8 C'
X'D F. F '. (4).G B I.

The only approximation that we shall make in com-
puting the energies for the wave functions is the neglect

EI. THE STRETCH WAVE FU5'CTION

The wave function of a single chain of maximum an-
gular momentum C in its maximum 3f state, i.e., M =C,
is given uniquely by a product of two Slater determi-
nants, viz. ,

[cl =@ i&1(p)@ [Ql(rt)

The two Slater determinants, viz. ,

~t(2) . v»(N)
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We shall, however, use antisymmetrized matrix ele-
ments in the calculation of the potential energy. Thus
two interacting particles from di6erent chains are anti-
symmetrized. The only error arises from the lack of
antisymmetrization of two noninteracting particles
from two different chains. Thus, this error is of the same
nature as the one committed in the quasiboson approxi-
mation. The magnitude of this error can be assessed as
follows: %hen vector coupling the two chains to angular
momentum I, beginning with some value M~, some m
values will be occupied by two like particles. For large
C, and for E small compared to the degeneracy of the
shell, Mz is much smaller than C. More precisely, let us
denote by Q;= 2j+1 and Qz ——2k+1 the degeneracies of
the shells. Let 0 be the smaller of the two. Then errors
will appear for values of Mg such that

with
Mg&C —v,

v= 2Q—%+1.

(6a)

(6b)

This is evident when considering the Slater determi-
nants C. For large M values, only such p participate
where the m's have all the same sign. %hen applying
the M-lowering operator] times to C, Eq. (2), in the re-
sulting linear combination of Slater determinants ex-
actly one of the Slater determinants will have one row
of p &~2. Similarly, starting from the "mirror" Slater

of the antisymmetrization between the two chains.
Namely, we shall from now on use the approximate
expression

'P Q C
@(r)—g p Q»' „L L' I,

X[[@[P]XC[P]][1JX[C[Q]XC [Q]][I.]][r]

determinant of Eq. (2) with all negative m values, only
one among the generated Slater determinants after v

raising operations will have a row of q+~~2. Therefore,
the states m = &-', will be filled twice in some of the terms
of the sum which arises in the process of vector coupling.
Such occurrences will increase in number with increasing

Returning now to considering both proton and neu-
tron states, one sees that the maximum number of
double 611ings will occur at 1 =1„+v = C. The relative
importance of these double billings is smallest for the
state I=0 and increases with increasing I.

In summary, the order of magnitude of the error will

be at most 41V/(Q;+Q&), multiplied by a factor less than
unity since each chain is antisymmetrized by itself. The
exact determination of this factor has to await a more
complete treatment.

III. THE STRETCH TWO-BODY
MATRIX ELEMENT

In the calculation of the energy two classes of terms
appear, viz. , terms in which two like particles interact,
and terms in which two unlike particles interact. Be-
cause of the nonantisymmetrization between the two
chains, the 6rst class will split again into two diferent
kinds of terms, viz. , those where the two interacting par-
ticles are in the same chain and those where they are in
different chains.

The expansion of the wave function

+[1]—[[[jN][P]X [QN][QJ][&J

XC[jN]'"XPN]"']'"]'", (7)

thus, written in a very symbolical fashion, is of the form

+"'=2 CC2]'"X[4&-27'"7'",
or, in greater detail,

+'"= & [[j'7"'x[C[j"']"Jx[& 7"']'"x[[j]["xp ]'"]'"]'"]'"
JRST

[[jXP][&JX[C[j -1][&]X CPN
—1][&J][s]X [[jN][PJX [PN][Q]][c]][TJ][&]

JRRST

+ 2 C[j'7'"x[[[j" '7'"x [&"7'"7'"x C[jN '7'"x C&"7'"7'"7'"7'"
JRRSST

+ g [[jX)][&JX[[[jN 1][&]X[$ ]N7[Q]X[s[][jN][P]X [PN 1][s]][s]][TJ][r]
JRRSST

+ g [[k ][ ]X[[[jN] JX[kN ]s]][ JX[[j ][P X[AN]~Q ]~]] ] 1]

JRST

+ Q [[)2][j]X[[[jN][P] XPN 1][BJ][s]X[[jN][PJC)N—1][s]][s]][TJ][I]
JRRSST

=—&(1)+&(2)+&(3)+&(4)+&(~)+&(6) (9)

Equation (8) is symbolic in that all expansion coeK- multiplicities associated with the symmetry between the
cients, viz. , the recoupling and fractional parentage co- two chains, have been suppressed.
eKcients, as well as the names of the particles and the The matrix element of the two-body force (+[1]

