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Results are reported for Hartree-Fock calculations carried out with an effective interaction derived from
the Yale potential. The spherical nuclei 0"and Ca~ are considered. The orbitals are expanded in terms of
harroonic-oscillator functions, and the dependence of the results on the number of oscillator functions used
and upon the oscillator size parameter is studied. The importance of various second-order terms is considered
using a simple approximation for the Pauli operator and the energy denominators. For the second-order
terms in the tensor interaction, some spectral corrections to the simplified energy denominators are made.
Reasonable results are obtained for the nuclei considered; however, the spectral corrections to the simplified
energy denominators are found to provide an important correction to the calculated binding energy. It is
concluded that an improved treatment of the energy denominators is required to improve the accuracy of
the results reported here. Tables of the effective interaction used in these calculations are presented in an
Appendix.

L. INTRODUCTION

M NE of the fundamental problems in the study of
nuclear structure is to obtain a satisfactory under-

standing of the static properties of nuclei such as bind-
ing energies, moments, spectra, etc. These properties
depend upon the nature of the force acting between
nucleons inside the nucleus. It is not unreasonable to
assume that the potentials that describe the scattering
of free nucleons'' may be used in the study of the
properties of finite nuclei or nuclear matter. These
potentials exhibit strong repulsion at short distances
and this fact greatly complicates nuclear-structure
calculations. Brueckner' and others' have developed
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theories based upon two-particle correlations (reaction
matrix theories) and some applications have been made
to the study of the properties of 6nite nuclei. '

In a preceding work, ' referred to as I in the following,
a method has been developed which allows one to derive
an effective Hamiltonian starting from a Hamiltonian
involving strongly repulsive forces. ' ~ The effective
Hamiltonian is generated using a model-operator
approach; however, the calculational procedures and
results do not di6er significantly from the reaction
matrix approach to the effective interaction problem
based on the Moszkowski-Scott4 separation method.
The novel features of the methods used here include the
introduction of pseudopotentials to achieve healing of
the correlated wave functions in those states where the
interaction is essentially repulsive. Also the use of a
harmonic-oscillator basis involving oscillator functions
of several nodes allows one to improve the orbitals used
in the direction of eliminating the one-particle one-hole
corrections to the binding energy. Indeed, the main
concern of this work is the application of the Hartree-
Fock method to the effective Hamiltonian. It is well
known that the concepts of the Hartree-Pock theory
underlie most nuclear models which are used in nuclear-
structure physics, and a calculational procedure which
generates the nuclear Hartree-Fock Geld, binding
energies, deformations, spin-orbit splittings, etc., is
highly desirable.

~ C. M. Shakin, Y.R.Waghmare, and M. H. Hull, Jr., preceding
paper, Phys. Rev. 161, 1006 (1967).' C. M. Shakin and Y. R. Waghmare, Phys. Rev. Letters 16,
403 (1966).

7M. H. Hull, Jr. , and C. M, Shakin, Phys. Letters 19, 506
(1965).
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Clearly, the application of the Hartree-Fock method
to an effective Hamiltonian does not provide one with
an upper bound for the binding energy. The justification
of the use of the Hartree-Fock method must be found
in the fact that it provides wave functions which are
related in a self-consistent manner to the effective
interaction. Once this self-consistency is achieved there
are no first-order corrections of the one-particle one-hole

type to the ground state. (The treatment of the second-
order terms due to the tensor force given in I also takes
into account some very important two-particle, two-
hole excitations involving high-energy orbitals. These
tensor force effects will greatly complicate any attempt
to apply Hartree-Fock theory in its usual form, even
with nonsingular forces, since the tensor correlations
are responsible for a large part of the binding energy of
the nucleus. )

One essential difficulty remains in that the effective
interaction generated depends somewhat on the dis-
persive character of the medium. In the formalism of
I, the use of harmonic-oscillator wave functions as a
basis is particularly simple if the dispersive effects of the
medium are represented by harmonic-oscillator poten-
tials. This choice allows for a simple separation of the
center-of-mass and relative motion of an interacting
pair. It is fairly difficult to give an accurate estimate of
the correction due to the use of this approximation and
for the results reported here this limitation should be
kept in mind.

II. THEORY

In this section a brief resume of the eRective inter-
action method is presented, the details of which are
given in I. Given a Hamiltonian II, an effective inter-
action H is determined by using a unitary operator e'~

such that

H= e 'sHe' s= pt„,„,a„,ta„,
+2+a ta t(231232

~
e ' (tl+t2+ Ul+ U2+»2)e'

—(tl+t2+ Ul+ U2)
~
233234)a.,a.,+, (1)

where t is the kinetic energy operator, and u» is the
nucleon-nucleon potential exhibiting strong repulsion
at short distances. The single-particle potentials U~ and

U~, which represent the dispersive properties of the
medium and arise from the analysis of the three-body
terms in the cluster expansion of H are approximated
by harmonic-oscillator forms, namely, U& ———,'kr&', U2
= —,kr~'. The potential e» is divided into a short-range
part v» and a long-range part v~~', so as to satisfy the
following equations'.

(tl+t2+ Ul+ U2+2 12 )fnln2(21/ 2) = (& 1+&n2)4'nln2(2 1)&2) )

(tl+t2+ Ul+ U2)4 (rl 2 2) (& + c )4' (2 l r2) (2)

where the subscripts m1 and e2 refer to the quantities
(23,lj,223) necessary to specify the orbitals for particle
motion in harmonic-oscillator potential. The short-

range part of the potential, v»', gives no energy shift in
the correlated wave function P„,„, relative to the un-
perturbed wave functions P„,„,. One finds

H =Et.... .,t -.+(-')2 -,t -,t
X(P..., l» 'I4...,)a.,a.,+, (3)

where we have used

iS~
Y +1'+2

The distance at which ~~~' and vi2' are separated is
called the "healing distance. "

In most cases it has been necessary to extend this
elementary separation procedure. Generally, a state-
dependent pseudopotential VP is added and e» is
written as

112 (112 + l ~)+ (»2 l +) ~

This pseudopotential method is used in those states of
relative motion where the interaction is repulsive and
also in the 'So and 'S~ states. The pseudopotentials are
chosen to maintain healing of the correlated wave at,
about i F for the various states of relative motion. For
simplicity, the form of the pseudopotential was taken
to be constant (attractive) and nonzero from the core
of the Yale potential' out to about i F.

For the 'So and 'Si states the strength of the pseudo-
potential varies significantly with the number of modes
in the relative wave function. For the 'P~, 'Po, 'P~, 'Dj,
'D~, and 'D3 states pseudopotentials are also used but
it was sufficient to use a constant value of the pseudo-
potentials in these states. For these latter states, once
the pseudopotential was fixed, the variation of the
healing distance with the number of modes was negli-
gible. As discussed in I, the use of a mode- (or energy)
dependent pseudopotential makes the effective inter-
action non-Hermitian. For the purposes of these calcu-
lations the matrix elements of the effective interaction
in the 'So and 'S~ states off-diagonal in e, the number of
modes in the oscillator wave function, was averaged.
This procedure is not very satisfactory and a method
for overcoming this difhculty was indicated in I but has
not been applied as yet. A discussion of the choice of
healing distances and pseudopotentials was given in I.

