PHYSICAL REVIEW

VOLUME 161,

NUMBER 4 20 SEPTEMBER 1967

Unitary-Model-Operator Approach to Nuclear-Structure Physics.
II. Applications*

C. M. SHAKIN AND Y. R. WAGHMARE}

Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology,
Cambridge, Massachuselts

AND

M. TOMASELLI
Department of Physics, Lowell Technological Institute, Lowell, Massachusetts
AND
M. H. Huiy, Jr.i
Depariment of Physics, Yale University, New Haven, Connecticut
(Received 14 April 1967)

Results are reported for Hartree-Fock calculations carried out with an effective interaction derived from
the Yale potential. The spherical nuclei O and Ca® are considered. The orbitals are expanded in terms of
harmonic-oscillator functions, and the dependence of the results on the number of oscillator functions used
and upon the oscillator size parameter is studied. The importance of various second-order terms is considered
using a simple approximation for the Pauli operator and the energy denominators. For the second-order
terms in the tensor interaction, some spectral corrections to the simplified energy denominators are made.
Reasonable results are obtained for the nuclei considered ; however, the spectral corrections to the simplified
energy denominators are found to provide an important correction to the calculated binding energy. It is
concluded that an improved treatment of the energy denominators is required to improve the accuracy of
the results reported here. Tables of the effective interaction used in these calculations are presented in an

Appendix.

I. INTRODUCTION

NE of the fundamental problems in the study of

nuclear structure is to obtain a satisfactory under-
standing of the static properties of nuclei such as bind-
ing energies, moments, spectra, etc. These properties
depend upon the nature of the force acting between
nucleons inside the nucleus. It is not unreasonable to
assume that the potentials that describe the scattering
of free nucleons? may be used in the study of the
properties of finite nuclei or nuclear matter. These
potentials exhibit strong repulsion at short distances
and this fact greatly complicates nuclear-structure
calculations. Brueckner® and others? have developed
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theories based upon two-particle correlations (reaction
matrix theories) and some applications have been made
to the study of the properties of finite nuclei.?

In a preceding work,® referred to as I in the following,
a method has been developed which allows one to derive
an effective Hamiltonian starting from a Hamiltonian
involving strongly repulsive forces.5=7 The effective
Hamiltonian is generated using a model-operator
approach; however, the calculational procedures and
results do not differ significantly from the reaction
matrix approach to the effective interaction problem
based on the Moszkowski-Scott? separation method.
The novel features of the methods used here include the
introduction of pseudopotentials to achieve healing of
the correlated wave functions in those states where the
interaction is essentially repulsive. Also the use of a
harmonic-oscillator basis involving oscillator functions
of several nodes allows one to improve the orbitals used
in the direction of eliminating the one-particle one-hole
corrections to the binding energy. Indeed, the main
concern of this work is the application of the Hartree-
Fock method to the effective Hamiltonian. It is well
known that the concepts of the Hartree-Fock theory
underlie most nuclear models which are used in nuclear-
structure physics, and a calculational procedure which
generates the nuclear Hartree-Fock field, binding
energies, deformations, spin-orbit splittings, etc., is
highly desirable.

5 C. M. Shakin, Y. R. Waghmare, and M. H. Hull, Jr., preceding
paper, Phys. Rev. 161, 1006 (1967).
6 C. M. Shakin and Y. R. Waghmare, Phys. Rev. Letters 16,
403 (1966).
( "l\éI). H. Hull, Jr., and C. M. Shakin, Phys. Letters 19, 506
1965).
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Clearly, the application of the Hartree-Fock method
to an effective Hamiltonian does not provide one with
an upper bound for the binding energy. The justification
of the use of the Hartree-Fock method must be found
in the fact that it provides wave functions which are
related in a self-consistent manner to the effective
interaction. Once this self-consistency is achieved there
are no first-order corrections of the one-particle one-hole
type to the ground state. (The treatment of the second-
order terms due to the tensor force given in I also takes
into account some very important two-particle, two-
hole excitations involving high-energy orbitals. These
tensor force effects will greatly complicate any attempt
to apply Hartree-Fock theory in its usual form, even
with nonsingular forces, since the tensor correlations
are responsible for a large part of the binding energy of
the nucleus.)

One essential difficulty remains in that the effective
interaction generated depends somewhat on the dis-
persive character of the medium. In the formalism of
I, the use of harmonic-oscillator wave functions as a
basis is particularly simple if the dispersive effects of the
medium are represented by harmonic-oscillator poten-
tials. This choice allows for a simple separation of the
center-of-mass and relative motion of an interacting
pair. It is fairly difficult to give an accurate estimate of
the correction due to the use of this approximation and
for the results reported here this limitation should be

kept in mind.

II. THEORY

In this section a brief resumé of the effective inter-
action method is presented, the details of which are
given in I. Given a Hamiltonian H, an effective inter-
action A is determined by using a unitary operator ¢S
such that

H=¢"SHeiS= ZtnlnzamTanz
+12antant(nima| €S (h+-ta+Urt-Ust-v19)e™s
— (l1+t2+ U1+ U2) |ﬂ3n4>an,,an3+ Tty (1)

where ¢ is the kinetic energy operator, and ;3 is the
nucleon-nucleon potential exhibiting strong repulsion
at short distances. The single-particle potentials U; and
Us,, which represent the dispersive properties of the
medium and arise from the analysis of the three-body
terms in the cluster expansion of H are approximated
by harmonic-oscillator forms, namely, Ui=3kri?, U,
=1kr2. The potential vy, is divided into a short-range
part v12® and a long-range part v;2!, so as to satisfy the
following equations®:

(b1t to - Usrt Ut 010" )Wy ng (F1,72) = (€nyF €ng)¥ning (1,72)
(ll—l-lfz-f— U+ U2)¢n1n2(r1;r2) = (fn1+ an)(bmnz (71)72) ’ (2)
where the subscripts #; and %, refer to the quantities

(n,},7,m) necessary to specify the orbitals for particle
motion in harmonic-oscillator potential. The short-
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range part of the potential, v;5°, gives no energy shift in
the correlated wave function y,,,, relative to the un-
perturbed wave functions ¢,,»,. One finds

H= Ztnxnzaanan2+ (%)ZaananzT
X (‘Pnlnz[ vlzll‘l/nsn4>ansan4+ Y (3)

where we have used
€5 n1ny=V¥nyny- 4)

The distance at which ;,° and v5' are separated is
called the “healing distance.”

In most cases it has been necessary to extend this
elementary separation procedure. Generally, a state-
dependent pseudopotential VP is added and w95 is
written as

v12= (V1"+VP)+ (012°—V P). ©)

This pseudopotential method is used in those states of
relative motion where the interaction is repulsive and
also in the 1So and 35, states. The pseudopotentials are
chosen to maintain healing of the correlated wave at
about 1 F for the various states of relative motion. For
simplicity, the form of the pseudopotential was taken
to be constant (attractive) and nonzero from the core
of the Yale potential! out to about 1 F.

For the 1S and 35| states the strength of the pseudo-
potential varies significantly with the number of modes
in the relative wave function. For the 1Py, 3Py, 3Py, 3D;,
3D,, and 3Dj; states pseudopotentials are also used but
it was sufficient to use a constant value of the pseudo-
potentials in these states. For these latter states, once
the pseudopotential was fixed, the variation of the
healing distance with the number of modes was negli-
gible. As discussed in I, the use of a mode- (or energy)
dependent pseudopotential makes the effective inter-
action non-Hermitian. For the purposes of these calcu-
lations the matrix elements of the effective interaction
in the 159 and 35 states off-diagonal in %, the number of
modes in the oscillator wave function, was averaged.
This procedure is not very satisfactory and a method
for overcoming this difficulty was indicated in I but has
not been applied as yet. A discussion of the choice of
healing distances and pseudopotentials was given in I.

