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As a result of parity nonconservation, emitted neutrinos in muon capture by spin-zero nuclei have an
asymmetric angular distribution with respect to the muon-polarization axis. The asymmetry coefficient
« is defined by the distribution 14-aP cosf, and it is given in cases in which the final states have definite
spin and parity. In the unique forbidden transitions in which the final states have spin J and parity (—)7*,
a is generally dependent on both nuclear structure and the pseudoscalar coupling constant Cp. However,
in some cases, it is almost independent of nuclear structure, so that we can study the magnitude of Cp from
the asymmetry coefficient. In the nonunique forbidden transitions in which the final states have spin J
and parity (—)7, a is independent of Cp, but is strongly dependent on nuclear structure. As extreme cases,
ais +1 for A-type and —1 for V-type giant dipole excitations, with about 29, estimated error. This holds
also for 4- and V-type higher multipole excitations. If the final states are 0~ or 0%, then « is exactly —1,
and this case is independent of both nuclear structure and the magnitude of Cp, in contrast to the strong
dependence of the capture rate on Cp in the 0~ states. An averaged value of « over four kinds of the giant
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dipole states is equal to 0.4, in agreement with Primakoff’s value in the closure approximation.

I. INTRODUCTION

N muon capture by complex nuclei, the emitted
neutrinos are distributed anisotropically with respect
to the muon polarization axis, if a certain amount of
polarization is still preserved in the muonic K orbit.
Experimentally, the direction of the emitted neutrino
can be measured by detecting the recoiled nucleus which
goes in the opposite direction to that of the neutrino.
The angular distribution of neutrinos is calculated by
several authors'=!° in the form

14-aP cosb,

where 6 is the angle of the emitted neutrino with respect
to the initial muon polarization, P is the degree of the
polarization, and « is the asymmetry coefficient. The
standard form of @, which is given by Primakoff,® is

=Gy G2 —Gp+2GAGr
o= 3
GV2+3GA2+ GP2— ZGAGP

Gy=Cv[1+q/2M],
Gr= CA-CV'(1+ﬂp_ﬂn)g/2M ’
Gp= [Cp— CA'—th(1+IJp’“l‘n)]Q/2M'
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with

Here, ¢ is the neutrino energy and M is the nucleon
mass. This is given in the closure approximation for
estimating nuclear matrix elements, so that the nuclear-
structure dependence apparently disappears from the
above expression of the asymmetry. The formula gives
a=0.4 for a reasonable assumption of the pseudoscalar
coupling constant!

Cp/Ca=8, with ¢~80 MeV.

It will reach the maximum value a=0.6 for Cp/C4=~25
with the same value of ¢.

In this paper, we study the angular distribution of
neutrinos for partial transitions of the muon-capture
reaction in which the final states have definite spin and
parity. The neutrino (or equivalently, nuclear-recoil)
asymmetry is given in the framework of the allowed
and forbidden transitions, and it is expressed as a
function of weak-coupling constants and nuclear
matrix elements. It varies from —1 to -1 for different
excitations of the final states, without introducing any
large pseudoscalar coupling constant or G-parity non-
conservation. The asymmetry has also some character-
istic values for different modes of the giant dipole
excitations. In this connection, the measurements
of nuclear recoil will give information on nuclear
structure.

In Sec. II, the interaction Hamiltonian, coupling
constants, and nuclear matrix elements in muon-
capture reactions are summarized. In Secs. IIT and IV,
the formulas for the angular distributions of neutrinos
are given in unique and nonunique forbidden transi-
tions, respectively. Here, forbiddenness is defined in
the same manner as in the theory of B-decay.'? The
neutrino asymmetries for giant dipole states are dis-
cussed in Sec. V, and some remarks are given in Sec. VL.

11 M. L. Goldberger and S. B. Treiman, Phys. Rev. 111, 354
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In the Appendix, the definition of the reduced nuclear
matrix elements is given.

II. INTERACTION HAMILTONIAN, COUPLING
CONSTANTS, AND REDUCED NUCLEAR
MATRIX ELEMENTS

In muon capture,
wtp—ntr,

the density of the interaction Hamiltonian is given by!?