~
V~
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4'&r&& is a sum of terms. Because of the orthogonality of
the 4S—2 part of the wave function, i.e., the noninter-
acting part, the sum contains only terms with the same
L4X—2$ part on both sides of the operator. Thus, the
matrix element will automatically group into the same
partial sums as indicated in Eq. (9), viz. ,

symmetrized matrix element of the two-body force. The
summations over S and T in (13) can be carried out to
give unity. Thus, 6nally, we have

V1 2 P (jN 2~R j 2JHj NP&2

X((jj)JIIVIIUj)J&(2J+1) '" (13)
(+"'

I
VI+'"&=2 (z() I viz()&=—2 v;. (10)

t and a similar equation for V2, with j and P replaced by
k and, respectively.

Next, we consider V2, which describes the interaction
The single and double fractional parentage coeK-

cients, which we shall abbreviate as SCFP and DCFP, of two unlike particles of the same chain,
respectively, are de6ned by

l(1,2, . 1V)j Np}

=2 LI(1, 2, ",&—1)j '«}XI(&)j)j'"

l(1,2, ",X)jNP}
X(j

I I (1, 2, ~ '
&

iV —2)j N 2«}
co,L,J

Xl($—1 X)j 2J}]~ &B

X(jN 2«; j2JHjNP), (»)
and similar expressions for k. The notation

I (1,2, . N)j NgI. }

denotes an antisymmetrized state of Sparticles coupled
to angular momentum I.. All the quantum numbers
needed in addition to their angular momentum I. to
specify the states in the expansion are denoted by eo.

The computational method of the CFP's is described in
Sec. IU.

&We now give the complete details of the matrix ele-
ment, Eq. (10), term by term. First, we consider V1 and
V6, corresponding to the interaction of two like particles
of the same chain. These are the only terms involving
DCFP's.

((PQ)c,c; I IP,(Qc)s; I)'
JRSTco

X((JR)P,S;I I J,(RS)T;I)'

X(jN 240R j 2J)'jj Np)2

x((jj)Jll vll(jj) J&(2J+1)-", (»)
where the recoupling coeS.cient is given in terms of the
6-j coeKcients as

((~I3)c,D; I I~,(BD)z; I)
( )A+B+D+?(2Cy 1)1/2(2++ 1)1/2

E. j P'
V2=2 Q R k Q ((JS)C,C;IIJ,(SC)T; I)'

coco RRJ'ST J C

X(j"-';jllj" &'(k -'-;kllk Q)'

X((jk)J II VII(jk)J&X(2J+1) '/'

-E j
'~R; j)i "P)'

.S J . C.

X (kN 'soR; k j}kNQ—)'

X((jk)JIIVII(jk)J)X(2J+1) '" (16)

Finally we have three terms left (V2, V4, V2) describing
the interaction between two particles in diferent chains.
The case of two protons is

-P Q C-2-R j P- ~

P Q C R j P
cogRRJSTUL

-L, O' I. .S J L.

x((JS)I.,v; II J,(sU)T; I&

X (j N 1/dR jjj Np&2(j N 1/AR jrj/Np)2

X((jj)JIIVIIUj)J&x(2J+1) '"
-P Q C-2-R j P-2

Q c
cocoRRJSUL

U I. .S J I..
X(jN '(oR;j jj Np)'(jN 'coR) j)jNp)

x(Uj)JIIVIIUj) &x( I+1)-'". (»)

A similar expression is obtained immediately for the
interaction of two neutrons in two different chains, i.e.,
the expression for V2, by replacing, in Eq. (17),j by k
and by exchanging P and Q. Likewise the interaction be-

and where ((jj)Jll VII(jj)J) is the usual reduced anti- tween a proton and a neutron in two different chains is
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given by
P Q C 2.R j I. -2

V4=2 Q Q P C R k Q

-L U I. .5 J I..
X(jw 'caR;j )j~P)2(k" '~R; kjjk~Q)'

X((jk)JljV)((gk)&)X(2J+1)—'" (18)

IV. CALCULATION OF THE FRACTIONAL
PARENTAGE COEFFICIENTS

The usual method for the computation of CFP's
would be in the present case unnecessarily cumbersome,
since it is a recurrence procedure which involves the
computation of all CFP's for all particle numbers up to
E. Only those for S itself are in fact needed. Because
of the uniqueness of the stretch wave function, it is pos-
sible to compute the CFP's directly for X particles.