The parts of the tensor force diagonal in /, the relative
orbital angular momentum, are included in Eq. (3).The
part of the tensor force off-diagonal in l, e~, is treated
in perturbation theory Az the correlated basis. To lowest
order H becoInes

H= Ptnln2anltan3+ 2+anl tan2t

X(4, , ~

&»'+&r
~ P,„,) „,a+a. (6)

Now, it is well known that the tensor force contributes
significantly in second order, the main feature being the
admixture of a short-range Dj wave to the S~ state of
relative motion. This admixture involves high-energy
orbitals. This effect of the tensor force may be included
by extending the definition of e' to include a tensor
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correlation; i.e. , Eq. (4) is modified to read

~"e-,-.=4-...+ (Q/~)~" 0-,-„ (7)

The wave functions are expanded as

&-(~)=2 C -4-(r),

where P„,„, contains only central correlations. Here, e

is an appropriate energy denominator and Q is a where the p's are the harmonic-oscillator functions.

projection operator. ff we maire the approximation Substitution of Eq. (12) into Eq. (10) yields

&n1+ En2 6ni+—&n4—+
~

and define e= —(ti+ti+ Ui+ Ui —6), we find

Ztnln2~inlj ~n2+ 2 2+nlj @n2$~n4~n3

&«~-,-, l( '—v~)+" +"—"I~....&, (8)

P [&iti[t[~ii'&+&»i[U[iii'&j&. ,"=~.&,;, (1&)
n1'

where

(1'Eil Ul gati'&=—P pn, „,L(vigil v ff[ si B2 )
n2, n2'

—(itiii2[i. tt[ii2 ei &j (14)

where the presence of the pseudopotential term VP has
been indicated. The approximation used, for the energy
denominator in Eq. (7) is reasonable as the orbitals
admixed by the tensor force are of quite high energy.
The exact specification of the energies of the occupied.
orbitals is not very important for semiquantitative
results; however, to obtain results accurate to 1 or 2

MeV per particle a better treatment of the energy
denominators is required. Estimates of the error
involved in the simple treatment of the energy de-
nominators are given in the next section.

In a similar fashion second-order effects in VP may
be included as VP is of short range and will introduce
further short-range correlations when taken to higher
older.

Thus,

~=ptn, nmiin, )tin, +g piin, j tin, j iinmtin4

~&a..., l ("' v~)+»-+—"-(Q/~)»"
+v~(Q/e) vf'l4. ..,&, (9)

&-It[~&+&-I Ul~&= -~-~, (10)

where 3 is the kinetic-energy opera, tor and the single-
particle potential U is defined. as

&~IUI&)= 2 L&~vl "«IPv& &~~I "«IvP& j—(11)

' J, P. Svenne, thesis, MIT, 1965 {unpublished); R. Muthu-
krishnan and M. Baranger, Phys. Letters 18, 160 (1965);K. T. R.
Davies, S. ]. Krieger, and M. Baranger, Nucl. Phys. 84, 545
(1966);A. K. Kerman, J.P. Svenne, and I'. M. H. Villars, Phys.
Rev. 147, 710 (1966).

where we have neglected cross terms in VP and ~yoD

which are expected to be small. Calculations have been
carried out for the effective interactions of Eqs. (8) and

(9) so that the effects of the second-order terms in VP
may be determined separately.

In the application of the Hartree-Fock method to the
effective intera, ction the expansion of the orbitals in
harmonic-oscillator functions is used. The usual
Hartree-Fock equations to be solved are

A

Pnini'= Z +ni Cni' ~

y=l

Then, the binding energy is given by

+0 + P I (iiil tl«i'&+5(ilail Uliti'&j.
nyn1, '

III. RESULTS OF HARTREE-FOCI
CALCULATIONS

In this section calculations for the closed-shell nuclei
0' and, Ca 0 are reported, .These ca,lculations were made
using the effective interaction derived from the Yale
potential. The matrix elements used are tabulated in
the Appendix.

The Hartree-Fock equations were solved by an
iteration procedure' for various values of b= (fi/Mco)'t2,
the oscillator size parameter. To test the effects of
including various terms of the effective interaction
several different calculations were done. First, no
second-order terms were included involving Vt'. Second,
the second-order terms in VP were included. but only
for the relative matrix elements diagonal in e, the
number of nodes in the oscillator wave function. Finally,
the second-order terms in VP which involve matrix
elements off-d, iagonal in e were included, for the P
states only. For this latter calculation one should also
include the second, -order terms in VP off-dia. gonal in yz

for the 5-states as well; however, these terms were
smaller than the uncertainty introduced in the averag-
ing of the 5-state interaction ma, trix elements and it
was not considered worthwhile to calculate them.

The results of calculations for 0" are presented, in
Tables I—IV. In Table I are presented the single-

. particle energies, binding energy per particle, spin-orbit
splitting, and, root-mean-square radii for a calculation
in which three harmonic-oscillator functions were used
in the determination of each orbital. The calculation
was of the erst type mentioned where the second-order
terms in VP were neglected. A simple correction was
made for the center-of-mass energy and the Coulomb
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Tmz, z I. Calculated properties of 0". (Second-order terms in VP not included. Three oscillations functions were used for each orbital. )

b (F)

Single-particle energies (MeV)
0P~/~
Opip
OP3gu

B.E./A (MeV)
&co i/A (MeV)
E, /A (MeV)
B.E./A (MeV)
(including Coulomb and

c.m. corrections)

Ops/Q Opq~s splitting (MeV)
Rms radius (F)

1.50

—43.5—12.6—18.1

—3.01
0.94

+0.71
-2.78

5.5
2.48

1.76

—45.3
1301—18.8

—3.45
0 94

+0.71
3022

5.7
2.49

2.09

—3.75
0.94

+0.71—3.52

5.1
2.53

2.17

—3.30
0.94

+0.71
3017

4.6
2.62

Experimental

—15.65' (neutron)—21.81 (neutron)

—7.98

62a
2.64b

(charge rms radius)

B.L. Cohen, Phys. Rev. 130, 227 (1963).
b R. Hofstadter, Ann. Rev. Nucl. Sci. 7, 231 (1957).

TABLE II. Calculated properties of 0". (Second-order terms in VP included. Three oscillator functions were used for each orbital. )

b (F)

Single-particle energies (MeV)
Osi(2
OP~i2
OPII~

B.E./A (MeV)
Ecoui/A (MeV)
E, /A (MeV)
B. E./A (MeV)
(including Coulomb and

c.m. corrections)
Opsis —Opi p splitting (MeV)
Rms radius (F)

1.50

—55.8—18.7—25.4—5.97
0.94

+0.71—5.74

6.7
2.34

1.76

—57.5—18.9—25.5—5.83
0.94

+0.71—5.60

6.6
2.30

2.09

—51.9—17.8—23.2—5.35
0.94

+0.71—5.12

5.4
2.43

2.17

—48.3—16.4
21.3—4.76
0.94

+0.71—4.53

49
2.51

Experimental

—15.65' (neutron)—21.81 (neutron)

—7.98

6 2a
2.64b

(charge rms radius)

& B.L. Cohen, Phys. Rev. 130, 227 (1963).
b R. Hofstader, Ann. Rev. Nucl. Sci. 7, 231 (1957).

energy. These corrections were estimated using the
following expressions:

E, .= sshro, Aa) =41.6/b , s

where b= (6/Mts)'~' A rough estimate of the value of b

was obtained from comparing the result of the Hartree-
Fock calculation for the rms radius with the rms radius
obtained assuming pure harmonic-oscillator orbitals.
For the 0" calculations the center-of-mass correction
was estimated with b 1.66 F. This correction was held
constant in the tables although the calculated rms
radius varied somewhat.

Table II contains the results for Hartree-Foe%. calcu-

lations in which the second-order terms in Vt' were

included, in the effective-interaction matrix elements.
As may be seen from the table, the inclusion of these

terms increases the calculated binding energy, the
increase being larger for the smaller values of b. There
is also a small increase in the calculated, spin-orbit

splitting and some decrease in the rms radius.