Hine=($svat) @l fry = igvoagps—ihvpel¥s)
+ (qgvi'Ya'Yﬁ‘pn) (‘//n[ifA’Ya’Ys_ gAPY5
+hacasysps ), (1)

¢V= I:(]- +75)/‘/§]¢v )

Tap=35[VYarYs]

Here pg is the 4-momentum transfer in the reaction. The
six form factors f, g, and % are functions of p2. They are
real if time-reversal invariance holds. In the limit of
the low momentum transfer (p — 0), we set

fr(0)=Cy, fa(0)=Ca.

The G parities of the fvy, gy, and k4 terms are
different from those of the fa, g4, and ky. Assum-
ing G invariance for each nucleon current, we have
hv=ha=0, since the interactions f and g are well
known in experiments.

In the nonrelativistic approximation for the nucleons,
H v becomes Hing=1,3Cu,, with

3=Cy1-L(1)+Cauo-L(o)+(Cy/2M)[2L(e) -p
+p- L(e)+io- pX Le) J+(Ca/2M)[2L(v5) (o p)
+o-pL(ys) 1— (Cp/2M)o - pL(Bvs)
+ (up—un) (Cy/2M) o pX L(e) ]
—Csl-L(B)—Cro- L(o)— (Cr/Wo)o-pL(ys), (2)
where leptonic currents are

L(o)=y, [(14+7v3:)e/V2 ., etc.

with

and
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In Eq. (2), the #’s are the large components of the
relativistic wave functions ¢. We set the following
relations between coupling constants C; and form
factors fi, gi, hi:

Cv=fv, gv=C(up—wn)(Cyv/2M), Cs=—myhv,
Ca=fa, Cp=muga, Cr=—hsW,, 3)

where Wy is the end-point energy in the 8 decay to the
same levels involved in muon capture. M and m, are
the nucleon mass and the muon mass, and w,—u,
=3.706. As is seen in the above relations, the gv, ga,
hy, and ha terms are of the weak magnetism, induced
pseudoscalar, induced scalar, and induced tensor inter-
actions, respectively. The relation between gy and Cy
is given by the conserved-vector-current theory, for
which Ay=0.

The neutrino angular distribution is calculated in the
framework of the theory of allowed and forbidden
transitions in muon capture.!? The nucleon currents are
decomposed in the spherical representation, and the
reduced nuclear matrix elements are defined as shown
in the Appendix. The asymmetry coefficient is expressed
in terms of coupling constants in Egs. (3) and the
reduced nuclear matrix elements below.

The reduced nuclear matrix elements are symbolized
by [SLJ] or [SLJ p]. Here, S, L, and J can be
understood as the resultant spin, the effective orbital
angular momentum, and the resultant total angular
momentum of the lepton system, or, respectively,
those of the nucleon system. An additional symbol p
is used to indicate that the differential operator for the
nuclear wave function is involved. The reduced nuclear
matrix elements are given under the assumption!® that
the proton is annihilated in the orbit (#1,l,71) and the
neutron is created in the orbit (#s,ls,72). The integra-
tion of angular parts is expressed in terms of the 3-7,
6-7, and 9-j coefficients. The radial parts are left for
integration. A linear combination of the matrices with
a set of appropriate mixing parameters for different
values of ny, l1, j1, %, ls, 72 should be used for the real
nuclear wave functions.

[S LJ]= (=) eI [(2S41) /4 [2QL+1) (2h+1) 2 51+1) (2524+1) J72(1 L 00| 1, 0)

[07Jp]= 2

U/=l1+1

1 J2 J

x|h b f erjslab(nalb(mlyridr, (4)
1 10S
2 2

(=) LU +1) /4 J[6(251+ 1) 252+ 1) T2 T 0 0] 0)W (' jalaja, 3 J)

XW(hji13,3 1) f 017 (@) B(s) D (s, ()

(LTp]= 22 (—)mintP[27+1)(20 +1)/4x(2+1)I[3(2L+1)(25:+1) 272+ 1) ]V2( L0 0] 0)

U/'=n+1

XW(hjilage, 3 HNW (kL L, Iy T) / 8-171(gr)d(nale) (D, 1y p(nala))r?dr ,  (6)

13 S. Weinberg, Phys. Rev. 112, 1375 (1958).

132 Note added in proof. In-derivation of Eqs. (4)-(6), it is also assumed that in the_initial state_the ji_orbit is completely filled

and the j: orbit is vacant.
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F16. 1. Asymmetry coefficient « as a function of Cp/C4 in the
case of unique forbidden transitions. ¢=179 is assumed in Eq.
(17). The spin and parity of the final state are labeled to each
curve.