We begin with the SCFP's, Eq. (11).This expansion
represents the antisymmetric wave function of X par-
ticles as a sum of products of antisymmetric wave func-
tions of particles 1, . S—1 and of the wave function
of particle S.Writing out the coupling explicitly we have

4'z&~'=
~
(1,2, ,N)j ~PP)

~(1, 2, , N 1)j ~ '(ARM)— —
ca gm1lf

Xp~&"(N)(RjMm~PP)(j~ 'cvR;jjjwP). (19)

The coefFicients c( ~(""~) will be generated below. In-
serting Eq. (21) in Eq. (19),and equating the resulting
expression with Eq. (20) yields

(—)N ' Q (—)'"~N —1; {m) (q M(N)

g a~ ~ ~™(RjMm~PP)
coB3Em (m'I

X(jw '~Rj)j ~P) ~»—1; {m')
~
p~~'~(N). (22)

Multiplying both sides by ~N 1; {m—'}
~ y '&'(N) and

integrating over all coordinates, one obtains a set of
linear equations for the SCFP's:

( )sm

b~ ), = P at }'"~~'(RjMm~PP)

X(j'-'-R; jItj"» (23)

The Kronecker symbol 8~ ~, signifieswhether thepar-
tition {m) is equal to the partition {j, j—1,
m+1, m —1, , j—N+1). The set of equations (23)
in general is redundant. This redundancy can be used to
check the numerical calculations. Another possible
check is furnished by the fact that the SCFP's must
form an orthonormal set.

We now return to the generation of the coefIicients
af I("~~).The highest and lowest values of R needed
in Eq. (21) are

R&——(N—1)j—(N—1)N/2On the other hand, C ~&~' is the single normalized Slater
determinant, Eq. (2), which we shall denote by

~
N~. As

in Eq. (19), we expand the Slater determinant by fac-
torizing the wave function of particle E,

and
(24)R(——P—j,

respectively. Again the wave function for R& and
M=X& is a single Slater determinant.

~.&'&= I»l =(—)"-' Z (-)- Therefore the angular momentum R& completely
ImI g» speci6es the wave function, and there is no need for the

quantum number co. However, we shall in such cases put
X I»—1; {m) I v -M(N) (2o)

The common sign reflects the fact that the determinant
was developed according to the last line. The sign (—)e™
is the usual parity of the permutation corresponding
to the index m, and here it is simply s =j—m, and
t»—1; {m) ~

is the normalized subdeterminant. Fin-
ally, the (N —1)-particle wave functions in Eq. (19)
can also be expanded in terms of (N —1)-dimensional
normalized Slater determinants ~N —1; {m) ~. In this
notation, the X—1 denotes the dimensionality of the
Slater determinant and {m} symbolizes the partition
of the nz values. Naturally, the Slater determinant
~N —1; {m) ~

of Eq. (20) corresponds to the partition
{j,j—1, , m+1, m —1, ,j N+1). Thus—

~(1, 2, ",N —1) — RM}

= Q a („)&""~&
( N —1; {m) (

.
fmJ

Gfg g & ~ o ~
(i a) R)) (23)

1 1 1
1 1 1
1 ~ 0-+ 0+
0 1 0
0 0 1
.0- -Oi -0-

1
0
1 ~ etc.
1
0

'.0-

After the first application of J one still is left with a
single Slater determinant. This state thus has the quan-
tum numbers (1, R&, R&—1) and therefore the corre-

The generation of the other amplitudes proceeds as fol-
lows: We apply repeatedly the M-lowering operator J
to the state

~
1 R& R&)=—{j,j—1, ,j N+2). This-

is schematically depicted as



STRETCH SCHEME 1041

sponding amplitude is

After the second application of J, two Slater determi-
nants appear. Thus two linearly independent states can
be formed. The one reached by the lowering operation
has the quantum numbers (1, R&, R&—2) and its two
normalized amplitudes result from the action of J on
the Slater determinants,

!1 R& R&—2}=1/! R&(R&+1)—M&(M&+1)1')'
r

1
1

X pj(j+1)—mi(mi+1) j')' 0
0

.0-
r1&

0
+Lj(j+1)—m2(ma+1) J')'» 1 ~, (27)

1
0
-0. .

with M&——E&—2, m1= j—5, and m2= j—3 in this ex-
ample. The other state formed by choosing the orthog-
onal linear combination has the quantum numbers