TAnrz III. Calculated properties of Oie (Second-order terms
in Vt' mere included and only a single oscillator function was
used for each orbital. )

& (F)

Single-particle
energies (MeV)

Osi(g
Opi]2
OP3/9

B.E./A (MeV)
(without Coulomb

and c.m.
corrections)

Oped —ppxys
splitting (MeV)
Rms radius (F)

1.50

—57.3—19.0—26.6—5.82

7.6

2.25

1.76

—43.4—16.3—20.0—4.93

3.7

2.64

2.09

—30.2—11.9—13.7—3.34

1.8

3.14

2.17

—27.6—10.6—12.2—2.63

1.6

3.25

It was of interest to see what results would be ob-
tained if the number of harmonic-oscillator functions
used to expand the orbitals was reduced. Table III
includes the results for 0"when only a single oscillator
function was used for each orbit. As might be expected
the calculated quantities vary more rapidly as b is
changed than in the calculations reported, in Tables I
and II (for which three oscillator functions were used
for each orbital). The greatest difference between the
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a=20
Iteration

(1) (2) (3) (4)

b=1.50 F
Op 1/2

OPS/2
Osi/2

B.E./A'

6=1.76 F
Opi/2
OP3/2
Osi/2

B.E./A~

5=2.09 F
Opi/2
OP3/2
Osl/2

B.E./A.

b=2.17 F
opine
Op»~
Osi/2

B.E./A&

—19.0—26.6—57.3—5.82

—16.3—20.1,

43 4—4.93

—11.9—13.7—30.2—3.34

—10.6—12.2—27.6—2.88

—17.2—24.3—51.0—4.23

—15.4—18.9—40.1—4.14

—1.1.7—13.3—28.9—3.06

—10.4—12.0—26.6—2.67

—17.4—24.7—51.9—4.45

—15.5—19.0—40.5—4.22

—11.7—13.4—29.0—3.08

—10.4—12.0—26.7—2.69

—17.4—24.6—51.8—4.42

—15.5—19.0—40.4—4.21

—11.7—13.4—29.0—3.08

—10.4—12.0—26.7—2.69

—17.4—24.6—51.8—4.43

—15.5—19.0—40.4—4.21

—11.7—13.4—29.0—3.08

—10.4—12.0—26.7—2.69

a Uncorrected for center-of-mass or Coulomb energy.

results of Table II and III occur for the largest value of
b since in this case the single oscillator functions have
the poorest overlap with the orbitals determined using
a basis of three oscillator functions.

A discussion of the numerical results is in order. For
example, in Table II, the quantities calculated are not
independent of the basis chosen. Hopefully, if one were
to use more oscillator functions in the expansion of the
orbitals this dependence on the basis used would be
lessened. The value obtained, for the spin-orbit splitting
is reasonable. The rms radii of Table II are smaller than
the experimental value; however, con6guration mixing
in the ground state would increase this quantity
somewhat. ' As for the binding energies, an important
correction arises from the fact that in the evaluation of
the '5& matrix elements the energy d.enominator e was
taken as

e —(gs/2~) (b s+'~as)+Q

with 6=20 MeV. The quantity 6 approximates the
binding of the interacting pair in the nucleus. This
quantity is actually state-dependent and generally
larger than 20 MeV. Correction for this variation can
be made using the binding energies of the single-particle
orbits as obtained from the Hartree-Fock calculation.
This correction is fairly simple to make for the Hartree-
Fock calculations involving only a single harmonic-
oscillator function for each orbital.

Table XIV exhibits the variation of the diagonal '5~
matrix elements with the parameter D. To study the

a G. E. Bmmo and (~. Tacob, Noel. Phys. 42, 177 (1963).

TmLE IV. Single-particle energies and binding energy pex
particle for 0".The second-order tensor terms were evaluated in
a crude self-consistent approximation as discussed in the text. One
oscillator function was used for each orbital. Tabulated quantities
are given in MeV.

TanLz V. Corrections to the 0" binding energy (in MeV).

(F)

1.50
1.76
2.09
2.17

Binding
energy/A

(Table III)
—5.82

4 93—3.34—2.63

Correction
from using

more orbitals
(Table II)

—0.15—0.90—2.01,
20 13

Spectral
correction
(Table IV)

+1.39
+0.71

0.26
0.19

Total+
B.E./A
—4.58—5.12—5.09—4.57

& Uncorrected for center-of-mass and Coulomb energy.

effect of this variation a Hartree-Pock calculation, was
carried out for 0".As a simple approximation it was
assumed that the relative '5~ matrix elements depends
linearly on 6 with a decrease of 60%%u~ in their values on
going from 6= 20 MeV to 6= 220 MeV. This approxi-
rnation corresponds roughly to the behavior of these
matrix elements as reported in Table XIV.

The following iterative scheme was adopted. The
single-particle energies were obtained by carrying out
the Hartree-Fock calculation for 0' with the minimum
number of orbitals and using the matrix elements
calculated with 6= 20. These single-particle energies
were then used to obtain an effective 6 for each two-
body matrix element. The two-body matrix elements
were then recalculated, but in their calculation the 'S~
relative matrix elements were modified to take into
account their variation with h. For example, if the
05&/2 orbit was found to be bound by —50 MeU, say,
matrix elements of the form

(os»,ostts»l vlosttsost/s~T')

were evaluated with the 'St relative elements modifted
to correspond to 6=100 MeV. For matrix elements
involving two different orbitals, the Hartree-Fock
single-particle energies were again added to obtain an
effective A. This procedure was iterated until there has
no significant change in the single-particle energies and
the total binding energy. About four iterations were
necessary to achieve this crude form of self-consistency
for the energy denominators.

The results obtained using this iteration procedure
are presented in Table IV. The first column (for each
value of b) gives the single-particle energies and binding
energy per particle for 6=20 MeV. These results are
therefore id.entical to those presented in Table III. The
following columns present the results of successive
iterations involving modi6cations of the two-body
matrix elements to take into account the dependence of
the '5~ relative elements on the binding energies of the
single-particle orbitals. The convergence is quite rapid. .
The corrections to the binding energy are not very large
indicating that a perturbative approach to these
spectral corrections should be satisfactory. It is clear
from Table IV that the spectral corrections are largest
for the smaller values of b since the orbitals were bound
most strongly for smaller b. (The approximation, 6= 20
MeV, is clearly poorest for the smaller values of b.)
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TABLE VI. Expansion coeKcient for occupied orbitals of 0".The expansion
is in terms of oscillator functions having zero, one, and two nodes.

b=1.5 F
OsI/2

OP3/2

OP1/2

b=1.76 F
0$1/2
OP3/2

OPI/2

5=2.09 F
Osg/2

OP3/2
OP~/2

5=2.17 F
Osl. /2

OP3/2
Opl/2

0.9970
0.9887
0.9748

0.9905—0.9940—0.9969

0.9470
0.9408
0.9564

0.9444
0.9373
0.9519

Calculation of Table I
Cj.

—0.0770—0.1460—0.1878

0.1361—0.0961-0.0320

0.3057
0.3040
0.2510

0.3114
0.3087
0.2604

C2

—0.0088
0.0337
0.0683

0.0164—0.0521—0.0710

0.0982
0.1495
0.1488

0.1053
0.1614
0.1611

Cp

—0.9998
0.9982
0.9928

0.9703
0.9739—0.9844

0.9267
0.9146
0.9308

0.9227
0.9094
0.9246

Calculation of Table II
Ci

—0.0170—0.0469—0.1024

0.2342
0.2090—0.1492

0,3506
0.3584
0.3166

0.3577
0.3649
0.3265

C2

—0.0045
0.0335
0.0617

0.0593
0.0877—0.0928

0.1349
0.1867
0.1824

0.1435
0.1995
0.1961

It is interesting to compare the results reported in
Tables II, III, and IV for the case of the binding energy.
This comparison is made in Table V where we have
assumed that the corrections to the minimum orbital
calculation (Table III) arising from the use of several
orbitals (Table II) and the spectral correction of Table
IV are additive. It is found that the binding energy is
now much less sensitive to the choice of basis functions
and also that the binding energy exhibits a minimum
when considered as a function of b, the oscillator size
parameter. These results suggest that further efforts in
the direction of obtaining simultaneous self-consistency
for the wave functions aed energy denominators might
yield interesting results.