The parts of the tensor force diagonal in /, the relative
orbital angular momentum, are included in Eq. (3). The
part of the tensor force off-diagonal in /, v7°D, is treated
in perturbation theory in the correlated basis. To lowest
order A becomes

A= 2 tugng@ny T@ngt 32 anTan,t
X <¢n1n2 ‘ v12l+7)TOD l ¢n3n4>an3an4+ ttt. (6)

Now, it is well known that the tensor force contributes
significantly in second order, the main feature being the
admixture of a short-range 2D, wave to the 35, state of
relative motion. This admixture involves high-energy
orbitals. This effect of the tensor force may be included
by extending the definition of ¢*® to include a tensor



161 OPERATOR APPROACH TO

correlation; i.e., Eq. (4) is modified to read
¢ Guiny=V iyt (0/€)0r°PYnny (7)

where ¥, contains only central correlations. Here, e
is an appropriate energy denominator and Q is a
projection operator. If we make the approximation

€n T €n€n, T €n A,
and define e= — ({;+1o+ U+ Uas—A), we find
H= ZtmnzamTanz"" 32 0niT@nyTnsting

Q
X <¢n1nzl (7)12l_ VP)+7)TOD+'UTOD’-7)TOD I \l’n:sM) ’
4

®)

where the presence of the pseudopotential term V2 has
been indicated. The approximation used for the energy
denominator in Eq. (7) is reasonable as the orbitals
admixed by the tensor force are of quite high energy.
The exact specification of the energies of the occupied
orbitals is not very important for semiquantitative
results; however, to obtain results accurate to 1 or 2
MeV per particle a better treatment of the energy
denominators is required. Estimates of the error
involved in the simple treatment of the energy de-
nominators are given in the next section.

In a similar fashion second-order effects in VP may
be included as VP is of short range and will introduce
further short-range correlations when taken to higher
order.

Thus,

ﬁ= Ztn1n2an1Tan2+%ZaﬂlTamTaﬂsaM
X @nyny| (0121 =V P)+0r°P+02°P (Q/€)v7OP
+VPQ/OVP [Yugny), (9)

where we have neglected cross terms in VP and v,7°P
which are expected to be small. Calculations have been
carried out for the effective interactions of Egs. (8) and
(9) so that the effects of the second-order terms in V.
may be determined separately.

In the application of the Hartree-Fock method to the
effective interaction the expansion of the orbitals in

harmonic-oscillator functions is used.! The usual
Hartree-Fock equations to be solved are
(a|t|B)+(a| U|B)= eadas (10)

where / is the kinetic-energy operator and the single-
particle potential U is defined as

(@l U18)= % Clalvual v)—(erl ol 8)]. (11

8 J. P. Svenne, thesis, MIT, 1965 (unpublished); R. Muthu-
krishnan and M. Baranger, Phys. Letters 18, 160 (1965); K. T. R.
Davies, S. J. Krieger, and M. Baranger, Nucl. Phys. 84, 545
(1966) ; A. K. Kerman, J. P. Svenne, and I. M. H. Villars, Phys.
Rev. 147, 710 (1966).
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The wave functions are expanded as
Ve (1) =22 Cgnl(r), (12)

where the ¢’s are the harmonic-oscillator functions.
Substitution of Eq. (12) into Eq. (10) yields

Z [("1[ tlnll>+<nll U{”1l>jcm’¢: &Cu, (13)

where

<7’Lll U!n1’>= Z pmm’[(”d"hl %nln{m’)

ng,ny’

- <n1%2[ 'l)effl ”21”1,>] (14)
and

A
Prnang’ = Z an'ycnz’y .

y=1
Then, the binding energy is given by
Eo= 22 pmnr[(mlt]n)) 45| Ulny)].

nint’

III. RESULTS OF HARTREE-FOCK
CALCULATIONS

In this section calculations for the closed-shell nuclei
O and Ca® are reported. These calculations were made
using the effective interaction derived from the Yale
potential. The matrix elements used are tabulated in
the Appendix.

The Hartree-Fock equations were solved by an
iteration procedure® for various values of b= (/Mw)'2,
the oscillator size parameter. To test the effects of
including various terms of the effective interaction
several different calculations were done. First, no
second-order terms were included involving ¥V P. Second,
the second-order terms in VP were included but only
for the relative matrix elements diagonal in #, the
number of nodes in the oscillator wave function. Finally,
the second-order terms in VP which involve matrix
elements off-diagonal in # were included for the P
states only. For this latter calculation one should also
include the second-order terms in VP off-diagonal in #
for the S-states as well; however, these terms were
smaller than the uncertainty introduced in the averag-
ing of the S-state interaction matrix elements and it
was not considered worthwhile to calculate them.

The results of calculations for O are presented in
Tables I-IV. In Table I are presented the single-
particle energies, binding energy per particle, spin-orbit
splitting, and root-mean-square radii for a calculation
in which three harmonic-oscillator functions were used
in the determination of each orbital. The calculation
was of the first type mentioned where the second-order
terms in VP were neglected. A simple correction was
made for the center-of-mass energy and the Coulomb
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TasLE I. Calculated properties of O%. (Second-order terms in VP not included. Three oscillations functions were used for each orbital.)

b (F) 1.50 1.76 2.09 2.17 Experimental
Single-particle energies (MeV)
0p1je —435 —453 —449 —417
0p12 —12.6 —13.1 —13.9 —12.8 —15.65% (neutron)
0ps/2 —18.1 —18.8 —19.0 —174 —21.81 (neutron)
B.E./A (MeV) —3.01 —3.45 -3.75 —3.30
Ecou/A (MeV) 0.94 0.94 0.94 0.94
Egm./A (MeV) +0.71 +0.71 +0.71 +0.71
B.E./A (MeV) —2.78 —3.22 —3.52 —3.17 —7.98
(including Coulomb and
c.m. corrections)
0p3/2—0p1/2 splitting (MeV) 5.5 5.7 5.1 4.6 6.22
Rms radius (F) 2.48 2.49 2.53 2.62 2.64b

(charge rms radius)

s B. L. Cohen, Phys. Rev. 130, 227 (1963).
b R, Hofstadter, Ann. Rev. Nucl. Sci. 7, 231 (1957).

Tasie II. Calculated properties of O. (Second-order terms in VP included. Three oscillator functions were used for each orbital.)

b (F) 1.50 1.76 2.09 2.17 Experimental
Single-particle energies (MeV)
0p1/2 —18.7 —18.9 —17.8 —16.4 —15.65% (neutron)
0p3s2 —254 —25.5 —23.2 213 —21.81 (neutron)
B.E./A (MeV) —5.97 —5.83 —5.35 —4.76
Ecou/A (MeV) 0.94 0.94 0.94 0.94
E;m./A (MeV) +0.71 +0.71 +0.71 +0.71
B.E./A (MeV) —5.74 —5.60 —5.12 —4.53 —7.98
(including Coulomb and
c.m. corrections)
0p3/e—0p12 splitting (MeV) 6.7 6.6 5.4 49 6.2s
Rms radius (F) 2.34 2.30 2.43 2.51 2.64b

(charge rms radius)

a B, L. Cohen, Phys. Rev. 130, 227 (1963).
b R, Hofstader, Ann. Rev. Nucl. Sci. 7, 231 (1957).

energy. These corrections were estimated using the
following expressions:

Ee.m.=§hw P hw=416/b2 )

where b= (/Mw)'”2. A rough estimate of the value of &
was obtained from comparing the result of the Hartree-
Fock calculation for the rms radius with the rms radius
obtained assuming pure harmonic-oscillator orbitals.
For the O calculations the center-of-mass correction
was estimated with 6~1.66 F. This correction was held
constant in the tables although the calculated rms
radius varied somewhat.