with differential operators
D= [(b+1)/(20+3)]2(d/dr—l/r),  (Ta)
Dy 1= —[h/(2h—1)]*[d/dr+(b+1)/r].  (7b)

For nuclear radial wave functions ¢(»,l), we could use
harmonic-oscillator functions. The radial wave function
for the neutrino is the spherical Bessel function 7.(g7).
The wave function for the muon is assumed to be

g-1=2(aZm,')3? exp(—aZm,'r), and f1=0, (8)

for point nuclear charge of small «Z. The m,’ is the
muon reduced mass

my =m[ 1+ (m,/AM) T, )

where A4 is the mass number. In this reaction, the
emitted neutrino has an energy of

q= (my—Wo)[1— (my/2)(m,+AM)~"].  (10)
All quantities are in the atomic units,
h=c=m.=1, (11)

where . is the electron mass.
The explicit formulas for the angular distribution are
given in the following sections.

III. UNIQUE FORBIDDEN TRANSITIONS

This class of transitions is defined by nuclear spin
change J=|J;—J,| and parity change No for odd and
Yes for even values of J. Transitions from the 0% to
the states 0—, 1+, 2—, 3+, ...  are first forbidden,
allowed, first forbidden, second forbidden, ---; re-
spectively. For each transition in muon-capture re-
actions, there are four matrix elements (except for
0t—07), [1J—-1J], [1J+1J], [1JJTp], and
[0T T p]. If we keep [1J—1J], and neglect the
other three, the asymmetry coefficient a becomes
independent of nuclear structure. It is uniquely deter-
mined by the combination of coupling constants in
weak interactions, Eq. (3), so that we call these transi-
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tions ‘“unique forbidden.” In B decay, [1J—1J]
corresponds to JS'e, S Bij, S Sik etc. The spectral
shape factor is uniquely determined in this class of
transitions. Matrices [1J+1J], M—'[0J J p], and
M-0J J p] are negligibly small and they do not
appear in the theory of 8 decay.

The asymmetry coefficient « is given in the unique
forbidden transitions as follows:

a=N/D, 12)

with

N
X (2T4+1)"YTV[1 J—1 T+ (T+1)V1 T+1 T}
+26(r/ M) 2T+ 1)=V2[1 T T pUTV2[1 T+1T]
— (1)1 T—1 J}2[3/2T+1)1V2(a/M)
XLOT J pUTY[1 T—1 T+ (T+1)V2
XL T+ TR+ G/M) 1T T p2

+£3(1/M)[0T T pT2, (13)

(D)=b2([1 J—1 JT+[1 T+1 T])+ (a?—b2)

and
CT Cp ZMCT q
ot (1-=-— O )
Cy Cs WCA/2M
Cr qCv
b=1_“——'(1+l-‘p_l‘n) ’ (15)
Ca 2MCy
Cy
r=— (16)
Cu

Here the upper sign refers to D and the lower sign refers
to N. We can certainly neglect the last two terms in
Eq. (13). However, we keep these terms for the positive
definiteness of transition probability and for the condi-
tion |a| <1.

If we can neglect [1J+1J], M~ [1JJ p], and
M—{0J J p] compared with [1J—1J], the asym-
metry coefficient reduces to the following form:

(J+1)b2—Ja?

a=— a7
(J+1)b2+Ja?

That is, the asymmetry coefficient can be given with-
out knowledge of the details of nuclear structure. This
approximation is valid in most of the cases. It does

TasiE I. Asymmetry coefficient « in the case of unique for-
bidden transitions. Nuclear-structure-independent approxima-
tion [Eq. (17)] is assumed, with C4/Cy=—1.18, Cp/Cs=38,
and ¢=179.

Final states Forbiddenness o
0~ 1 —1.00
1+ 0 0.73
2- 1 0.65
3+ 2 0.62
4- 3 0.60
5+ 4 0.59
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not hold, e.g., in the Il-Horbidden transitions, where
[1J—1J]1is zero, but [1 J+1 J] is not.

Figure 1 shows the numerical value of ¢ in Eq.
(17) as a function of J and Cp/Cs. We also assume
the universal Fermi interaction (Cr=Cg=0, C4/Cy
=—1.18, and weak magnetism). For Cp/C4=38, a is
given in Table I for different values of J. In general,
decreases with J. It increases with Cp in a region of
Cp/C4 up to around 20, because the coupling constant
a, Eq. (14), decreases with Cp/C4. a should reach —1
for large values of Cp/C,, although it is unusual to
assume a large value for Cp.