Ideally, the spectral corrections should be made for
the calculations reported in Table II. It is expected that
this correction to the binding energy would be about

+1 MeV per particle for the two smaller values of b and
slightly less than I MeV for the larger values of b.
Generally, this correction will reduce the sensitivity of
the calculated binding energy to the choice of the
oscillator parameter. %hen several oscillator functions
are used to expand each orbital (as in the calculations
of Table II), the spectral correction may be most
readily evaluated in perturbation theory, the perturba-
tion involving the matrix elements of

&
OD

&
OD

Q Qq
eH p e(h)l

where e(D) is the energy denominator used in this work
and eHF would be the energy denominator constructed
using the single-particle energies obtained from the
Hartree-Fock calculation. The expansion coefFicients

TAnLE VfJ. Calculated properties of Ca4s. (Second-order terms in Vt' not included. Three oscillator functions were used for each orbital. )

& (F)

Single-particle energies (MeV)
Osj. /2

OP3/2

Op 1 /2

Ods/2

Od 3/2

g. E./A (MeV)
Z,.„,gZ (Mev)
E. /A (MeV)
B.E./A (MeV)
(including Coulomb and

c.m. corrections)

OP3/2 —OP~/2 splitting (MeV)
Od3/2 —Od3/2 splitting (MeV)

Rms radius (F)

1.76

—74.3—47.5—42.3—22.7
17.3—14.4

—5.73
1.85

+0.26—4.14

5.2
8.3

2.97

2,09

—74.8
48 4—43.5—22.8—17.6—15.9

—6.30
1.85

+0.26—4.71

49
7.9

2.99

2.17

—69.7—44.9—40.6—21.7—15.3—14.4
—5.49

1.85
+0.26—3.90

43
7.3

3.08

Experimental

—22.8 (neutron)'—18.4 (neutron)'—15.8 (neutron)"

—8.55

7.0.
3.52b

a B.L. Cohen, Phys. Rev. 130, 227 (1963).
b R. Hofstader, Ann. Rev. Nucl. Sci. 7, 231 (1957).
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TABLE VIII. Calculated properties of Ca". (Second-order terms in VP included only for relative
matrix elements diagonal in the oscillator quantum number, e. Three oscillator functions were used for each orbital. )

Single-particle energies (MeV)
0$1/s
Ops/s
Opi/s
Ods/s
1$1/s
Od3/s

B. E./A (MeV)
Ecaui/A (MeV)
E. /A (MeV)
B. E./A (MeV)
(including Coulomb and

c.m. corrections)

Ope/s —Opi/s splitting (MeV)
Odggs —Od3/2 splitting (MeV)

Rms radius (F)

1.76

—85.7—56.7—52.4—30.0—26.7—23.0
—10.03

1.85
+0.26—8.44

4.3
7.0

2.96

2.09

—82.2—54.3—49.9—28.1
22 05—20.4

—8.60
1.85

+0.26—7.01

7.7

2.95

2.17

—76.9—50.7—46.4—26.0—19.9—18.6

—7.62
1.85

+0.26—6.03

4.3
74
3.03

Experimental

—22.8" (neutron)—18.4 (neutron)—15.8 (neutron)

3.52b

' B.L. Cohen, Phys. Rev. 130, 227 (1963).
b R. Hofstader, Ann. Rev. Nucl. Sci. 7, 231 (1957).

of the self-consistent orbitals in the harmonic-oscillator
basis functions are presented in Table VI for the calcu-
lations reported in Tables I and II.

Similar calculations were carried out for Ca" and the
results obtained are presented in Tables VII—XI. For
the calculations of Table VII the second-order terms in
VP were not included. One 6nds reasonable values for
the single-particle energies and spin-orbit splitting. The
binding energies for rms radii are small compared to the
corresponding experimental quantities. For the calcu-
lations reported in Table VIII the second-ord, er terms
in VP were included for the relative matrix elements
diagonal in the oscillator quantum number e. The
inclusion of these second-order terms leads to an in-
crease in the binding of the single-particle orbitals and
in the total binding energy. The spin-orbit splitting and

rms radii are only slightly modified. Finally, a calcu-
lation was carried. out with the second, -order terms in
t/'P included for relative matrix elements diagonal and
nondiagonal in the oscillator quantum number I (see
Table IX).The off-diagonal terms were included in the
'Po, P», and, 'P» states only. This approximation leads
to a further increase in the single-particle energies,
binding energies and spin-orbit splitting while the rms
radii decrease with respect to the previous calculations.
When compared to the experimental data the results
are not satisfactory, particularly with respect to the
small size obtained and the binding energy which is in
excess of the experimental value. Again, these features
may be improved. through a better treatment of the
energy denominators in the second-order terms.

Table X contains the results of calculations for Ca~

TanLx IX. Calculated properties of Ca4'. (Second-order terms in VP included for relative matrix elements diagonal
and non-diagonal in the oscillator quantum number e. Three oscillator functions were used for each orbital. )

& (F)

Single-particle energies (MeV)
0$1/s
Ope/s
Opi/s
Od'5/s

1$1/s
Od3/s

B.E./A (MeV)
Eo,„q/A (MeV)
E, /A (MeV)
B.E./A (MeV)
(including Coulomb and

c.m. corrections)

Ope/s —Opi/s splitting (MeV)
Od, ~,

—Odl~s splitting (MeV)

Rms radius (F)

1.50

—101.9—67.0—59.5—35.5—30.6—24.1

—10.93
1.85
0.26—9.34

7.5
11.4

2.67

1.76

—102.1—66.5—59.6—34.2—27.6—23.0
—10.28

1.85
0.2e—8.69

6.9
11.2

2.65

2.09

—90.0—59.8
54 9—31.3—23.7—22.6

—9.52
1.85
0.26—7.93

49
8.7

2.17

—83.7—55.6—50.9—28.8—20.9—20.8

—8.49
1.85
0.26—6.90

8.0

2.93

Experimental

—22.8~ (neutron)—18.4 (neutron)—15.8 (neutron)

7.0a

3.52b

& B.L. Cohen, Phys. Rev. 130, 227 (1963).
b R. Hofstadter, Ann. Rev. Nucl. Sci. 7, 231 (1957).
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Tmxz X. Single-particle energies and nuclear binding energy
per particle for Ca" (in MeV). The second-order terms were
evaluated self-consistently as discussed in the text. A minimum
number of oscillator functions were used.

a=20
Iteration

(2) (3)

5=1.50 F
0$1/2
Ops/2
Op1/2
Od5/2

1$1/2
Ods/2

B.E./A~

b=1.76 F
0$] /2

Op3/2
Op1/.
Od~/2

1$1/2
Oda/2

B.E./A'

b=2.09 F
0$1/2
Op3/2
Op1/2
Ods/2
1$1/2
Od3/2

B.E./A~

5=2.17 F
0$1/2
Ops/2
Opl/2
Odg/2

1$1/2
Odg/2

B.E./A'

—104.8—69.2—60.7—36.8—31.3—24.9—10.83

—79.9—52.4—48.2—27.8—24.3—21.2—9.11

—56.2—36.7—34.7—19.4—18.0—16.4—6.55

—51.2—331—31.0
-17.1—15.9—14.2—5.59

—84.0—58.1—50.6—31.6—25.3—19.6—6.64

—68.4—46.4—42.5—25.0—21.1—18.8—6.84

—51.0—34.1—32.2—18.3—16.6—15.4—5.55

—47.0—31.0—29.0—16.3—14.9
-13.5—4.82

—88.5—60.3—52.6—32.6—26.6—20.6—7.54

—70.2—17.3
43 4—25.4—21.6

-19.2—7.19

—51.6—34.4—32.5—18.4—16.8—15.5—5.66

—47.4
31t2—29.2—16.4—14.9

-13.6—4.90

—87.6—59.9—52.2—32.4—26.3—20.4—7.29

—69.9—47.2—43.3—25.4—21.5
-19.1—7.13

—51.5—34.3—32.5—18.4—16.8—15.5—5.65

—473—31.2—29.2—16.4—14.9—13.5—4.89

—87.8—60.0—52.3—32.4—26.4—20.5—7.40

—70.0—47.2—43.3—25.4—21.5—19.1—7.15

—51.5—34.3—32.5—18.4—16.8—15.5—5.65

—47.4—31.2—29.2—16.4—14.9—13.5—4.89

Q Uncorrected for center-of-mass or Coulomb energy.

TABLE XI. Correction to the Ca binding energy (in MeV).

Binding
energy/A
for 6=20
(Table X)

Correction
from using Spectral

more orbitals correction
(Table IX) (Table X)

Total
B.E./A.