Table IT contains the results for Hartree-Fock calcu-
lations in which the second-order terms in VP were
included in the effective-interaction matrix elements.
As may be seen from the table, the inclusion of these
terms increases the calculated binding energy, the
increase being larger for the smaller values of 5. There
is also a small increase in the calculated spin-orbit
splitting and some decrease in the rms radius.

It was of interest to see what results would be ob-
tained if the number of harmonic-oscillator functions
used to expand the orbitals was reduced. Table III
includes the results for O'¢ when only a single oscillator
function was used for each orbit. As might be expected
the calculated quantities vary more rapidly as & is
changed than in the calculations reported in Tables I
and II (for which three oscillator functions were used
for each orbital). The greatest difference between the

Tasre III. Calculated properties of O, (Second-order terms
in VP were included and only a single oscillator function was
used for each orbital.)

b (F) 1.50 1.76 2.09 2.17
Single-particle
energies (MeV)
0Os1/2 —57.3 —43.4 —30.2 —27.6
0p1/2 —19.0 —16.3 —11.9 —10.6
D32 —26.6 —20.0 —13.7 —12.2
B.E./A (MeV) —5.82 —4.93 —3.34 —2.63
(without Coulomb
and c.m.
corrections)
0p3/2—0p1/2 7.6 3.7 1.8 1.6
splitting (MeV)
Rms radius (F) 2.25 2.64 3.14 3.25
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TasLe IV. Single-particle energies and binding energy per
particle for 0. The second-order tensor terms were evaluated in
a crude self-consistent approximation as discussed in the text. One
oscillator function was used for each orbital. Tabulated quantities
are given in MeV.

Iteration
A=20 (€] @ ®) @

b=1350F

0p1/2 —19.0 —172 174 —174 174

0p3/2 —206.6 —243 =247 —246 —24.6

0Os1/2 —57.3 -510 -—-519 —518 —51.8
B.E./4» —5.82 —423 —445 —442 —443
b=1.76 F

0p1s2 —16.3 —154 —155 —155 —15.5

0pspe —20.1 —189 —190 —190 -—190

Os1/2 —43.4 —40.1 —40.5 —404 —404
B.E./A® —4.93 —414 —422 —421 —421
b=209F

0p1s2 —11.9 1.7 117 —-117 117

Opspe —13.7 —133 —134 —134 —134

Os1/2 —30.2 —289 —290 —29.0 —29.0
B.E./A4® —3.34 —-3.06 —3.08 —3.08 —3.08
b=217F

Op1y2 —10.6 —104 -—104 —104 —104

Opare —12.2 -120 -—-120 —-120 -—-120

Os1/2 —27.6 —26.6 —26.7 —26.7 —26.7
B.E./A» —2.88 —2.67 —269 —2.69 —2.69

8 Uncorrected for center-of-mass or Coulomb energy.

results of Table IT and IIT occur for the largest value of
b since in this case the single oscillator functions have
the poorest overlap with the orbitals determined using
a basis of three oscillator functions.

A discussion of the numerical results is in order. For
example, in Table II, the quantities calculated are not
independent of the basis chosen. Hopefully, if one were
to use more oscillator functions in the expansion of the
orbitals this dependence on the basis used would be
lessened. The value obtained for the spin-orbit splitting
is reasonable. The rms radii of Table II are smaller than
the experimental value; however, configuration mixing
in the ground state would increase this quantity
somewhat.? As for the binding energies, an important
correction arises from the fact that in the evaluation of
the 3S; matrix elements the energy denominator e was
taken as

—e= (1%/2m) (k+kH)+A,

with A=20 MeV. The quantity A approximates the
binding of the interacting pair in the nucleus. This
quantity is actually state-dependent and generally
larger than 20 MeV. Correction for this variation can
be made using the binding energies of the single-particle
orbits as obtained from the Hartree-Fock calculation.
This correction is fairly simple to make for the Hartree-
Fock calculations involving only a single harmonic-
oscillator function for each orbital.

Table X1V exhibits the variation of the diagonal 35,
matrix elements with the parameter A. To study the

9 G. E. Brown and G. Tacob, Nucl. Phys. 42, 177 (1963).
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effect of this variation a Hartree-Fock calculation was
carried out for O'. As a simple approximation it was
assumed that the relative 45; matrix elements depends
linearly on A with a decrease of 609, in their values on
going from A=20 MeV to A=220 MeV. This approxi-
mation corresponds roughly to the behavior of these
matrix elements as reported in Table XIV.

The following iterative scheme was adopted. The
single-particle energies were obtained by carrying out
the Hartree-Fock calculation for O' with the minimum
number of orbitals and using the matrix elements
calculated with A=20. These single-particle energies
were then used to obtain an effective A for each two-
body matrix element. The two-body matrix elements
were then recalculated, but in their calculation the 3S;
relative matrix elements were modified to take into
account their variation with A. For example, if the
0S1/2 orbit was found to be bound by —50 MeV, say,
matrix elements of the form

<OS1/2051/2]T| vl051/2051/2]T>

were evaluated with the 35y relative elements modified
to correspond to A=100 MeV. For matrix elements
involving two different orbitals, the Hartree-Fock
single-particle energies were again added to obtain an
effective A. This procedure was iterated until there has
no significant change in the single-particle energies and
the total binding energy. About four iterations were
necessary to achieve this crude form of self-consistency
for the energy denominators.

The results obtained using this iteration procedure
are presented in Table IV. The first column (for each
value of b) gives the single-particle energies and binding
energy per particle for A=20 MeV. These results are
therefore identical to those presented in Table III. The
following columns present the results of successive
iterations involving modifications of the two-body
matrix elements to take into account the dependence of
the 357 relative elements on the binding energies of the
single-particle orbitals. The convergence is quite rapid.
The corrections to the binding energy are not very large
indicating that a perturbative approach to these
spectral corrections should be satisfactory. It is clear
from Table IV that the spectral corrections are largest
for the smaller values of & since the orbitals were bound
most strongly for smaller 8. (The approximation, A= 20
MeV, is clearly poorest for the smaller values of b.)

TaBLE V. Corrections to the O binding energy (in MeV).

Correction
Binding  from using  Spectral
b energy/A more orbitals correction Totals
(F) (Table III) (Table II) (TableIV) B.E./4
1.50 —5.82 —0.15 +1.39 —4.58
1.76 —4.93 —0.90 +0.71 —5.12
2.09 —3.34 —2.01 0.26 —5.09
217 —2.63 —2.13 0.19 —4.57

a Uncorrected for center-of-mass and Coulomb energy.
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TasLE VI. Expansion coefficient for occupied orbitals of O, The expansion
is in terms of oscillator functions having zero, one, and two nodes.
Calculation of Table I Calculation of Table 1T
Co Cy Ce Co C: C

b=15F

Os1/2 0.9970 —0.0770 —0.0088 —0.9998 —0.0170 —0.0045

0p3/2 0.9887 —0.1460 0.0337 0.9982 —0.0469 0.0335

0p1/2 0.9748 —0.1878 0.0683 0.9928 —0.1024 0.0617
b=1.76 F

Os1/2 0.9905 0.1361 0.0164 0.9703 0.2342 0.0593

0p3y2 —0.9940 —0.0961 —0.0521 0.9739 0.2090 0.0877

0p1/2 —0.9969 ~0.0320 —0.0710 —0.9844 —0.1492 —0.0928
b=2.09 F

0s1/2 0.9470 0.3057 0.0982 0.9267 0.3506 0.1349

0ps/2 0.9408 0.3040 0.1495 0.9146 0.3584 0.1867

0p1/2 0.9564 0.2510 0.1488 0.9308 0.3166 0.1824
b=217F

Os1/ 0.9444 0.3114 0.1053 0.9227 0.3577 0.1435

0p3/2 0.9373 0.3087 0.1614 0.9094 0.3649 0.1995

0p1/2 0.9519 0.2604 0.1611 0.9246 0.3265 0.1961

It is interesting to compare the results reported in
Tables II, III, and IV for the case of the binding energy.
This comparison is made in Table V where we have
assumed that the corrections to the minimum orbital
calculation (Table III) arising from the use of several
orbitals (Table IT) and the spectral correction of Table
IV are additive. It is found that the binding energy is
now much less sensitive to the choice of basis functions
and also that the binding energy exhibits a minimum
when considered as a function of b, the oscillator size
parameter. These results suggest that further efforts in
the direction of obtaining simultaneous self-consistency
for the wave functions end energy denominators might
yield interesting results.