(1, R&—2, R&—2).
When continuing with the lowering operations, one

now must apply J to both these states. This in general
gives three determinants. This way one obtains the
states (1, R&, R&—3) and (1, R&—2, R&—3) and a new

state, viz. (1, R&—3, R&—3). The amplitudes for the
first two states can be obtained from the general recur-
sion relation,

p j(j+1)—m'(m'+1) ~'I'
)

(ra, R,31)—
~-) N(R+1)—M(M+1)i

Xg [ ) (Gt, R,M+1) (28)

Here the partitions {m'} are those which can reach the
partition {m) by one lowering operation, and m' in the
square root denotes the ns value of the single-particle
state which has been filled by the lowering operation.
The amplitudes for the new state, viz. (1, R&—3,
R&—3), again are obtained by requiring that they be
orthogonal to the amplitudes of the states (1, R&,
R&—3) and (1, R&—2, R&—3).

The need for the additional quantum number or arises
whenever the number of new partions increases by more
than one, thus leading to several new states having the
same angular momentum. The amplitudes of these
states then are not uniquely determined by the orthog-
onality requirement. We have used the following proce-
dure: Let the number of partitions in the previous step

be n1, and the number of the new partions be n2) n1.
We abbreviate the notation for the amplitudes to be
u &"). The amplitudes with !A! &Ni are obtained from
the recursion relation (28). We first consider the ampli-
tudes for the state 8=vi+ 1.They must be orthogonal
to all previous vectors. Introducing unnormalized

amplitudes
(29)x =Xu &~)

the orthogonality requirement then is

P a &")x.=0 for all (A) .
a=1

(30)

Since there exist only e1 equations in the m2 unknowns

x, m~ —e1 conditions still must be imposed. Ke have
chosen

x =1 for n)n1. (31)

The set of equations (30) then becomes

g a.&")x =—
a=1 a =n]+1

(A) (32)

We again expand the antisymmetric (N —2)-particle
wave function into normalized Slater determinants

!(1,2, ",N —2)j — RM)

= P a ~ )
&"R~)!N 2, {m)!. —

jmI
(34)

The amplitudes e( )
&"~~) are generated as already ex-

plained. The two-particle wave function can-- also be ex-
panded in terms of 2)(2 Slater determinants

(35)

This system yields a unique solution for the x 's pro-
vided that the determinant of the left-hand side of (32)
is nonsingular. If it should turn out to be singular, one

imposes the conditions (31) on a different set of n's.

Finally, the amplitudes a &R) are obtained from (29) by
computing the normalization constant X. They corre-

spond to the new state with ~=1.The procedure now

can be repeated leading to the states with co=2, etc.
We now turn to the DCFP's, Eq. (12). Again we re-

write explcitly

CR~»=! (1,2, N)PPP}

!(1, 2, , N 2)j R 2a)RM)—
cy g JmM

X!(N—1, N) j'JM) (R&Mm! PP)
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d5/2

fz/2 fz/2
g9/2 g9/2
h11/2 h11/2

g9/2 h11/2

g9/2 113/2

11.26
8.54
7.11
6.23
6.21
4.97

Z6.84
19.78
16.23
14.13
14.01
10.95

48.4'1
34.03
27.10
23.23

, 23.07
17.68

On the other hand the unique state C»&~& can be directly
expanded into products of two Slater determinants,

1

where the partition {m) is just {m&,ms). As previously,
we obtain a system of linear equations for the DCFP's,
V1Z.J

TABLE I. Binding energies of the stretch ground state. The
values in italics correspond to the cases where the Pauli principle
is strongly violated. The energies are given in MeV.

not necessarily a force which gives good results in par-
ticle-particle calculations. However, this is not of any
importance in this connection, since only the qualitative
features of the solutions are of interest here. The single-
particle wave functions were those of a spherically sym-
metric harmonic-oscillator well. The oscillator-well pa-
rameter 0. and the range p of the force were chosen such
that pa=1.

The following checks were included in the calculation.
First, the fractional parentage codhcients were tested
for orthonormality. Second, the total geometry was veri-
fied substituting unity for the two-body matrix ele-
ments in the complete program. It then has to yield the
number 7X'—2E in place of the energies Ey. This num-
ber replaces the number of pairs, viz. , 8E'—2K=~A
X(A —1), which would result from a completely anti-
symmetrized wave function. This check is exceedingly
strong as it involves the complete calculation. It was
performed after the computation of each rotational

TABLE III. The excitation energies of the rotational stretch
states, in MeV. The Pauli principle is strongly violated in the
states f7/s —fr/s with 4iV =12.

