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A discussion of the unitary-model-operator approach to the correlation problem in nuclei is presented and
some calculational detials are discussed. The renormalization of the tensor force is carried out in second-order
perturbation theory after the introduction of a set of correlated basis functions. It is indicated that the appli-
cation of the Hartree-Fock method to the resulting effective Hamiltonian extends the range of application
of the theory for which a degree of self-consistency in the calculations may be achieved.

I. INTRODUCTION

T is well known that the approximation in which one
considers nuclear particles moving in some potential
field and interacting with a weak residual interaction is
highly successful in the study of nuclear properties. In
order to understand the nature of the effective inter-
action to be used in nuclear-structure problems it is
necessary first to distinguish between two effects which
can lead to an “effective interaction.” The distinction
between these effects is somewhat arbitrary but is of
importance. Even if the fundamental nucleon-nucleon
force were nonsingular, a shell-model calculation repre-
sents an approximation in that one usually treats the
effects of only a few shells. Neglected shells serve to
renormalize the interaction in the space of the shells
considered in one’s calculation. This is a well-known
problem and not the major concern of the present work.
The second effect, which is of central interest here, is the
renormalization of the effective interaction due to the
admixture of very-high-energy orbitals into the nuclear
wave function. This results from the strongly repulsive
nature of the nuclear force at short distances and also
from specific characteristics of the tensor force. It is not
possible to treat these high-energy admixtures by a
variational principle ; however, definite prescriptions can
be given for these admixtures which lead to the defini-
tion of an effective Hamiltonian. As will be seen, this is
accomplished by making a unitary substitution of
correlated basis functions for the usual uncorrelated
functions. This procedure, properly carried through,
leads to an effective Hamiltonian defined in the space of
the orbitals that one usually considers in shell theory.!
Once one has arrived at an effective Hamiltonian one
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may proceed to study various aspects of nuclear physics.
In particular, the theory finds application in the calcula-
tion of nuclear binding energies,?® spin-orbit splittings,?
transition rates,* and spectra.® Of particular importance
is the fact that the theory provides some foundation for
the application of generalized Hartree-Fock methods
even when the fundamental nucleon-nucleon interaction
is singular.? Particular emphasis is placed on this latter
point since most nuclear-structure calculations have as
their basis the concepts of the independent-particle
model. This work serves to aid in resolving the paradox
arising from the success of independent-particle con-
cepts for finite nuclei and the singular character of the
fundamental nucleon-nucleon interaction which one
infers from nucleon-nucleon scattering experiments.

Discussions of a unitary-model-operator approach
have been given by Villars® and Mittelstaedt,” who have
also noted the usefulness of this method in justifying the
introduction of nonlocal nucleon-nucleon effective inter-
actions. These authors also indicate that by using vari-
ous possible definitions of the model operator, one can
relate this method to the Brueckner-Bethe-Goldstone
approach and to the Moszkowski-Scott separation
method.

In this work an attempt has been made to avoid
solving the full Brueckner-Bethe-Goldstone equation for
finite systems. A perturbative scheme has been de-
veloped using a basis of correlated functions. Details of
the evaluation of the matrix elements are discussed and
some results are presented for the Yale potential.?
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II. CORRELATED BASIS FUNCTIONS

Consider a general nuclear Hamiltonian

H =Zﬂ(alt1ﬂ)aama+% Zs astagt(@B| Vis|v6)asa,, (1)
@ afy

where allowance is made for the possibility that Vi, may
have a hard core. Thus, if the states |e8) are uncorre-
lated, the matrix elements of V. are infinite. This
problem can be avoided by taking matrix elements of
the Hamiltonian between many-body states that are
correlated such that the wave function is zero when any
two particles are within the range of the hard core. In
the Jastrow theory® one introduces states of the form

IL [+ rm e )R, e,

where the function [14f(|r;—r;|)] is required to
vanish when particles ¢ and j are within the core range.
Theories of nuclear structure based on the Jastrow
approach have not had much success. Particularly,
attempts to determine the correlation function varia-
tionally do not hold much promise for the nucleon-
nucleon potentials of current interest.®!® In particular,
the presence of strong tensor forces excludes the applica-
tion of Jastrow theory in its simplest form.