Ideally, the spectral corrections should be made for
the calculations reported in Table II. It is expected that
this correction to the binding energy would be about

—+1 MeV per particle for the two smaller values of & and
slightly less than 1 MeV for the larger values of b.
Generally, this correction will reduce the sensitivity of
the calculated binding energy to the choice of the
oscillator parameter. When several oscillator functions
are used to expand each orbital (as in the calculations
of Table II), the spectral correction may be most
readily evaluated in perturbation theory, the perturba-
tion involving the matrix elements of

oo 2 D)o,
enr e(Q)

where ¢(A) is the energy denominator used in this work
and egr would be the energy denominator constructed
using the single-particle energies obtained from the
Hartree-Fock calculation. The expansion coefficients

TasLE VIL. Calculated properties of Ca®. (Second-order terms in VP not included. Three oscillator functions were used for each orbital.)

b (F) 1.76 2.09 2.17 Experimental
Single-particle energies (MeV)
51 /2 —743 —74.8 —69.7
O0psye —47.5 —48.4 —449
0p1/2 —423 —435 —40.6
0ds 2 —22.7 —22.8 —21.7 —22.8 (neutron)?®
151y —17.3 —17.6 —15.3 —18.4 (neutron)®
0ds /2 —14.4 —~15.9 —144 —15.8 (neutron)®
B.E./A (MeV) —35.73 —6.30 —5.49
Ecou/A (MeV) 1.85 1.85 1.85
E¢m./A (MeV) +0.26 +0.26 +0.26
B. E./A (MeV) —4.14 —4.71 —3.90 —-8.55
(including Coulomb and
c.m. corrections)
0p3/2—0p1/2 splitting (MCV) 5.2 49 4.3
0ds/2—0d3/2 splitting (MeV) 8.3 7.9 7.3 7.00
Rms radius (F) 2.97 2.99 3.08 3.52b

a B. L. Cohen, Phys. Rev. 130, 227 (1963).
b R. Hofstader, Ann. Rev. Nucl. Sci. 7, 231 (1957).
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TasLE VIIIL. Calculated properties of Ca®. (Second-order terms in VP included only for relative
matrix elements diagonal in the oscillator quantum number, #. Three oscillator functions were used for each orbital.)

b (F) 1.76 2.09 217 Experimental
Single-particle energies (MeV)
IS1/2 —857 '—822 "'769
0ps/e —56.7 —54.3 —50.7
0p12 —524 —499 —46.4
0ds 2 —30.0 —28.1 —26.0 —22.84 (neutron)
15172 —26.7 —22.5 —19.9 —18.4 (neutron)
0ds/2 —23.0 —20.4 —18.6 —15.8 (neutron)
B.E./A (MeV) —10.03 —8.60 —7.62
Ecou/A (MeV) 1.85 1.85 1.85
Eem./A (MeV) +0.26 +0.26 +0.26
B. E./A (MeV) —8.44 —17.01 —6.03 —8.55
(including Coulomb and
c.m. corrections)
0p3/2—0p1/2 splitting (MeV) 43 44 43
0d5/2—0d3, splitting (MeV) 7.0 7.7 7.4 7.02
Rms radius (F) 2.96 2.95 3.03 3.52b

s B, L. Cohen, Phys. Rev. 130, 227 (1963).
b R. Hofstader, Ann. Rev. Nucl. Sci. 7, 231 (1957).

of the self-consistent orbitals in the harmonic-oscillator
basis functions are presented in Table VI for the calcu-
lations reported in Tables I and II.

Similar calculations were carried out for Ca® and the
results obtained are presented in Tables VII-XI. For
the calculations of Table VII the second-order terms in
VP were not included. One finds reasonable values for
the single-particle energies and spin-orbit splitting. The
binding energies for rms radii are small compared to the
corresponding experimental quantities. For the calcu-
lations reported in Table VIII the second-order terms
in VP were included for the relative matrix elements
diagonal in the oscillator quantum number 7. The
inclusion of these second-order terms leads to an in-
crease in the binding of the single-particle orbitals and
in the total binding energy. The spin-orbit splitting and

rms radii are only slightly modified. Finally, a calcu-
lation was carried out with the second-order terms in
VP included for relative matrix elements diagonal and
nondiagonal in the oscillator quantum number # (see
Table IX). The off-diagonal terms were included in the
3Py, 3Py, and P, states only. This approximation leads
to a further increase in the single-particle energies,
binding energies and spin-orbit splitting while the rms
radii decrease with respect to the previous calculations.
When compared to the experimental data the results
are not satisfactory, particularly with respect to the
small size obtained and the binding energy which is in
excess of the experimental value. Again, these features
may be improved through a better treatment of the
energy denominators in the second-order terms.

Table X contains the results of calculations for Ca%

TasBLE IX. Calculated properties of Ca®. (Second-order terms in VP included for relative matrix elements diagonal
and non-diagonal in the oscillator quantum number #. Three oscillator functions were used for each orbital.)

b (F) 1.50 1.76 2.09 217 Experimental
Single-particle energies (MeV)
05172 —101.9 —102.1 —90.0 —83.7
0psn —67.0 —66.5 —59.8 —55.6
0p1/2 —59.5 —59.6 —54.9 —50.9
0ds /2 —35.5 —34.2 —31.3 —28.8 —22.8* (neutron)
1512 —30.6 —27.6 —237 —20.9 —18.4 (neutron)
0ds/2 —24.1 -23.0 —22.6 —20.8 —15.8 (neutron)
B.E./A (MeV) —10.93 —10.28 —9.52 —8.49
Ecou/A (MeV) 1.85 1.85 1.85 1.85
Eom./A (MeV) 0.26 0.20 0.26 0.26
B.E./A (MeV) —9.34 —8.69 —17.93 —6.90 —8.55
(including Coulomb and
c.m. corrections)
0p3/2—0p1/2 splitting (MeV) 7.5 6.9 4.9 4.7
0ds/2—0ds e splitting (MeV) 114 112 8.7 8.0 7.00
Rms radius (F) 2.67 2.65 2.84 293 3.52vp

s B, L. Cohen, Phys. Rev. 130, 227 (1963).
b R. Hofstadter, Ann. Rev. Nucl. Sci. 7, 231 (1957).
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Tasie X. Single-particle energies and nuclear binding energy
per particle for Ca® (in MeV). The second-order terms were
evaluated self-consistently as discussed in the text. A minimum
number of oscillator functions were used.