In order to estimate the validity of the neglect of
the other matrix elements in Eq. (17), we have com-
puted a with the known values for all four nuclear
matrices for the muon capture in C!? to the ground
state of B2,

Z[101]=—0.138  (—0.134),
ZJ[121]= 0.00483 (0.00471), (18)
ZJf111p]= 555 (5.40),
ZJ011p]= 106 (10.3),

with
Zi'=2(aZm,/)3?, and Z=6.

The numerical values are given for a point nuclear
charge!? and with nuclear finite-size corrections!* (in
parentheses). Both sets of numerical values give an
identical value of «, which is curve @ in Fig. 2, in com-
parison with curve 8, given by Eq. (17). In particular,
for Cp/C41=8,

a=0.84 from Eq. (13),

a=0.73 from Eq. (17).

The latter value for o has also been obtained by
Primakoff.¢

An exceptional case of the unique forbidden transi-

tions is 0* — 0~. The asymmetry coefficient « is derived
from Eq. (13) by putting J=0,

(19)

<£>=:I:{a[1 10]+@YY/M011 pT32.  (20)

This gives us o= —1.

(21)

This result is independent of both nuclear structure and
the magnitudes of the coupling constants. It is in
contrast to the fact that the muon-capture rate of the
0t — 0~ transitions is very sensitive to Cp/C4.1®

IV. NONUNIQUE FORBIDDEN TRANSITIONS

This class of transitions is defined by nuclear spin
change J=|J;—J| and parity change No for even and

14 M. Morita, M. Hirooka, and H. Narmui (unpublished).

15V, Gillet and D. A. Jenkins, Phys. Rev. 140, B32 (1965);
M. Morita, M. Hirooka, and H. Narumi (unpublished); M. Rho,
Phys. Rev. Letters 18, 671 (1967).
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F16. 2. Asymmetry coefficient « as a function of Cp/C4 in the
case of muon capture in C!? to the ground state B12, which is 1+,
(a) Egs. (13) and (18); (b) Eq. (17), nuclear-structure-independent
approximation.

Yes for odd values of J. Transitions from the 0F state
to the states 0%, 1=, 2+, 3—, - .., are allowed, first-for-
bidden, second-forbidden, third-forbidden transitions,
- -+, respectively. For each transition in muon-capture
reactions, there are four matrix elements, (except
for 0t—0t), [1JJ], [0JJ], [1J—1Tp], and
[1J+17J p], which correspond to SeXr, St, [,
and /" (e-r)r of the first-forbidden 3 decay, respectively.
The asymmetry factor a in the nonunique forbidden
transitions is given by the formulation described in
Ref. 12 as follows:

a=N/D (22)
with

D)—b2[1 T TP3(re)[0 J T T2

<N B a3t
+2(b/ M) 2T+ 1) 2 (J+1)V2[1 T—1 T p]
—JUI J4+1 T pTy[1 T JTF2(c/M)
X[3/(2T-+1)T2[0 J JJJTY[1 T—1 T p]
++D L TH1T p]}

+0/MX[1T—1T pP+[1T+1T p7?)
0

—(2)(r/M)2(2]+1)—1{]”2[1 J—17Jp]

+U+DL T T 1}, (23)
and

c=1—Cs/Cv+q/2M . (24)

In Eq. (23) the upper sign refers to D, while the lower
sign refers to N.

There is a relation between [1 J—1J pJand [0 J J ],
which can be derived in the conserved-vector-current
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theory, 6

[1T=1J pl=—wM[3QJ+1)/J]/[0J ], (25)
with
w=[Wo+1.15(eZ/R)—2.5]/q.

Here W, is the total energy of the electron in the g
decay between the same levels as in the muon capture,
and aZ/R is the Coulomb energy at the nuclear sur-
face, where Z is the atomic number of the parent
nuclei in muon capture. If we neglect [1J+1J p]
compared with [1J—1J p], and we adopt Eq. (25),
then we can express the asymmetry coefficient « by
only two matrices, [1J J] and [0J J], as follows:

D
<V) =52[1 J T PP— 2050 [3(J+1)/J 1720 7 TI[1 T J]

£33+ 2we+xw?)[0 T J ]2, (26)
with
x=1 for D,
x=—J"t for N,
and
J>1.