In this work correlations will be introduced into the
wave function via a unitary-model operator ¢?5, such
that if the long-range properties of the wave function
are specified by a function ®(ry,---,r,), the corre-
sponding correlated state is

‘I’(I‘1,' : ~,rn)=eisc1)(r1,- : ':rn) . (2)

As discussed in some detail previously,! it is useful to
define an effective Hamiltonian in the space of the
uncorrelated functions,

Hey=e"SHe'S. 3)

Further, one carries through a cluster expansion! of this
Hamiltonian,

Ho=HO+HOLHO . ..
=Zé(a| tlﬂ)aafaﬂ

i T adlag! (@] ettt Vig)etSs
afy
— (1) [vO)asa,+- -+, (4)

where ¢512 defines the action of ¢S in the space of two-
particle wave functions. Here H™ is an #-body opera-
tor. Now if the correlations induced by e®S are of
sufficiently short range it can be inferred that the
higher-order terms in this expansion which involve
effective n-body (#>2) forces are small (see Appendix

9 J. W. Clark and P. Westhaus, Phys. Rev. 141, 833 (1966), and
references given in this work.
10T, Hamada and I. D. Johnston, Nucl. Phys. 34, 383 (1962).
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A). Further, extensive use is made of the fact that via
the Moshinsky transformation' the problem of two
particles interacting via a two-body force and moving
in a harmonic-oscillator potential can be solved. It is
useful therefore to add to Hess a term representing the
dispersive effects of the medium:

3 2 adlagt(aBleiSe(Urt Un)eisn

afyd

— (Ut U |vdasay, (S)

where U, and U, are one-body harmonic-oscillator
potentials: U;=3%kr?, Us=3%kr?. Again it may be
shown that for the short-range correlations in mind the
added term has only a small effect on the matrix
elements of Hes. The use of harmonic-oscillator po-
tentials to describe the dispersive effetcs of the medium
represents an approximation to the actual nonlocal
potential which would affect the motion of nucleons in
finite nuclei.

One is led to the following procedure. The undeter-
mined orbitals, say ¥.(r), are expanded in terms of
harmonic-oscillator orbitals,

Val) =X Ci7sr) =1 Cild). ©)

In this basis, Hes now reads

Hes=2 (G|t| Pada;+35 2 ailejlaw
2,7 3

XL ;| (httat Ust-Ust Vo) [ ¥ii)
—Gj| (-t Us-Un) [R1)],  (7)

where the definition
®)

has been used. This last equation specifies the unitary
substitution of the correlated pair states |¥;;) for the
uncorrelated states |45) of the harmonic-oscillator basis.

Further, it is useful to write the nucleon-nucleon force
as follows:

eisilig)=[¥.)

Vie= X YS7(2)87 () (YH7) Q)
1,7,8=0,1
+ X Y (QJur() (YN R, ()
LJU; U#1
r=|r1—19| .

The force is separated in (9) into those parts that are
diagonal in the relative orbital angular momentum and
those that are not. Clearly, the second term receives
contributions only from the tensor force. The first term
contains all other parts of the force as well as the parts
of the tensor force that are diagonal in I. [The Y7 (Q:)

1 M. Moshinsky and T. A. Brody, Tables of Transformation
Brackets (Monografias del Instituto de Fisica, Mexico City, Mexico,
1960).
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are generalized spherical harmonics which include the
spin variables. ]

In the following 1, will be used to refer to the part of
the force diagonal in / and v7°P to refer to the part of the
force off-diagonal in /, i.e., Vi2=112+07°P. The separa-
tion is made in this way because one is interested in
separating the force into a short- and a long-range part
such that the short-range part produces no energy shift
in the pair state. This is a natural extension to finite
nuclei of the zero-phase-shift condition of Moszkowski
and Scott? for nuclear-matter calculations. In the
presence of 27°P such a separation is not easily made.
While the main effect of v7°P is to admix high-mo-
mentum orbitals into the wave function, this admixture
is not readily treated by the separation method used for
v15. Therefore within the context of this approach the
specifically tensor correlations must be treated on a
different footing than the correlations due to the short-
range part of v, Thus, leaving v7°0 aside for the
moment, write v12=1912*+12' and define the separation
into short- and long-range parts so that