Tteration
A=20 m @ ©) @
b=150F
0Os1/2 —104.8 —84.0 —88.5 —87.6 —87.8
Opsre —69.2 —58.1 —60.3 —59.9 —60.0
0p1/2 —60.7 —50.6 —52.6 —52.2 —52.3
0ds 2 —36.8 —31.6 —32.6 —324 —324
Lsi2 —31.3 —25.3 —26.6 —26.3 —26.4
0ds/2 —249 —19.6 —20.6 —20.4 —20.5
B.E./A® —10.83 —6.64 —17.54 —7.29 —7.40
b=1.76 F
Os1/2 —79.9 —68.4 —70.2 —69.9 —70.0
0ps/2 —52.4 —46.4 —17.3 —47.2 —47.2
0p1r2 —48.2 —42.5 —43.4 —43.3 —43.3
0ds/2 —27.8 —25.0 —25.4 —25.4 —25.4
15172 —24.3 —21.1 —21.6 —21.5 —21.5
0ds/2 —21.2 —18.8 —19.2 —19.1 —19.1
B.E./A® —9.11 —6.84 —7.19 —7.13 —7.15
b=2.09F
0Os1/2 —56.2 —51.0 —51.6 —51.5 —51.5
0p3/2 —36.7 —34.1 —344 —34.3 —34.3
0p1/2 —34.7 —32.2 —32.5 —32.5 —32.5
0ds /2 —194 —18.3 —184 —18.4 —18.4
15172 —18.0 —16.6 —16.8 —16.8 —16.8
0ds/, —16.4 —15.4 —15.5 —15.5 —15.5
B.E./A4® —6.55 —5.55 —5.66 —5.65 —5.65
b=217F
Os1/2 —51.2 —47.0 —47.4 —47.3 —47.4
0p3/2 —33.1 —31.0 —31.2 —31.2 —31.2
0p1/2 —31.0 —29.0 —29.2 —29.2 —29.2
0ds 2 —17.1 —16.3 —16.4 —16.4 —16.4
15172 —15.9 —149 —149 —149 —14.9
0ds /2 —14.2 —13.5 —13.6 —13.5 —13.5
B.E./A® —5.59 —4.82 —4.90 —4.89 —4.89

[..® Uncorrected for center-of-mass or Coulomb energy.

similar to those reported in Table IV for the case of
018, Again a degree of self-consistency was obtained for
the energy denominators in the evaluation of the
second-order tensor interaction in the 35, state of rela-
tive motion. By comparing the single-particle energies
reported in Table IX and the single-particle energies
used in Table X for the minimum orbital calculation
one may obtain a good idea of the spectral correction
necessary for the results of Table IX. The spectral

TaBLe XI. Correction to the Ca® binding energy (in MeV).

Binding Correction
energy/A  from using  Spectral

b for A=20 more orbitals correction Total
(F) (Table X) (TableIX) (TableX) B.E./A®
1.50 —10.83 —0.10 +3.43 —7.50
1.76 —9.11 —1.17 +1.96 —8.32
2.09 —6.55 —297 +0.90 —8.62
217 —35.59 —2.90 0.70 —7.79

a Uncorrected for center-of-mass and Coulomb energy.
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correction for 5=1.50 and $=1.76 is thus expected to
be about 43.4 MeV and for 6=2.17 this correction will
be about +2.0 MeV. Again, it appears that upon
making the spectral correction for the results reported
in Table IX the dependence of the calculated binding
energy on the choice of the oscillator parameter will be
reduced. In general, the results obtained with the
approximations of this work do indicate that further
efforts in the study of the properties of finite nuclei
using realistic forces would be of interest. Comparison
of the Yale potential with other realistic potentials
provide an obvious extention of this work ; however, it
is also clear that a good treatment of the double self-
consistency problem is the most desirable next step in
studies of this kind.

Discussion

From the results of the calculations reported here it
may be concluded that reasonable agreement with the
ground-state properties of the nuclei 0 and Ca% may
be obtained starting from a “realistic” potential which
provides a good fit to the nucleon-nucleon scattering
data. It has been shown that the use of several oscillator
functions in the expansion of the orbitals tends to reduce
the dependence of the results upon the choice of the
oscillator size parameter. The estimates given for the
spectral corrections to the binding energy appear to
justify a perturbative approach to these corrections and
indicate that further work along these lines would be
of interest. It would also be interesting to calculate the
additional binding energy that would arise from the
consideration of ground-state correlations due to
vibrations about the spherical shape.

Finally, a calculation in which both the wave func-
tions and energy denominations are given a self-
consistent treatment would be highly desirable. Such a
calculation would probably be necessary for a more
accurate determination of the single-particle energies
than that made here. It is well known that this form of
double self-consistency is difficult to achieve and this
feature remains an outstanding challenge for further
calculations of this kind. Some discussion of this prob-
lem for finite nuclei appears in the work of Pal and
Stamp.!® These authors have carried through Hartree-
Fock calculations for nonspherical nuclei using the
effective interaction matrix elements derived from the
Yale potential.

The work reported here may usefully be compared
with the results of Hartree-Fock calculations which
have been carried out with nonsingular forces. In
particular, the nonlocal Tabakin potential! has been
extensively investigated.® It has been found that with
the inclusion of second-order terms the Tabakin
potential is able to give a good account of the ground-

M. K. Pal and A. P. Stamp (to be published).
1 F, Tabakin, Ann. Phys. (N. Y.) 30, 51 (1964).
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state properties of light nuclei’? and application to the
study of heavy nuclei is under way.
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APPENDIX

In the Appendix are presented tables of the effective
interaction matrix elements used in this work. Table
XIIincludes the contribution of the central 3S; potential
and the second-order tensor terms. The second-order
terms are evaluated with kp=1.4 F~! and A=20 MeV
in the notation of I. For the central part of the inter-
action the use of a pseudopotential depending upon the
number of nodes has led to an averaging of the off-

TaBrLe XII. Relative matrix elements for the 3S; state of the
Yale potential. The contribution of the terms (v;—VP) and
279D (Q/e)vrOP are included. The off-diagonal matrix elements of
(v;— VP) have been averaged (see text), b= (4/Mw)'2 F.

No@) 1.5 1.76 2.09 2.17 2.40
R AN
0 —106  —799 —557 —511  —402
1 792  —68& —529 —492 —404
2 —469 —526 —454 —434  —370
3 —181 —353 —377 —368 —428
4 4063 —202 —296 —297 —28
5 275  —065 —220 —229 —238
6 431 +05  —145 —1.66 —1.96
1 1 —6.84 —6.40 —5.34 —5.01 —4.27
2 —4.00 —5.05 —4.70 —4.54 —4.01
3 —1.38 —3.41 —3.96 —3.90 —3.59
4 +0.95 —1.91 —3.12 —3.159 -—-3.12
5 +3.05 —0.50 —2.31 —2.43 —2.64
6 4.64 +0.71 —1.51 —1.76 —2.18
2 2 —2.34 —4.21 —4.23 —4.22 —3.83
3 —0.40 —2.84 —3.62 —3.69 —3.47
4 1.46 —1.61 —2.86 —3.00 —3.04
5 3.24 —0.27 —2.10 —2.32 —2.59
6 4.62 +0.85 —1.33 —1.67 —2.13
3 3 0.74 —1.82 —3.15 —3.27 —-3.19
4 2.02 —0.82 —2.51 —2.69 —2.82
5 3.36 +0.21 —1.86 —2.08 —2.41
6 443 1.17 —1.15 —1.49 —1.99
4 4 2.68 —0.11 —2.00 —2.22 —2.51
5 3.53 +0.66 —1.46 —1.70 —2.16
6 4.24 1.41 —0.86 —1.19 —1.78
5 5 3.89 1.18 —1.04 —1.29 —1.86
6 4.23 1.71 —0.54 —0.87 —1.54
6 6 4.21 2.03 —0.14 —0.53 —1.28

12 W. Bassichis and A. K. Kerman (to be published); M. K.
Pal, J. P. Svenne and A. K. Kerman, in Proceedings of the Inter-
national Conference on Nuclear Physics, Gatlinburg, Tennessee,
1966 (Oak Ridge National Laboratory, Oak Ridge, Tennessee,
1966), Paper 6.23, p. 64.
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TasLE XIII. Second-order contribution VP(Q/e)VP of the
pseudopotential to the 3S; relative matrix elements for various
values of b= (/Mw)12 F.