Since b, ¢, and 7 are independent of Cp, we cannot ob-
tain any information on the pseudoscalar coupling
constant by measuring nuclear recoil distributions in
the nonunique forbidden transitions.

On the other hand, the asymmetry coefficient is
strongly dependent on the ratio [1.J J}/[0J J]. This
means that the measurement of a gives us information
on nuclear structure. For example, we show two extreme
cases.

A. V-Type Giant Dipole Excitations

The final states are the 1~ states formed by the
isospin mode of collective vibration in the generalized
Goldhaber-Teller (GT) model. In this particular case
(] = ])’

[0J J]5#0 for vector operator,
and (27)
[1JJ]=0 for axial-vector operator.

The asymmetry coefficient derived from Eq. (26) is
(28)

a=—1,

with 29, error. The same value of « is obtained in the
V-type excitations with higher multipoles (J>1).

B. A-Type Giant Dipole Excitations

The final states are the 1~ states formed by the spin-
isospin mode of the collective vibrations in the general-

16 A, Fujii, J. Fujita, and M. Morita, Progr. Theoret. Phys.
(Kyoto) 32, 438 (1964).
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ized GT model. In this case (J=1),
[0J J]=0 for vector operator,
and (29)

[1JJ1#0 for axial-vector operator.
The asymmetry coefficient derived from Eq. (26) is
(30)

a=1,

with 29, error. The same value of « is obtained in the

A-type excitations with higher multipoles (J>1) .
Tinally, we give an exceptional case, i.e., the 07— OF

transition. The asymmetry is given by Eq. (23),

D
QV>=:1:{\/376[000]—(7/M)[1 10p732. (31)

This gives us
a=—1.

(32)

This result is independent of both nuclear structure
and the magnitudes of the coupling constants.

V. NEUTRINO ASYMMETRIES FOR THE
GIANT DIPOLE STATES

We have found in a previous work!? that the muon-
capture rate decreases with increasing forbiddenness,
and hence that most of the muon captures take place
in the allowed and first-forbidden transitions. (In
general, transition rates in the second- and third-
forbidden transitions are about 1073 times smaller
than those in allowed and first-forbidden transitions,
respectively.) The allowed transitions are also sup-
pressed if the parent nuclei have doubly closed shells.

The Wigner supermultiplet theory!? also gives non-
zero transition rates only for the first-forbidden transi-
tions.!® This is due to the fact that the nuclear matrix
elements include an isospin (and spin) operator. Non-
zero values occur only for those transitions in which
the final states are members of the same supermultiplet
of giant dipole states as the parent nucleus. In this con-
nection, collective vibrations of the nucleus in the
generalized GT model have been considered.'*=23 The
final states of the muon capture are the 1~ state which
is excited by the isospin mode (V type) and the 07,

17 E. Wigner, Phys. Rev. 51, 106 (1937).

( 18 L) L. Foldy and J. D. Walecka, Nuovo Cimento 34, 1026
1964).

19 M. Goldhaber and E. Teller, Phys. Rev. 74, 1046 (1948).

20 A, E. Glassgold, W. Heckrotte, and K. M. Watson, Ann.
Phys. (N. Y.) 6, 1 (1959).

( 2 S). Fallieros, R. Ferrell, and M. K. Pal, Nucl. Phys. 15, 363
1960).

22 J. D. Walecka, in Proceedings of the Williamsburg Conference
on Intermediate Energy Physics, edited by H. O. Funsten (The
College of William and Mary, Williamsburg, Virginia, 1966),
p. 297.

2 H. Uberall, in Proceedings of the Williamsburg Conference on
Intermediate Energy Physics, edited by H. O. Funsten (The
College of William and Mary, Williamsburg, Virginia, 1966),
p. 326.
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1-, and 2~ states which are excited by the spin-isospin
mode (4 type), Fig. 3. The transitions to these states
are, therefore, first forbidden.

As was mentioned by Uberall,2 there is a certain
indication that the giant dipole states are excited by the
absorption of the muon in nuclei such as B'?, N6, and
K*. This is observed in the neutron energy spectrum
from the muon capture. These states have excitation
energy 10-25 MeV, and the separation energy among
them is about 5 MeV.?* The spin and parity of these
states are (from higher to lower excitation) 0~ (4 type),
1~ (4 type), 1~ (V type), and 2~ (4 type), (the 2~ state
is not confirmed in K*%). The expected neutrino asym-
metries are —1, +1, —1, and 0.5—0.6, respectively.