Bm1 m2

laj (ma l, (ml
(21V(X—1)j'"

u( l ™(jjmrms
~

JM)(EJN'm ~PP)u2
egg JmM

X(j N 2~+ jsjj}jjjNP) (37)

Here the Kronecker symbol 8{ .l, ( l signifies whether
the partitions {m') and {m) complement themselves to
the partition {j, j—1, j—2, ~ ~, j—%+1).

V. RESULTS

In the numerical calculations of the rotational ener-
gies we have used a finite-range Guassian force

0
2

6
8

10

I
0
2
4
6
8

10

0
0.202
0.587
1.013
1.376
1.646

~11/2 h11/2

8 12
0 0

0.084 0.054
0.263 0.174
0.506 0.344
0.777 0.545
1.054 0.761

fv/r f7/s—
4 8 12

0 0 0
0.538 0.254 0.068
1.426 0.753 0.240
2.167 1.317 0.512
2.594 1.787 0.801
2.756 2.119 0.938

0
0.310
0.866
1.421
1.838
2.113

4
0

0.242
0.690
1.163
1.552
1.826

g9/2 hl 1 /2

8
0

0.103
0.321
0.606
0.914
1.216

12
0

0.064
0.203
0.397
0.620
0.871

g9/2 —g9/2

12

0 0
0.139 0.080
0.427 0.254
0.790 0.492
1.158 0.757
1.497 1.015

V= e &"»/»' Z VsrPsr &

8F

with V~p= —40 MeV, Vp].=—24 MeV, Vpp= —24 MeV,
V»=25 MeV; I'&T is a projection operator. This ex-
change mixture has been used with good results in
particle-hole calculations of "C, "0 and "'Pb "It is

A (A —1)/12
fz/2 —fz/2
g9/2 g9/2

g9/2 hl 1 /2

A/4

4.67
2.32
2.28
2.54

2

12

11
3.96
3.81
4.75

3

'0 V. Gillet, A. M. Green, and E. Sanderson (to be published).

TAaLE II. The A dependence of the stretch ground-state bind-
ing energies. The numbers are the ratios of the binding energies
relative to the case A =4. The 6rst line gives the number of bonds
relative to the case A=4. The last line gives the number of
quartets.

state, and, as a matter of fact, doubled the computation
time. These checks all worked out perfectly and we

therefore have a very high degree of confidence in the
obtained results. As an aside, the commonly available
programs for 6-j and 9-j coefficients were inadequate
because of their limited accuracy. A double precision
program" had to be used to obtain satisfactory checks.
The accuracy of the checks turned out to be better than
four digits, even for the highest angular momenta and
for the largest number of particles.

Calculations were carried through in the f7/s gs/s and

h~~/~ shells, for 4, 8, and 12 particles. The results are
given in Tables I—III.

"R. Caswell and L. C. Maximon, National Bureau of Stan-
dards Technical Note No. 409, 1966 (unpublished). This article
gives zoRTRAN rz and zoRTRAN zv programs for the calculation of
Wigner 3j, 6j, and 9j coefficients containing individual angular
momenta less than or equal to 80. For such angular momenta the
errors are of the order of 10 ' for 9j and 10 z for 6j coefficients,
and the computation times are of the order of 0.001 to 0.01 sec per
6j and 0.1 to 1 sec per 9j.
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Fro. 4. Departures of some experimental spectra
from the I(I+1) law (Ref. 1).

Fro. 5. Departures of the stretch scheme
spectra from the I(I+1) law.

The binding energies of the stretch ground state
(I=0) are given in Table I.Their 2 dependence is given
in Table II. This dependence turns out to be very
closely linear with A. It is far from being proportional
to the number of bonds —',A(A —1). As a matter of fact
it just barely exceeds a linear dependence. The origin of
this behavior lies in the fact that the basic building
block of the stretch wave function is a quartet of nu-
cleons consisting of two aligned proton-neutron pairs
coupled to angular momentum 0. The correlations be-
tween the four nucleons making a quartet are maximal.
The interactions between di6'erent quartets, however,
are weak since the Pauli principle forbids a good overlap
between the wave functions of the di6erent quartets.
Hence the almost linear dependence of the binding en-
ergies on the number of quartets, ~A. Thus the system
behaves closely like an independent quartet system.
Still, the interaction between the quartets does not
vanish and is responsible for the deviations from linear-
ity, and for the over-all alignment of the stretch wave
function.