\QF) 1.50 1.76 2.09 217
n n

0 0 —0.988 —0.606 —0.350 —0.318
1 1 —1.510 —0.947 —0.540 —0.498
2 2 —2.147 —1.191 —0.757 —0.639
3 3 —2.763 —1.632 —0.873 —~0.753
4 4 —3.448 —1.954 —1.047 —0.925
S 5 —4.483 —2.339 —1.194 —1.083
6 6 —5.492 —2.718 —1.411 —1.217

diagonal elements and these average values are in-
cluded in the table. In Table XIII second-order terms
in the central pseudopotential for the 3S; state are
presented. These are evaluated using plane-wave
intermediate states as discussed in I. While the matrix
elements given in Table XTII are not small, the con-
vergence of the perturbation expansion in VP is good,
the second-order terms being less than one-third of the
first-order terms in VP.

In Table XIV results are presented for the 35; matrix
elements as a function of A. The column for A=20
corresponds to values reported in Table XII.

Table XV contains the matrix element of the tensor
potential coupling the 35, states to the 3D; states. Table
XVI contains the matrix elements of (v'— V P) for the

TaBLE XIV. Relative matrix elements for the 3S; state of the
Yale potential for various values of A. The contribution of the
terms (v;— VP) and V7P (Q/e)vrOP are included.

A (MeV)
20 70 120 170 220

b=150F

n n

00 —1061 —841 —7.28 —641 —5.70

11 —6.84 —467 —3.63 —280 —1.07

2 2 —234 —-086 —0.05 0.60

3 3 0.74 +1.77 2.34 2.82 3.22
b=1.76 F

n n

00 —7.99 —644 —565 —504 —4.56

11 —6.40 —480 —396 —331 —2.78

2 2 —421 -—28 —-211 -—153 —1.05

3 3 —182 —072 -0.12 0.37 0.77
b=209F

n n

00 —5.57 —447 —-395 —-356 —3.24

11 —534 —417 =356 —3.09 -—2.71

2 2 —423 —-310 —-250 —2.05 —1.66

3 3 -315 -—214 —161 —117 —-0.84
b=217F

n n

00 =511 =399 —352 —335 —3.07

11 =501 -—-392 -—-336 -—232 —198

2 2 —422 =315 -259 -—-216 —1.81

3 3 —327 -230 -—-179 —139 —1.06
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TABLE XV. Matrix elements of the tensor potential between the
correlated %S; and 3D; states. The quantum number # refers to the
35, state and #’ refers to the 3D, state. [b= (#/Mw)'2 F]
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TaBLE XVI. Matrix elements of (v;— VP) for the 1S, potential
for various values of b. The off-diagonal matrix elements of
(v1— VP) have been averaged. [b=7%/Mw)12F]

N (F) 1.5 1.76 2.09 2.17 2.40 N (F) 1.50 1.76 2.09 2.17 2.40
ARVAN VAN
0 0 —9.21 —5.50 —3.07 —2.70 —1.89 0 0 —17.80 —5.96 —4.23 —3.88 -3.07
1 —12.5 —7.74 —4.47 —3.95 —2.82 1 —4.93 —4.59 —3.75 —3.18 —2.00
2 —14.49 —9.13 —5.40 —4.80 —3.47 2 —2.16 —3.11 —2.94 —2.84 —2.55
3 —15.6 —10.0 —6.06 —5.41 —3.96 3 —0.33 —2.62 —2.24 —-2.19 —2.11
4 —16.2 —10.6 —6.54 —5.86 —4.32 4 2.59 —0.20 —1.43 —1.53 —1.69
5 —16.6 —11.0 —6.89 —6.19 —4.61 5 4.34 0.98 —0.81 —0.93 —1.27
6  —167  —113  —715 —644 —483 6 5.61 208 —012 —037 —099
1 0 —4.16 —2.85 —1.81 —1.63 —122 1 1 —3.53 —3.90 -3.59 -3.33 —2.89
1 —8.49 —5.50 —3.34 —2.98 —2.19 2 —1.43 —2.72 —2.90 —2.82 —2.61
2 —11.6 —7.54 —4.59 —4.10 —3.01 3 0.97 —1.35 —2.24 —241 —2.16
3 —13.7 —9.04 —5.56 —4.98 —3.68 4 2.83 0.03 —1.42 —1.76 —1.76
4 —15.2 —10.1 —6.31 —5.00 —4.21 5 4.60 1.23 —0.89 —1.33
5 —16.1 —10.9 —6.89 —6.20 —4.64 6 5.88 2.64 —0.05 —0.61 —0.86
6 16.7 114 7.34 —6.62 4.98 2 9 025 108 239 243 044
2 0 —2.02 —1.57 —1.10 —1.01 —0.79 3 2.51 —0.91 —2.37 —1.92 —3.06
1 —4.56 —3.32 —2.23 —2.03 —1.56 4 3.03 0.29 —1.14 —1.33 —1.70
2 —7.62 —5.28 —3.41 —3.08 —2.33 5 4.50 1.85 —0.57 —0.99 —1.29
3 —10.2 —7.01 —4.48 —4.04 —-3.04 6 5.64 2.31 —-0.12 —0.18 —0.88
g _g:g _g::; _2:% _g:gz _ifg 3 3 252 —018 —149 —153 —175
6  —147  —103  —673 —600 —4.62 4 348 076 088 —1.00 146
5 4.53 1.61 —0.40 —0.54 —-1.10
3 0 —0.98 —0.92 —0.72 —0.67 —0.55 6 5.39 2.41 0.23 —0.03 —0.68
o S RS SR o P S 390 136 —041  —067 —122
3 661  —495 —337 —307 —2.38 5 451 1.98 015 —025  —092
4 —875  —642 —429 -390  —3.00 6 506 209 050 027 054
5 —105 —768 —511 —464 387 5 5 4.68 2.38 0.26 007  —0.66
6 —11.93 —8.71 —5.81 —5.29 —4.07 6 4.90 2.79 0.69 0.42 —0.35
4 0 —0.40 —0.54 —0.48 —0.46 -039 ¢ 6 4.82 3.00 1.00 0.89 —0.08
1 —1.06 —-1.20 —1.00 —0.95 —0.79
2 —2.13 —-2.10 —1.67 —1.56 —1.28
3 —3.68 —3.25 —2.44 —2.27 —1.82
4 —552 —458 =326 —301  —239 ¥y XXVIII contain the matrix elements of
5 —7.32 —5.77 —4.07 -3.73 —2.94 .
6 _8.88 —6890 —481 —441 —345 (@—VP) for the P and D state used in these calcu-
lations. For those states for which the second-order
5 0 —0.05 =030  —-033  —032 029 termg jn VP are significant (1P1,3Po,3Py), tables of
; :ggg :(1)22 :(1)?2 :(1]?1 :ggg the matrix elemer}ts of the quantity (v;— VI")
3 ~1.69 —2.02 173 —164 —138 +VP(Q/e)VP are included. All the reported matrix
4 —2.05 —298 —240 —225 —186 eclements are given in MeV.
5 —4.45 —4.05 —3.11 —2.90 —2.35
6 =597 —S12 —3.82 —3.54 —2.84 TaBLE XVII. Second-order contribution [VP(Q/e) VP] of the
6 0 40.18 —0.13 —0.22 —0.22 —021 pseudopotential for the 1S, relative matrix element for various
1 4019 —034 —047 —047 —044 Yiuesofb
2 +0.02 —0.67 —0.80 —0.79 —0.71
3 —038  —115 —122 —118 —104 }%F) 1.50 176 209 2.47
4 —1.09 —1.80 —1.73 —1.65 —143
5 —2.12 —2.62 —2.31 —2.19 —1.85 0 0 —0.195 —0.136 —0.082 —0.079
6 —3.36 —3.52 —2.93 —2.76 —2.29 1 1 —0.201 —0.144 —0.102 —0.094
2 2 —0.290 —0.157 —0.103 —0.096
3 3 —0.536 —0.214 —0.109 —0.097
1Se state, the off-diagonal elements again representing ‘; ;1 —(1)223 —8";19 —0129 —0.110
an averaged value. Table XVII contains some of the s —055 0477 —0.140
6 6 —2.584 —0.800 —0.237 —0.190