The neutrino asymmetry in the closure approxima-
tion can be reproduced from ours in the limiting case
where the four kinds of the giant dipole states are
degenerate. For simplicity, we neglect all momentum-
type matrices [[S L J p] in Egs. (13) and (26).%
Each transition of the given J should be weighted with
a statistical spin factor (2741). The matrices satisfy
the relations

3011 =11 1=[110=[112]. (33)

These relations can be proved with the method de-
veloped by Uberall for the giant dipole states.2 From
Egs. (13), (26), and (33), the asymmetry becomes

—a*+3(0%— 122+ (3b%2—2a?)
a= . (34)
a?+3(b%+r%%) 4 (3624 2a?)
The above formula gives

a=0.4 for

Cp/Ca=8.

In fact, Eq. (34) is identical with the formula (given in
the Introduction) in the closure approximation,’ if the
coupling constants a, b, ¢, and 7 are inserted explicitly.

VI. CONCLUDING REMARKS
The partial muon-capture rate is
=3C3Q2J+ D —q(m,+AM)"]g*D.  (35)

Here, D is given by Egs. (13) and (23), for unique and
nonunique forbidden transitions. More accurate for-
mulas for the muon-capture rate with the small com-
ponents of the muon wave function are given in Refs. 12
and 27.

Until now, we have no direct measurement of nuclear
recoil in muon-capture reactions. It is hoped that an
experiment of this kind will be possible in the near
future. Measurements of the neutron asymmetry which

2 See, e.g., Figs. 4, 5, and 12 in Ref. 23.

25 This is correct up to the order of w, since

M[000 pl~w[110]and M [101 pl~w[0 1 1].

26 |, Cbera]l Phys. Rev. 137, B502 (1965).
( 2 M. Morita and R. Monta J. Phys. Soc. Japan 19, 1759
1964).
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Fic. 3. Collective vibrations
in the generalized Goldhaber-
Teller model. (a) Isospin mode;
(b) spin-isospin mode. el ge0m 2

(a) (b)

are currently being performed are easier experiment-
ally.?32 The neutrons are, however, emitted in the
direction of nuclear recoil only if a single neutron carries
off most of the available recoil momentum (direct
process). Using the Fermi-gas model and the closure
approximation, Wolfenstein has shown that the neutron
distribution in the direct process is less asymmetric
than that of the neutrino if the momentum distribution
of the initial proton is taken into account.!® Further-
more, neutrons from the resonant states are isotropic,
since the mechanism of emission is governed by the
parity-conserving strong interactions, and the initial
polarization is only for the spin-¥ muons.?® These
neutrons make the observable asymmetry smaller. On
the other hand, recent experiments show large neutron
asymmetries of both signs for high-energy neutrons from
muon capture in several nuclei.?*-32 This remains still
open to question.
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APPENDIX: DEFINITION OF REDUCED
NUCLEAR MATRIX ELEMENTS IN
MUON-CAPTURE REACTIONS

We summarize in this Appendix the reduced nuclear
matrix elements in muon-capture reactions.’? The
reduced nuclear matrix element [.S L J] is defined by

[S LIYJ: T M: M| T, M)
4
EZ(aZm“,)3/2/MJfoT > exp(—aZm,'rr)
k=1

X7 By Mid 11drs- - -drg. (A1)

28 A. Astbury, J. H. Bartley, I. M. Blair, M. A. R. Kemp, H.
1(\/Iu1r})1ead and T. Woodhead, Proc. Phys. Soc. (London) 79, 1011
1962

2V, Telegdi ef al., in Proceedings of the Tenth Annual Inter-
national Conference on High Energy Physics at Rochester, 1960,
edited by E. C. G. Sudarshan, J. H. Tincot, and A. C. Melissions
(Interscience Publishers, Inc., New York, 1961) p- 718.