1.50
1.76
2.09
2.17

—10.83
—9.11
—6.55
-5.59

—0.10
—1.17
—2.97
—2.90

+3.43
+1.96
+0.90

0.70

—7.50
—8.32
—8.62
—7.79

' Uncorrected for center-of-mass and Coulomb energy.

similar to those reported in Table IV for the case of
0".Again a degree of self-consistency was obtained for
the energy denominators in the evaluation of the
second-order tensor interaction in the 'S~ state of rela-
tive motion. Sy comparing the single-particle energies
reported in Table IX and. the single-particle energies
used in Table X for the minimum orbital calculation
one may obtain a good idea of the spectral correction
necessary for the results of Table IX. The spectral

correction for b=1.50 and b=1.76 is thus expected to
be about +3.4 MeV and for b= 2.17 this correction will
be about +2.0 MeV. Again, it appears that upon
making the spectral correction for the results reported
in Table IX the dependence of the calculated binding
energy on the choice of the oscillator parameter will be
reduced. In general, the results obtained with the
approximations of this work do indicate that further
efforts in the study of the properties of hnite nuclei
using realistic forces would be of interest. Comparison
of the Yale potential with other realistic potentials
provide an obvious extention of this work; however, it
is also clear that a good treatment of the double self-
consistency problem is the most desirable next step in
studies of this kind.

Discussion

From the results of the calculations reported here it
may be concluded that reasonable agreement with the
ground-state properties of the nuclei 9"and Ca' may
be obtained starting from a "realistic" potential which
provides a good. 6t to the nucleon-nucleon scattering
data. It has been shown that the use of several oscillator
functions in the expansion of the orbitals tends to reduce
the dependence of the results upon the choice of the
oscillator size parameter. The estimates given for the
spectral corrections to the binding energy appear to
justify a perturbative approach to these corrections and
indicate that further work along these lines would be
of interest. It would, also be interesting to calculate the
additional binding energy that would arise from the
consideration of ground-state correlations due to
vibrations about the spherical shape.

Finally, a calculation in which both the wave func-
tions and energy denominations are given a self-
consistent treatment would be highly desirable. Such a
calculation would probably be necessary for a more
accurate determination of the single-particle energies
than that made here. It is well known that this form of
double self-consistency is dificult to achieve and this
feature remains an outstanding challenge for further
calculations of this kind. Some discussion of this prob-
lem for finite nuclei appears in the work of Pal and
Stamp. "These authors have carried through Hartree-
Fock calculations for nonspherical nuclei using the
effective interaction matrix elements derived from the
Yale potential.

The work. reported here may usefully be compared
with the results of Hartree-Fock calculations which
have been carried out with nonsingular forces. In
particular, the nonlocal Tabakin potentiaP' has been
extensively investigated. ' It has been found that with
the inclusion of second-order terms the Tab akin
potential is able to give a good account of the ground-

' M. K. Pal and A. P. Stamp (to be published)."F.Tabakin, Ann. Phys. (N. Y.) 3Q, 51 (196&).
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state properties of light nuclei" and application to the
study of heavy nuclei is under way.

TAnzE XIII. Second-order contribution VP(Q/e)VP of the
pseudopotential to the 'S~ relative matrix elements for various
values of b = (h/Mco)'~' F.
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APPENDIX

—0.988
—1.510
—2.147
—2.763
—3.448
—4.483
—5.492

1.76

—0.606
—0.947
—1.191
—1.632
—1.954
—2.339
—2.718

2.09

—0.350
—0.540
—0.757
—0.873
—1.047
—1.194
—1.411

2.17

—0.318
—0.498
—0.639
—0.753
—0.925
—1.083

1.217

TABLE XII. Relative matrix elements for the 'Sy state of the
Yale potential. The contribution of the terms (vi —VP) and

(Q/e)vzo are included. The off-diagonal matrix elements of
(v~ —UP) have been averaged (see text), b= (ft!/%&a)'~' F.

X&(F)I e'Q

0 0

2
3

5
6

1.5

—10.6—7.92—4.69—1.81
+0.63

2.75
4.34

—6.84—4.00—1.38
+0.95
+3.05

4.64

—2.34—0.40
1.46
3.24
4.62

0.74
2.02
3.36
4 43

1.76

—7.99—6.84—5.26—3.53—2.02—0.65
+0.5
—6.40—5.05—3.41—1.91—0.50
+0.71

—4.21—2.84—1.61—0.27
+0.85

—1.82—0.82
+0.21

1.17

2.09

—5,57—5.29—4 54—3.77—2.96—2.20—1.45

—5.34—4.70—3.96
3.12
2031—1.51

—4.23—3.62—2.86—2.10—1.33

—3.15—2.51—1.86—1.15

2.17

—5.11—4.92—4.34—3.68—2.97—2.29—1.66

—5.01—4.54—3.90-3.159—2.43—1.76

—4.22—3.69—3.00—2.32—1.67

—3.27—2.69—2.08—1.49

2.40

—4.02—4.04—3.70—4.28—2.8—2.38—1.96
—4.27—4.01—3.59—3.12—2.64—2.18

—3.83—3.47—3.04—2.59—2.13

—3.19—2.82—2.41—1.99

In the Appendix are presented tables of the eQective
interaction matrix elements used in this work. Table
XII includes the contribution of the central'5» potential
and the second, -order tensor terms. The second. -order
terms are evaluated with k p= 1.4 F ' and 6= 20 MeV
in the notation of I. For the central part of the inter-
action the use of a"'pseudopotential depending upon the
number of nodes has led to an averaging of the oQ-

diagonal elements and these average values are in-
cluded in the table. In Table XIII second-order terms
in the central pseudopotential for the '5» state are
presented, . These are evaluated using plane-wave
intermediate states as discussed in I. While the matrix
elements given in Table XIII are not small, the con-
vergence of the perturbation expansion in Vt' is good,
the second-order terms being less than one-third of the
first-order terms in t/'P.

In Table XIV results are presented for the '5» matrix
elements as a function of A. The column for d =20
corresponds to values reported in Table XII.

Table XV contains the matrix element of the tensor
potential coupling the '5» states to the 'D» states. Table
XVI contains the matrix elements of (v' —VE) for the

20 70
n (MeV)

120 170 220

b=1.50 F
e n'
0 0
1 1
2 2
3 3

b=1.76 F
Ã 0
0 0

1
2 2
3 3

—10.61
—6.84
—2.34

0.74

—7.99
—6.40
—4.21
—1.82

—8.41
—4.67
—0.86
+1.77

—6.44
—4.80
—2.84
—0.72

—7.28
—3.63
—0.05

2.34

—5.65
—3.96
—2.11
—0.12

—6.41
—2.80

0.60
2.82

—5.04
3031

—1.53
0.37

—5.70
—1.07

3.22

—4.56
—2.78
—1.05

0.77

TABLE XIV. Relative matrix elements for the 'S~ state of the
Yale potential for various values of b, . The contribution of the
terms (vi —VP) and Vron(Q/e)vvon are included.

2.68
3.53
4.24

3.89
4.23

—0.11
+0.66

1.41

1.18
1.71

—2.00.—1.46—0.86

—1,04—0.54

2.22—1.70—1.19
—1.29—0.87

—2.51—2.16—1.78

—1.86—1.54

5=2.09 F
yL S'
0 0
1 1
2 2
3 3

—5.57
—5.34
—4.23
—3.15

—4.47
—4.17
—3.10
—2.14

—3.95
—3.56
—2.50
—1.61

—3.56
—3.09
—2.05

1~ 17

—3.24
—2.71
—1.66
—0.84

4.21 2.03 —0.14 —0.53 —1.28

"W. Bassichis and A. K. Kerman (to be published); M. K.
Pal, J. P. Svenne and A. K. Kerman, in Proceedings of the Imter-
matioeal Conference om Nuclear Physics, Gatlinblrg, Tennessee,
1966 (Oak Ridge National Laboratory, Oak Ridge, Tennessee,
1966), Paper 6.23, p. 64.