second-order terms for the 1S, pseudopotential. Tables




161 OPERATOR APPROACH TO NUCLEAR STRUCTURE. 11 1025
TasLE XVIII. Matrix elements of (v;— VP) for TaBLE XX. Matrix clements of (v;— VP) for the
the 1P, potential for various values of b. 3Py potential for various values of b.
o &) 1.50 1.76 2.09 2.17 2.40 o (F) 1.50 1.76 2.09 2.17 2.40
[ AN T AN
0 0 4.61 2.49 1.28 1.12 0.77 0 —2.84 —2.16 —144  —1.30 —0.97
1 5.80 2.99 1.53 1.38 0.91 1 —1.01 —1.39 —-1.21 —1.14 —0.92
2 7.00 3.45 1.68 1.45 0.97 2 0.65 —0.50 —0.80 —0.80 —0.74
3 7.62 4.02 1.87 1.60 1.04 3 2.08 0.27 —0.40 —0.47 —0.52
4 8.26 4.33 2.01 1.72 1.13 4 292 0.88 —0.06 —0.16 —0.33
5 8.95 4.56 2.23 1.95 1.20 5 3.70 1.43 0.23 0.10 —0.14
6 8.92 4.86 2.40 2.06 1.27 6 4.32 1.81 0.48 0.33 0.02
1 1 8.41 436 219 188 127 1 1 052 —126 —127 —122 —104
2 1029 520 256 220 147 2 098  —049 —094 —095 —092
3 11.14 6.06 2.87 2.47 1.61 3 2.73 0.39 —0.50 —0.60 —0.68
4 11.9 6.48 3.09 2.66 1.76 4 3.90 1.19 —0.09 —0.22 —0.44
5 12.9 6.79 3.48 2.99 1.87 S 5.02 1.96 0.32 0.14 -0.20
6 12.8 721 3.66 3.15 1.97 6 5.96 2.52 0.67 0.45 0.02
2 2 124 6.40 3.16 2.73 1.81 2 2 1.70 —0.10 —0.79 —0.83 —0.88
3 13.5 7.57 3.65 3.14 2.05 3 3.24 0.63 —-044  —0.56 —0.69
4 14.5 8.10 3.95 3.41 227 4 4.49 1.42 —0.04 —0.20 —0.47
5 15.6 8.47 444 3.83 242 5 5.70 2.29 0.40 0.19 —-0.22
6 15.5 8.97 4.65 4.02 2.55 6 6.85 2.94 0.80 0.55 0.04
3 3 15.0 8.63 422 3.63 2.38 3 3 3.89 1.07 —0.22 —0.38 —0.59
4 16.2 9.32 4.63 4.00 2.68 4 4.89 1.71 0.09 —0.08 —0.41
5 17.5 9.76 5.23 452 2.88 5 6.07 2.55 0.51 0.28 —0.18
6 17.3 10.3 5.48 4.75 3.04 6 7.28 3.22 0.92 0.64 0.08
4 4 17.2 10.1 5.15 4.46 3.00 4 4 5.35 2.10 0.32 0.11 —0.28
5 18.6 10.7 5.85 5.08 3.25 5 6.31 2.82 0.68 0.43 —0.09
6 18.5 11.3 6.15 5.36 3.45 6 7.45 3.44 1.06 0.76 0.15
S 5 19.1 113 6.34 5.52 3.55 5 5 6.56 3.15 0.0 0.63 0.04
6 19.1 12.0 6.69 5.85 3.79 6 7.50 3.66 1.23 0.92 0.23
6 6 19.1 12.5 7.10 5.52 4.07 6 6 7.53 391 1.43 1.11 0.40

TaBLE XIX. Matrix elements for the 1P; potential for various
values of 5. The table includes the matrix elements of (v;—VP)

TaBLE XXI. Matrix elements for the 3P, potential for various
values of b. The table includes the matrix elements of (v;— VP)