The computed rotational spectra are given in Table
III.The values of these energies are of the same order of
magnitude as those found in nature. All these spectra
have rotational spacings, even though all depart from
a pure I(I+1)dependence, However, similar departures
are also observed in nature. This is illustrated for a selec-
tion of nuclei in Fig. 4, which shows the parameter

(Ez—Ep)/I(I+1)

s(&s—~p)

calculated from the experimental energies. ' This pa-
rameter would be pz

——1, for a pure I(I+1) law. As can
be seen the deviations from this law are considerable,
even for the most "rotational" nuclei. In Fig. 5 we show
the values of p calculated from the theoretical spectra
(Table III).The departures from the value p= 1 dimin-
ish with increasing particle number and grow with in-
creasing I.Both these effects are as expected. The I de-
pendence of p in the stretch scheme results from the
deviation of the geometrical coupling coeKcients from

l.0-

Fxo. 6. Comparison of the
departures from a purely ro-
tational spectrum in stretch
(left part) and in the os-
mium isotopes which have
six proton holes.

0.9-
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~ ii/i2)'2
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their asymptotic form, which was discussed in Sec. I.
Also deviations may result from the Pauli correlations
neglected in the present treatment.

The similarities between the experimental and the
stretch deviations are shown in Fig. 6. In the right part
of this Ggure we have plotted the p values for the Os
isotopes. These are nuclei with six proton holes and a
varying number of neutron holes. We have chosen these
nuclei since a stretch wave function corresponding to a
positive intrinsic deformation is made of holes, as dis-
cussed in Sec. I.

VI. CONCLUSIONS

The stretch wave function owes its simplicity to the
uniqueness of the chains. When constructed with par-
ticles it has negative deformation. A wave function pro-
jected from a product of aligned particle-state determi-
nants with positive intrinsic deformations cannot be
represented as a single con6guration. It is a linear super-
position of conigurations with varying chain lengths.
Because of conhguration interaction, this state is lower
in energy than the pure stretch state studied here. This
indicates why nuclei have positive rather than negative
deformations. A treatment of this situation has not yet
been carried through. The stretch scheme is useful in
that it gives a description of hole nuclei, and, more im-

portantly, of the basic structure of deformed nuclei.
The most important feature of the stretch scheme

which emerged from the calculations is the almost linear
dependence of the binding energy on the number of
quartets. This is in marked contrast to the presently
prevalent view that the binding energy in deformed
states should be proportional to the number of pairs, i.e.,
that it should go quadratically with the number of par-
ticles. The physical reason for this behavior is the fact
that the internal binding energy of a given quartet is
much larger than the interaction energy between two
diGerent quartets. The large binding energy of a quartet
is the result of the maximization of the overlap of the
four-particle wave function. On the other hand, the
Pauli principle then limits the possible overlap between
two quartets. Thus the correlations between the quar-
tets do not contribute much to the binding energy; they
show up only as the deviations from linearity of the
dependence of the binding energy on the number of

quartets. However, the correlations between the quar-
tets are solely responsible for the alignment of the
quartets, and thus for the existence of the nuclear
deformation. Parenthetically we note that most of the
binding energy thus is associated with an intrinsically
spherically symmetrical system, viz. , the uncorrelated
quartets, while energetically the change of the system
to an intrinsically deformed system, viz. , the stretch
wave function, makes only a small difference.

The stretch scheme, in the form presented here, ob-
viously cannot aim at a quantitative description of
actual nuclei. Its great simplicity rests upon two un-

realistic features: (i) Only one shell for the protons
and one shell for the neutrons are allowed, and (ii) the
stretch state has a negative quadrupole moment
("oblate" shape). These limitations are necessary in

order to have a unique, energetically nondegenerate,
stretch state. They are the price paid for the simple image
of the relationship between collective and individual nu-

cleon motions which has been given in this paper. The
removal of these two limitations, in the present frame-
work, leads to a set of stretch states all close in energy,
requiring a diagonalization of the interaction between
the different members of this set. Another approach,
now in progress, may turn out to be more fruitful. It
uses the above-demonstrated fact that the independent
quartet wave function yields a good approximation for
the energy of the ground state. The variational prin-
ciple may be applied to a trial wave function of this

type, leading to the energetically best distribution of
the quartets in the subshells. The correlations between
the quartets which are responsible for the over-all
alignment of the nucleon angular momenta may then
be introduced by a perturbation treatment.
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