b=2.17 F
e s'
0 0
1 1
2 2
3 3

—5.11
—5.01
—4.22
—3.27

—3.99
—3.92
—3.15
—2.30

—3.52
—3.36
—2.59
—1.79

—3.35
2032

—2.16
—1.39

—3.07
—1.98—1.81
—1.06
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TABLE XV. Matrix elements of the tensor potential between the
correlated 'S& and 'D& states. The quantum number n refers to the
'Sx state and I' refers to the 'Dx state. (b= (fx/&co)"' Fg

TAnx, z XVI. Matrix elements of (v~ —VP) for the xSo potential
for various values of b. The o6-diagonal matrix elements of
(vx —VP) have been averaged. (b =fr/3E~)xrx F7

Xf (F)
rx I'~ 1.5

—9.21
—12.5
—14.49
—15.6
—16.2
—16.6
—16.7

—4, 16
—8,49

—11,6
13.7

—13.2
—16.1
—16.7

—2.02
—4.56
—7,62

—10.2
—12.2
—13.7
—14.7

—0.98
—2.33
—4.28
—6.61
—8.75

—10.5
—11.93

1.76

—5.50
—7.74
—9.13

—10.0
—10.6
—11.0
—11.3

—2.85
—5.50

—9.04
—10.1
—10.9
—11.4

—1.57
—3.32
—5.28
—7.01
—8.41
—9.49

—10.3

—0.92
—2.00
—3,40
—4.95
—6.42
—7.68
—8.71

2.09

—3.07
—4.47
—5.40
—6.06
—6.54
—6.89
—7.15

—1.81
—3.34
—4.59
—5.56
—6.31
—6.89
—7,34

—1.10
—2.23
—3.41
—4.48
—5.37
—6.13
—6.73

—0.72
—1.48
—2.40
—3.37
—4.29
—5.11
—5,81

2.17

—2.70
—3.95
—4.80
—5.41
—5.86
—6.19
—6.44

—1.63
—2.98
—4.10
—4.98
—5.66
—6.20
—6.62

—1.01
—2,03
—3.08
—4.04
—4.86
—5.54
—6.09

—0.67
—1.37
—2.20
—3.07
—3.90
—4.64
—5.29

—1.89
—2.82
—3.47
—3.96
—4.32
—4.61
—4.83

—1.22
—2.19
—3.01
—3.68
—4.21
—4.64
—4.98

—0.79
—1.56
—2.33
—3.04
—3.66
—4.18
—4.62

—0.55
—1.10
—1.73
—2.38
—3.00
—3.87
—4.07

Xx (F)
rx rx'Q

1.50

—7.80
4 93

—2.16
—0.33

2.59
4.34
5.61

—3.53
—1.43

0.97
2.83
4.60
5.88

—0.25
2.51
3.03
4.50
5.64

2.52
3.48
4.53
5.39

3.90
4.51
5.06

4.68
4.90

1.76

—5.96
—4.59
—3.11
—2.62
—0.20

0.98
2.98

—3.90
—2.72
—1.35

0.03
1.23
2.64

—1.98
—0.91

0.29
1.85
2.31

—0.18
0.76
1.61
2.41

1.36
1.98
2.09

2.38
2.79

2.09

—4.23
—3.75
—2.94
—2.24
—1.43
—0,81
—0.12

—3.59
—2.90
—2.24
—1.42

—2.39
—2.37
—1.14
—0.57
—0.12

—1.49
—0.88
—0.40

0.23

—0.41
0.15
0.50

0.26
0.69

2.17

—3.88
—3.18
—2,84
—2.19
—1.53
—0.93
—0.37

—3.33
—2.82
—2.41
—1.76
—0.89
—0.61

—2.43
—1.92

1033
—0.99
—0.18

—1.53
—1.00
—0.54
—0.03

—0.67
—0.25

0.27

0.07
0.42

2.40

—3.07
—2.00
—2.55
—2.11
—1.69
—1.27
—0.99

—2.89
—2.61
—2.16
—1.76
—1.33
—0.86

—2.44
—3.06
—1.70
—1.29
—0.88

—1.75
—1.46
—1.10
—0.68

—1.22
—0.92
—0.54

—0.66
—0.35

0
1

3

5
6

—0.40
—1.06
—2.13
—3.68
—5.52
—7.32
—8.88

—0.05
—0.30
—0.83
—1.69
—2.95
—4.45
—5.97

+0.18
+0.19
+0.02
—0.38
—1.09
—2.12
—3.36

—0.54
—1.20
—2.10
—3.25
—4.53
—5.77
—6.89

—0.30
—0.69
—1.25
—2.02
—2.98
—4.05
—5.12

—0.13
—0.34
—0.67
—1.15
—1.80
—2.62
—3.52

—0.48
—1.00
—1.67
—2.44
—3.26
—4.07
—4.81

—0.33
—0.69
—1.16
—1.73
—2.40
—3.11
—3.82

—0.22
—0.47
—0.80
—1.22

1.73
—2.31
—2.93

—0.46
—0.95
—1.56
—2.27
—3.01

3%73

—4.41

—0.32
—0.67
—1.11
—1.64
—2.25
—2.90
—3.54

—0.22
—0.47
—0.79
—1.18
—1.65
—2.19
—2.76

—0.39
—0.79
—1.28
—1.82
—2.39
—2.94
—3.45

—0.29
—0.58
—0.95
—1.38
—1.86
—2,35
—2.84

—0.21
—0.44
—0.71
—1.04
—1.43
—1.85
—2.29

Pp state, the off-diagonal elements again representing
an averaged value. Table XVII contains soxne of the
second-order terms for the 'So pseudopotential. Tables

6 6 4.82 3.00 1,00 0.89 —0.08

TmLE XVII. Second-order contribution LVP(Q/e) VPg of the
pseudopotential for the 'So relative matrix element for various
values of b.

0
1
2

3

5
6

Xf (F)
rx'g

0

2
3

5
6

1.50

—0.195
—0.201
—0.290
—0.536
—0.954
—1.640
—2.584

1.76

—0.136
—0.144
—0.157
—0.214
—0.319
—0.525
—0.800

2.09

—0.082
—0.102
—0.103
—0.109
—0.129
—0.177
—0.237

2.17

—0.079
—0.094
—0.096
—0.097
—0.110
—0.140
—0.1,90

XVIII—XXVIII contain the matrix elements of

(vx VP) for the P—and D state used in these calcu-

lations. For those states for which the second-order
terms in VP are significant ('Px, 'Po, 'Px), tables of
the matrix elements of the quantity (vx —VP)
+VP(Q/e)VP are included. All the reported matrix
elements are given in MeV.
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TAnLz XVIII. Matrix elements of (e~—UP) for
the 'Ej potential for various values of b.

TABLE XX. Matrix elements of (e&
—VP) for the

'I'0 potential for various values of b.