+VP(Q/e)VP. +VP(Q/e)VP.
N (F) 1.50 176 2.09 2.17 b(F) 1.50 1.76 2.09 2.17
AR AN n k
0 0 2.598 1.522 0.853 0.758 0 0 —3242  —2361 —1.504 —1.353
1 2.853 1.543 0.872 0.774 1 —1.605 —2.681 —1.344 —1.249
2 2.315 1.636 0.845 0.741 2 —0063 —0.863 —0.967 —0.941
3 2.359 1.292 0.884 0.770 3 1.073 —~0.140  —0.602 —0.636
4 2.609 1.316 0.906 0.785 4 1.882 0.427 —0.289  —0.355
5 3.087 1.334 0.695 0.602 5 2.580 0.816 —0.004 —0.100
6 2.980 1.480 0.716 0.612 6 2.868 1.164 —0.230 0.112
1 1 4103 2.190 1.188 1.043 1 1 —1.385 —1.691 —1.565 —1.389
2 3.445 2.492 1.286 1127 2 —0.962 —1.063 —1.198 —1.169
3 3.448 1.979 1.376 1.200 3 1255  —0.227 —0807  —0.853
4 3.737 1.982 1.468 1.224 4 2.374 0.500 —0.428 —0.510
5 4376 1.976 1.076 0.939 5 3.373 1.037 —0.047 —0.196
6 4.209 2.168 1.082 0.944 6 4.290 1.549 0.282 0.028
2 2 4.067 3.009 1.541 1.345 2 2 0420 —0.779 —1.113 —1.110
3 3.774 2474 1.741 1.517 3 1437  —0.143  —0.823 —0.884
4 4.086 2.480 1.809 1.576 4 2.587 0.564  —0473 —0.566
5 5.220 2.456 1.386 1.217 5 3.689 1133 —0.067 —0.209
6 4.989 2.671 1.382 1.214 6 4.804 1.741 0.307 0.124
3 3 4.512 2.749 1.975 1.723 3 3 1.848 0.165  —0.670  —0.762
4 4,964 2.839 2.137 1.842 4 2.708 0.713 —0.408 —0.515
5 5.765 2.822 1.633 1.439 5 3.796 1.214  —0.037 —0.190
6 5.478 3.046 1.632 1.441 6 4.975 1.805 0.335 0.140
4 4 5.130 3.019 2.287 2.020 4 4 3.002 0.995 —0.242 —0.376
5 6.049 3.058 1.799 1.600 5 3.867 1.351 0.063 —0.102
6 5.771 3.332 1.728 1.688 6 4973 1.899 0.395 0.194
5 5 6.069 3.161 1.917 1.700 5 5 4018 1.573 0.227 0.046
6 5.856 3.490 1.965 1.749 6 4.928 2.008 0.502 0.292
6 6 5.720 3.580 2.041 1.115 6 6 4921 2.175 0.658 0.433
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Taste XXII. Matrix elements of (v:—~VP) for Tasre XXIV. Matrix elements of ; for the
the 3P, potential for various values of b. 3P, state for various values of b. (VP =0.)
b(F) 1.50 1.76 2.09 217 2.40 b(F) 1.50 1.76 2.09 2.17 2.40
n n 7™\
0 0 443 2.62 1.45 1.27 0.89 0 0 —1.56 —0.83 —0.40 —0.34 —0.22
1 4.62 2.80 1.60 1.42 1.01 1 —1.88 —1.06 —0.54 —0.46 -0.31
2 4.56 2.73 1.60 1.42 1.02 2 —1.93 —1.14 —0.61 —0.53 —0.36
3 4.52 2.66 1.56 1.33 1.01 3 —1.82 —1.15 —0.64 —0.56 —0.39
4 4.40 2.69 1.53 1.34 0.98 4 —1.62 —1.11 —0.66 —0.57 —0.40
5 4.50 2.60 1.49 1.32 0.96 5 —1.35 —1.04 —0.65 —0.57 —041
6 4.48 2.56 1.50 1.24 0.94 6 —1.05 —0.96 —0.63 —0.57 —0.41
1 1 6.05 3.65 2.08 1.84 1.32 1 1 —2.46 —1.42 —0.75 —0.65 —0.44
2 6.49 3.88 2.22 2.00 1.44 2 —2.61 —1.59 —0.87 —0.75 —0.51
3 6.62 3.92 2.28 2.06 1.48 3 —2.52 —1.63 —0.93 —0.81 —0.56
4 6.53 4.03 2.29 2.01 1.46 4 —2.28 —1.59 —0.96 —0.84 —0.59
5 6.68 3.92 2.27 2.00 1.45 5 —-1.91 —1.50 —0.95 —0.84 —0.61
6 6.63 3.88 2.30 2.98 1.44 6 —1.50 —1.39 —0.93 —0.84 —0.62
2 2 7.43 4.46 2.59 2.30 1.65 2 2 —2.93 —1.84 —1.03 —0.90 —0.62
3 7.95 4.77 2.75 2.43 1.77 3 —2.88 —1.91 —1.11 —0.98 —0.69
4 7.99 4,98 2.83 2.43 1.81 4 —2.64 —1.89 —1.16 —1.02 —0.72
5 8.23 491 2.83 2.51 1.82 5 —2.24 —1.81 —1.17 —1.04 —-0.76
6 8.18 4.88 291 2.51 1.83 6 —1.78 —1.69 —1.14 —1.04 —-0.77
3 3 3.61 5.17 3.02 2.67 1.95 3 3 —3.03 —2.07 —1.24 —1.09 —-0.77
4 8.91 5.62 3.20 2.81 2.04 4 —2.81 —2.07 —1.30 —1.15 —0.82
5 9.29 5.68 3.28 2.90 2.10 5 —2.41 —2.00 —1.32 —1.18 —0.87
6 9.29 5.66 3.40 2.43 213 6 —1.93 —1.88 —1.30 —1.18 —0.88
4 4 9.32 5.98 3.43 3.01 2.19 4 4 —2.83 —2.17 —1.40 —1.24 —0.92
5 9.91 6.11 3.59 3.17 2.29 5 —2.45 —2.11 —1.43 —1.27 —0.95
6 10.01 6.22 3.77 3.25 2.37 6 —1.98 —2.00 —1.41 —-1.29 —0.97
5 5 10.1 6.37 3.78 3.34 2.42 5 5 —2.40 —2.15 —1.49 —1.34 —1.01
6 10.3 6.58 4.03 3.48 2.54 6 —1.95 —2.05 —1.48 —1.36 —1.04
6 6 10.3 6.75 4.20 3.62 2.66 6 6 —1.86 —2.05 —1.52 —1.41 —1.09
TaBLE XXIII. Matrix elements for the 3P; potential. The TABLE XXV. Matrix elements of v; for the 1D,
table includes the matrix elements of (v;—VP)+VP(Q/e)VP. state for various values of . (VP=0.)
N\ (F) 1.50 1.76 2.09 2.17 b(F) 1.50 1.76 2.09 2.17 2.40
n 7™\, R TAN
0 0 4.007 2.416 1.389 1.221 0 0 —1.11 —0.58 —0.37 —0.23 —0.15
1 4.001 2.494 1.466 1.304 1 —1.11 —0.65 —0.38 —0.27 —0.13
2 3.797 2.414 1.428 1.278 2 —1.13 —0.64 —0.33 —0.28 —0.18
3 3.434 2222 1.354 1.210 3 —1.02 —0.61 —0.32 —0.28 —-0.19
4 3.250 2.081 1.294 1.147 4 —0.90 —0.56 —0.31 —0.27 —0.18
5 3.249 1.942 1.231 1.102 5 —0.78 —0.51 —0.29 —0.26 —0.18
6 3.259 1.875 1.162 1.061 6 —0.67 —0.46 —0.28 —0.24 —0.17
1 1 5.139 3.190 1.874 1.668 1 1 —1.66 —0.91 —0.46 —0.39 —0.25
2 5.367 3.305 1.956 1.778 2 —1.73 —0.99 —0.51 —0.44 —0.29
3 5.050 3.258 1.971 1.756 3 —1.64 —0.98 —0.53 —0.46 —0.31
4 4,935 3.113 1.931 1.707 4 —1.50 —0.93 —0.52 —0.45 —0.31
5 4916 3.002 1.897 1.666 5 —1.34 —0.87 —0.50 —0.44 —0.30
6 4.848 2.847 1.775 1.621 6 —1.17 —0.81 —0.48 —0.42 —0.30
2 2 6.065 3.741 2.253 2.016 2 2 —2.05 —1.18 —0.63 —0.54 —0.36
3 6.029 3.900 2.353 2.093 3 —2.07 —1.25 —0.68 —0.59 —0.40
4 5.926 3.748 2.378 2.100 4 —1.97 —1.23 —0.69 —0.60 —0.41
5 6.077 3.676 2.335 2.089 5 —1.80 —1.18 —0.68 —0.60 —0.41
6 6.004 3.594 2.247 2.054 6 —1.60 —1.11 —0.66 —0.58 —041
3 3 6.443 4.190 2.550 2.269 3 3 —2.27 —1.40 —0.77 —0.67 —0.46
4 6.582 4.298 2.668 2.354 4 —2.28 —1.44 —0.81 —-0.71 —0.49
5 5.803 4.109 2.700 2.395 5 —2.15 —1.41 —0.82 —0.72 —0.50
6 6.835 4.163 2.615 2.390 6 —1.96 —1.35 —0.81 —0.72 —0.51
4 4 6.814 4.515 2.825 2.493 4 4 —2.41 —1.55 —0.89 —0.78 —0.54
5 7.308 4.541 2.931 2.600 5 —2.37 —1.58 —0.92 —0.82 —0.57
6 7.346 4.569 2.886 2.640 6 —2.23 —1.55 —0.93 —0.82 —0.58
5 5 7.396 4.683 3.058 2.715 5 5 —2.46 —1.66 —0.99 —0.87 —0.62
6 7.609 4.811 3.062 2.807 6 —2.38 —1.67 —1.02 —0.90 —0.64
6 6 7.551 4.904 3.159 2.901 6 6 —2.42 —1.73 —-1.07 —0.95 —0.68
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TaBLE XXVI. Matrix elements of (;— VP) for the 3D, state for various values of b.
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