30V. L. Evseyev, Chang Run-Hwa V. A. Chernogorova V.S
Roganov, and M. S. Szimachak, Phys Letters 6, 332 (1963)
Yadernaya Fiz. 4, 342 (1966) [Enghsh transl.: Soviet J. Nucl.
Phys. 4, 245 (196 )1

A E. W. Anderson and J. E. Rothberg, Bull. Am. Phys. Soc. 10,
80 (1965); E. W. Anderson, Nevis Report No. 136, Columbia
Umvers1ty, 1965 (unpubhshcd)

2 A. Suzuki, R. M. Edelstein, R. M. Sundelin, and K
Takahashi, Bull. Am. Phys. Soc. 12, 480 (1967).

3 H. Uberall, Phys. Rev. 129, B1239 (1965).
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TasLE II. Operators & for reduced nuclear matrix in Eq. (Al).
The spherical Bessel functions j(grx) are abbreviated by jz.

Matrix element Qe
[orLJ] FLYorsM(Fr)dLs
[1LJs] JLY LM (7, 08)

[0 LJ 7]
(1 LJ 7]

$5.Yons M (P1) Ok prdLs
35 .Y125™ Pr,pr)

A similar relation holds for [.S L J p]. Here s+ and
us M/ are nuclear wave functions of the initial and final
states specified by the spin and its projection M. 7_®
and Q are the isospin and the operator for the kth
nucleon. S, L, and J in brackets are the resultant spin,
the effective orbital angular momentum, and the
resultant total angular momentum of the lepton

M. MORITA
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system, respectively. J also specifies the rank of the
matrix elements. The symbol p means that the relevant
matrix element includes the differential operator
p acting on the nuclear wave function. The parity
change is given by (—)Z for [S L J7, and (—)%*! for
[SLJp]. Nucleon operators Q; in Eq. (Al) are
summarized in Table II, where the vector harmonics
are defined by

YsrsM(P0)=3 (SLm M—m|J M)Y 1s—n(6,0)

X (ys’m(“) ) (AZ)

with
Yoole) = (1/4m)1/2,
(ym(o') = (3/47!')1/20', , etc.

Y ss¥(?,p) has a similar expression.
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A good angular-momentum wave function containing the maximum possible intrinsic angular momenta
leads to a microscopic description of the nuclear rotational spectra in terms of spherical shell-model states.
The rotational excitation energies arise from the residual two-body force. In the actual model calculations,
the only approximation was a partial violation of the exclusion principle. The computed departures from
the I (I+1) law are consistent with experiment. Reasons are given for the preference of positive over negative

intrinsic deformations.

1. THE STRETCH SCHEME

HE collective model has been extremely successful

in giving a phenomenological description of the
characteristics of deformed nuclei in terms of macro-
scopic coordinates associated with the degrees of free-
dom of an average well.! However, it is an outstanding
problem of nuclear physics to understand deformed nu-
clei in terms of the nucleon motion and the two-body
force. Up to now, this problem has been attacked in es-
sentially three ways. The first is an attempt to solve the
complete nuclear Hamiltonian approximately in as large
as possible a configuration space. This method is practi-
cable only for very light nuclei and calculations of this
kind have been limited to the 1p shell.2 The second con-
sists in solving exactly an approximate Hamiltonian.
The problem here is to obtain a good guess of a simple
nuclear Hamiltonian which still is supposed to represent

1 A. Faessler, W. Greiner, and R. K. Sheline, Nucl. Phys. 70,
33 (1965).

2D. Kurath, in Alpha-, Beta-, and Gamma-Ray Spectroscopy,
edited by Kai Siegbahn (North-Holland Publishing Company,
Amsterdam, 1965), p. 583.

the essential nuclear features. In order to be exactly
solvable, this Hamiltonian must be invariant under the
symmetry transformation of some groups. So, for ex-
ample, Elliott’s model®+* is a nuclear Hamiltonian, in-
variant under SU(3). The exact solutions are then repre-
sentations of SU(3). However, to obtain this result, the
two-body force must be replaced by a separable, spin-
and isospin-independent quadrupole force, and the
average field must be an harmonic-oscillator potential.
In the third method, the deformed orbital method,® one
applies the variational principle to a trial wave function
which is simple but violates rotational invariance. This
way one treats an important part of the nucleon-nucleon
interaction, namely the average field effect. Good angu-
lar-momentum states then must be obtained by pro-
jection. All these methods lead to spectra with rota-
tional features. However, in all these approaches, the

3 J. P. Elliott, Proc. Roy. Soc. (London) 245, 128 (1958); 245,
562 (1958).

4H. J. Lipkin, Nucl. Phys. 26, 147 (1961).

5 G. Ripka, The Hartree-Fock Theory and Nuclear Deforma-
tions (to be published).