Xb(F)I NN

0 0
1
2
3

5
6

1 1
2
3

5
6

2 2
3

5
6

3 3

4
5
6

5 5
6

6 6

4.61
5.80
7.00
7.62
8.26
8.95
8.92

8.41
10.29
11.14
11.9
12.9
12.8

12.4
13.5
14.5
15.6
15.5

15.0
16.2
17.5
17.3

17.2
18.6
18.5

19.1
19.1

19.1

2.49
2.99
3.45
4.02
4.33
4.56
4.86

4.36
5.20
6.06
6.48
6.79
7.21

6.40
7.57
8.10
8.47
8.97

8.63
9.32
9.76

10.3

10.1
10.7
11.3

11.3
12.0

12.5

1.28
1.53
1.6g
1.87
2.01
2.23
2.40

2.19
2.56
2.87
3.09
3.48
3.66

3,16
3.65
3.95
4.44
4.65

4.22
4.63
5.23
5.48

5.15
5.85
6.15

6.34
6.69

7.10

1.76 2,09 2,17

1.12
1.38
1.45
1.60
1.72
1.95
2.06

1.88
2.20
2,47
2.66
2 99
3.15

2.73
3.14
3.41
3.83
4.02

3.63
4.00
4.52
4.75

4.46
5.08
5.36

5.52
5.85

2,40

0.77
0.91
0.97
1.04
1.13
1.20
1.27

1.27
1.47
1.61
1.76
1.87
1.97

1.81
2.05
2.27
2.42
2.55

2.38
2.68
2.88
3.04

3.00
3.25
3.45

3.55
3.79

4.07

Xb(F)
a I'g
0 0

1

5
6

1 1
2
3

5
6

2 2
3

5
6

3 3

5
6

5
6

5 5
6

6 6

1,50

—2.84—1.01
0.65
2.08
2.92
3.70
4.32

—0.52
0.98
2 ~ 73
3.90
5.02
5.96

1.70
3.24
4.49
5.70
6.85

3.89
4.89
6.07
7.28

5.35
6.31
745

6.56
7.50

7.53

—2.16—1.39—0.50
0.27
0.88
1.43
1.81

—1.26
—0.49

0.39
1.19
1.96
2.52

—0.10
0.63
1.42
2.29
2.94

1.07
1.71
2.55
3.22

2.10
2.82
3.44

3.15
3.66

3.91

—1.44—1.21—0.80—0.40—0.06
0.23
0.48

—1.27—0.94
—0.50—0.09

0.32
0.67

—0.79—0.44—0.04
0.40
0.80

—0.22
0.09
0.51
0.92

0.32
0.68
1.06

090
1.23

1.43

1.76 2.09 2.17

—1.30—1.14—0.80—0.47—0.16
0.10
0.33

—1.22—0,95—0.60
—0.22

0,14
0.45

—0.83—0.56—0.20
0.19
0.55

—0.38—0.08
0.28
0.64

0.11
0.43
0.76

0.63
0.92

2.40

—0.97—0.92—0.74—0.52—0.33
—-0.14

0.02

—1.04—0.92
—0.68
—-0.44
—0.20

0.02

—0.88—0.69—0.47
—0.22

0.04
—0.59—0.41
—0.18

0.08
—0.28—0.09

0.15

0.04
0.23

0.40

TmLE XIX. Matrix elements for the 'I'j potential for various
values of b. The table includes the matrix elements of (e~—VP)
+VP(Q/e) VP.

TABLE XXI. Matrix elements for the 'I'0 potential for various
values of b The tab. le includes the matrix elements of (e~—VP)
+VP (Q/e) VP.

0
1

5
6

1
2
3
4
5
6

2
3
4
5
6

3
4
5
6

5
6

5
6

6

1.50

2.598
2.853
2.315
2.359
2.609
3.087
2.980

4.103
3.445
3.44g
3.737
4.376
4.209

4.067
3.774
4.086
5.220
4.989

4.512
4.964
5.765
5.478

5.130
6.049
5.771

6.069
5.856

5.720

1.76

1.522
1.543
1.636
1.292
1.316
1.334
1.480

2.190
2.492
1.979
1.982
1,976
2.168

3.009
2.474
2.480
2.456
2.671

2,749
2.g39
2.822
3.046

3.019
3.058
3.332

3.161
3.490

3.580

2.09

0.853
0.872
0.845
O.g84
0,906
0.695
0.716

1.188
1.286
1.376
1.468
1.076
1.082

1.541
1.741
1.809
1.386
1.382

1.975
2.137
1.633
1.632

2.287
1.799
1.728

1.917
1.965

2.041

2.1.7

0.758
0.774
0.741
0.770
0.785
0.602
0.612

1.043
1.127
1.200
1.224
0,939
0.944

1.345
1.517
1.576
1.217
1.214

1.723
1.842
1,439
1.441

2.020
1.600
1.688

1.700
1.749

1.115

Qb(F)

0 0
1
2
3
4
5
6

1 1
2
3

5
6

2 2
3

5
6

3 3

5
6

1.50

—3.242-1.605—0.063
1.073
1.882
2.580
2.868

—1.385—0.962
1.255
2.374
3.373
4.290

0.420
1.437
2.587
3.689
4.804

1.848
2.708
3.796
4.975

3.002
3,867
4.973

4.018
4.928

4.921

1.76

—2.361
—2.681
—0.863
—0.140

0.427
0.816
1.164

—1.691—1.063—0.227
0.500
1.037
1.549

—0.779—0.143
0.564
1.133
1.741

0.165
0.713
1.214
1.805

0.995
1.351
1.899

1.573
2.008

2.175

2.09

—1.504—1.344—0.967—0.602—0.289—0.004—0.230

—1.565—1,198—0.807—0.428—0.047
0.282

—1.113—0.823—0.473—0.067
0.30?

—0.670—0.408—0.037
0.335

—0.242
0.063
0.395

0.227
0.502

0.658

2.17

—1.353—1.249—0.941—0.636—0.355—0.100
0.112

—1.389—1.169—0.853—0.510—0.196
0.028

—1.110—0.884—0.566—0.209
0.124

—0.762—0.515—0.190
0.140

—0.376—0.102
0.194

0.046
0.292

0.433



SHAK l N, %AGH MA RE, TOM ASELL l, AND HULL

TABLE XXII. Matrix elements of (v~ —VP) for
the SEE potential for various values of b.

TAarz; XXIV. Matrix elements of v~ for the
'P2 state for various values of b. {VE=0.)

) 150 1.76 2.09 2.17 2.40 Qb (F) 1.50
e e'g

1.76 2.09 2.17 2.40

0
1
2
3

5
6

1
2
3

5
6

2
3

5
6

3
4
5
6

5
6

5
6

6

4 43
4.62
4.56
4.52
4.40
4.50

6.05
6.49
6.62
6.53
6.68
6.63

7.43
7.95
7 99
8.23
8.18

3.61
8.91
9.29
9.29

9.32
9.91

10.01

10.1
10.3

10.3

2.62
2.80
2.73
2.66
2.69
2.60
2.56

3.65
3.88
3.92
4.03
3.92
3.88

4.46
4.77
4.98
4.91
4.88

5.17
5.62
5.68
5.66

5.98
6.11
6.22

6.37
6.58

6.75

1.45
1.60
1.60
1.56
1.53
1.49
1.50

2.08
2.22
2.28
2.29
2.27
2.30

2.59
2.75
2.83
2.83
2.91

3.02
3.20
3.28
3.40

3.43
3.59
3.77

3.78
4.03

4.20

1.27
1.42
1.42
1.33
134
1.32
1.24

1.84
2.00
2.06
2.01
2.00
2.98

2.30
2.43
2.43
2.51
2.51

2.67
2.81
2.90
2.43

3.01
3.17
3.25

3.34
3.48

3.62

0.89
1.01
1.02
1.01
0.98
0.96
0.94

1.32
1.44
1.48
1.46
1.45
1.44

1.65
1.77
1.81.
1.82
1.83

1.95
2.04
2.10
2.13

2.19
2.29
2.37

2.42
2.54

2.66

0

2
3

5
6

2
3

5
6

2
3

5
6

3
4
5
6

—1.56—1.88—1.93—1.82—1.62—1.35—1.05
—2.46—2.61—2.52—2.28—1.91—1.50
—2.93—2.88—2.64—2.24—1.78

—3.03—2.81—2.41—1.93
—2.83—2.45—1.98
—2.40—1.95
—1.86

—0.83—1.06—1.14—1.15—1.11—1.04—0.96
—1.42—1.59—1.63—1.59—1.50—1.39
—1.84—1.91—1,89—1.81—1.69
—2.07—2.07—2.00—1.88
—2.17—2.11—2.00
—2.15—2.05
—2.05

—0.40—0.54—0.61—0.64—0.66—0.65—0.63

—0.75—0.87—0.93—0.96—0.95—0.93
—1.03—1.11—1.16—1.17—1.14
—1.24—1.30—1.32—1.30

—1.49—1.48

—1.52

—0.34—0.46—0.53—0.56—0.57—0.57—0.57

—0.65—0./5—0.81—0.84—0.84—0.84
—0.90—0.98—1.02—1.04—1.04
—1.09—1.15—1.18—1.18
—1.24—1.27—1.29
—1.34—1.36
—1.41

—0.22—0.31—0.36—0.39—0.40—0.41—0.41
—0.44—0.51—0.56—0.59—0.61—0.62

—0.62—0.69—0.72—0.76—0.77
—0.77—0.82—0.87—0.88
—0.92—0.95—0.97
—1.01—1.04
—1.09

TmLE XXIII. Matrix elements for the 3E~ potential. The
table includes the matrix elements of (v~ —UI')+UI'(Q/e)UP.

TABLE XXV. Matrix elements of e~ for the 'D2
state for various values of b. (VX=0.)

X&(F)
e'Q

0
1
2
3
4
5
6

2
3

5
6

2
3

5
6

3

5
6

6

5
6

6

1.50

4.007
4.001
3./97
3.434
3.250
3.249
3.259

5.139
5.367
5.050
4.935
4.916
4.848

6.065
6.029
5.926
6.077
6.004

6.443
6.582
5.803
6.835

6.814
7.308
7.346

7.396
7.609

7.551

1.76

2.416
2.494
2.414
2.222
2.081
1.942
1.875

3.190
3.305
3.258
3.113
3.002
2.847

3.741
3.900
3.748
3.676
3.594

4.190
4,298
4.109
4.163

4.515
4.541
4.569

4.683
4.811

4.904

2.09

.1.389
1.466
1.428
1.354
1.294
1.231
1.162

1.874
1.956
1.971
1.931
1.897
1.775

2.253
2.353
2.378
2.335
2.247

2.550
2.668
2.700
2.615

2.825
2.931
2.886

3.058
3.062

3.159

2.17

1.221
1.304
1.278
1.210
1.147
1.102
1.061

1.668
1.778
1.756
1.707
1.666
1.621

2.016
2.093
2.100
2.089
2.054

2.269
2.354
2.395
2.390

2.493
2.600
2.640

2.715
2.807

2.901

Xf (F)
e'g

0
1
2
3
4
5
6

1
2
3

5
6

2
3

5
6

3

5
6

5
6

5
6

6

1.50

—1.11—1.11—1.13—1.02—0.90—0.78—0.67
—1.66

1%73—1.64—1.50—1.34
1~ 17

—2.05—2.07—1.97—1.80—1.60
—2.27—2.28—2.15—1.96
—2.41—2.37—2.23

—2.46—2.38
—2.42

1.76

—0.58—0.65—0.64—0.61—0.56—0.51—0.46

—0.91—0.99—0.98—0.93—0.87—0.81
—1.18—1.25—1.23—1.18—1.11
—1.40—1.44—1.41—1.35
—1.55—1.58—1.55

—1.66—1.67

—1.73

2.09

—0.37—0.38—0.33—0.32—0.31—0.29—0.28

—0.46—0.51—0.53—0.52—0.50—0.48
—0.63—0.68—0.69—0.68—0.66
—0.77—0.81—0.82—0.81
—0.89—0.92—0.93
—0.99—1.02

—1.07

2.17

—0.23—0.27—0.28—0.28—0.27—0.26—0.24

—0.39—0.44—0.46—0.45—0.44—0.42

—0.54—0.59—0.60—0.60—0.58

—0.67—0.71—0.72—0.72

—0./8—0.82—0.82

—0.8/—0.90
—0.95

2.40

—0.15—0.13—0.18
—0.19—0.18—0.18—0.17

—0.25—0.29—0.31—0.31—0.30—0.30
—0.36—0.40—0.41—0.41—0.41
—0.46—0.49—0.50—0.51
—0.54—0.57—0.58

—0.62—0.64
—0.68
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Twnr. z XXVI. Matrix elements of (v~ —VP) for the sDq state tor various values of b

) 1.50 1.76 2.09 2.17 2.40 ) 1.50 1.76 2.09 2.17 2.40

1.90
1.72
1.40
1.11
0.87
0.69
0.54

2.30
2.18
1.86
1.53
1.25
1.00

2.50
2.38

1.08
1.06
0.91
0.77
0.64
0.53
0.44

1.42
1.41
1.27
1.10
0.94
0.80

1.62
1.61

0.50
0.59
0.54
0.48
0.42
0.36
0.31

0.80
0.83
0.79
0.71
0.63
0.56

0.97
0.99

0.48
0.52
0.48
0.43
0.38
0.33
0.29

0.70
0.74
0.70
0.64
0.58
0.51

0.86
0.88

0.31
0.36
0.34
0.31
0.28
0.25
0.23

0.49
0.52
0.51
0.48
0.44
0.40

0.62
0.64

2.09
1.77
1.46

2.57
2.46
2.19
1.88

2.5/
2.46
2.22

2.53
2.42

2.45

1.48
1.31
1.14

1.75
1.72
1.60
1.44

1.82
1.79
1.67

1.81
1.76

1.79

0.95
0.87
0.79

1.09
1.10
1.06
0 99

1.17
1.18
1.14

1.14

0.85
0.79
0.72

0.97
0.99
0.96
0.90

1.06
1.0/
1.03

1.22
1.22

1.25

0.63
0.60
0.56

0.71
0.73
0.72
0.69

0.79
0.80
0.79

0.84
0.85

0.88

TABLE XXVII. Matrix elements of (v~—VP) for
the 'D2 state for various values of b.

TAnz, z XXVIII. Matrix elements of (vg —VP)
for the 'Dg state for various values of b.

Xb(F)I'g
0 0

2
3

6

1.50

—3.58—3.18—2.50—1.86
1027—0.79—0.39

—4.16—3.78—3.02—2.16—1.41—0./0
—4.16

3.71—2.82—1.93—1.02

—3.76—3.10—2.26—1.24

—2.90—2.28
1031

—1.93—1.14

—0.68

1.76

—2.01—1.98—1.70—1.40
10 13—0.89—0.66

—0.26—0.25—0,22—1.91—1.54—1.17

—2.93—2.82—2.50—2.09—1.66

—2.99—2.89—2.49—1.99

—2.87—2.67—2.22

—2.61—2.27

—2,14

2.09

—1.03—1.11—1.02—0.90—0.78—0.67—0.51

—1.49—1.55—1.46—1.32—1.15—1.00

—1.80—1.83—1.13-1.56—1.88

—1.99—1.99—1.87—1.70

—2.09—2.04—1.92

—2.09—2.04

—2.05

2.17

—0.39—0.97—0.90—0.81—0.71—0.62—0.53

—1.31—1.38—1.31—1.19—1.06—0.93

—1.60—1.64—1.57—1.43—1.29

—1.79—1.80—1.71—1.58

—1.90—1.88—1.79

—1.94—1.90

—1.93

2.40

—0.58—0.66—0.64—0.59—0.53—0.48—0.43

—0.90—0.98—0.96—0.90—0.82—0./4
—1.15—1.20—1.18—1.11—1.02

—1.33—1.36—1.33—1.26

—1.45—1.47—1.43

—1.54—1.54

—1.58

Xb(F)
n'g

0
1
2
3

5
6

1.50

0.14
0.24
0.32
0.41
0.48
0.54
0.59

0.40
0.55
0.71
0.82
0.94
1.02

0.76
0.98
1.14
1.30
1.42

1.21
1.42
1.63
1.78

1.66
1.92
2.09

2.16
2.37

2.61

1.76

0.05
0.09
0.12
0.15
0.18
0.21
0.24

0.15
0.21
0.27
0.32
0.38
0.42

0.29
0.38
0.45
0.53
0.59

0.48
0.57
0.68
0.76

0.68
0.81
0.91

0.91
1.05

1.17

2.09

0.01
0.03
0.04
0.05
0.06
0.07
0.08

0.05
0.07
0.09
0.11
0.13
0.15

0.10
0.13
0.16
0.19
0.21

0.17
0.21
0.24
0.27

0.25
0.30
0.33

0.35
0.39

0.44

2.17

0.01
0.02
0.03
0.04
0.05
0.05
0.06

0.04
0.05
0.07
0.09
0.10
0.12

0.08
0.10
0.13
0.15
0.17

0.13
0.16
0.19
0.22

0.20
0.23
0.27

0.27
0.32

0.36

2.40

0.01
0.01
0.02
0.02
0.02
0.03
0.04

0.02
0.03
0.04
0.05
0.06
0.07

0.04
0.06
0.07
0.08
0.09

0.07
0.09
0.11
0.12

0.11
0.13
0.15

0.15
0.17

0.20