(it-totUr+Ustv10) | Vi) = (ex+er) | i)
where
L+ Uy ) =€ )5

that is, the pair state |¥;;) has no energy shift relative
to the state | k[).” In some cases it is necessary to include
a short-range pseudopotential to carry out this separa-
tion procedure. In that case

v19= (012°+VP)+ (01! =V P),
and one requires that
(it Ut Us 01"+ VP) [ W10) = (exter) [ Xir) . (12)
In general, therefore, one has

Hei=3 (it faite;+3 2 aitajtarar
Py ikl

(10)

(11)

X (¥ 35| (v12'—=VP+07°P) [¥y7).  (13)
If the shell-model or Hartree-Fock calculations are
limited to orbitals having only fairly low momentum
components, almost all of the contribution of 27°P to the
binding energy and to the effective interaction will be
missed. Most of the contribution of »7°P may be taken
into account by renormalizing the effective Hamiltonian
in the independent-pair approximation’s:

Heff=2(ill[]’)a.'?aj+-12‘ Z a.ﬂzﬁa;ak
bX)

ijkl
X (¥ 5| v12'— VP4 0004070 (Q/€)vrOP [ W41),  (14)
125, A. Moszkowski and B. L. Scott, Ann. Phys. (N. Y.) 11, 65

(1960).
BT, T. S. Kuo and G. E. Brown, Phys. Letters 18, 54 (1965).
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where Q is a Pauli-principle operator which projects out
of the space which is treated explicitly in these calcula-
tions. The energy denominator e will be discussed in
Sec. IV; however, at this point it is noted that the
intermediate energies which contribute to the evaluation
of 27°P(Q/e)vrPP are quite high and therefore fairly
simple approximations to the form of ¢ and to the wave
functions used for the intermediate states in the
evaluation of v7°P(Q/e)v7OP should yield fairly accurate
results. If this were not the case the inclusion of the
second-order terms in Eq. (14) would be exceedingly
complicated at this stage. A simple parametrization of
the operator Q and the energy denominator e will be
used. The deviation of the simple expressions from the
correct expressions should be small (for an appropriate
choice of the parametrization) and may be treated via
perturbation theory at the end of the calculations.

The inclusion of these second-order terms is extremely
important since they contribute about —150 MeV to
the potential energy of 0.3 Inclusion of these terms in
Eq. (14) allows one to include their major effects at an
early stage of the calculation and avoids the need for
extremely large renormalizations at a later stage.

Finally, we note that Eq. (14) provides an expression
for an effective Hamiltonian in an arbitrary basis. (In
practice, this is the basis provided by harmonic-
oscillator wave functions.) If one wishes to improve
upon the choice of the orbital functions one may apply
the Hartree-Fock method to Hes of Eq. (14). Clearly,
once one has introduced an effective Hamiltonian, the
application of Hartree-Fock methods does not provide a
bound on the binding energy. In the context of the
effective-interaction method the use of the Hartree-
Fock equations may be understood as a procedure for
eliminating corrections to the ground state of the one-
particle, one-hole type. Application of the Hartree-Fock
method using the effective interaction derived here will
be given in a subsequent publication.

III. CALCULATION OF MATRIX ELEMENTS

In this section some of the details involved in the
determination of the correlated basis functions are
discussed.

The harmonic-oscillator functions are specified by the
usual quantum numbers #, !, j, m; where » is taken
equal to zero for the states with no nodes.

It is useful to transform the two-particle states to the
L-S representation,

| ,3)71(2,3) JoT M, TT )
=§[(2A+1)(2S+1)(2j1+1)(zjﬁ_l)]m
L Iy A

Xy & S

| CdoANG 3)S,TM,TT,). (15)

i g2 J
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Further, the Moshinsky transformation is used to write

! n1l11’l2l2,>\> = Z (nlNL)\ l nlhnglz)\) ! nlNL,X) ,

nINL

(16)

where the (WINLX|nimals\) are the usual Moshinsky
brackets.! The quantum numbers #nl, NL specify the
relative motion of the two particles and the motion of
the center-of-mass of the pair. The angular momentum
X is the result of the coupling of / and L.

(13)71023) joT MTT.| Vets| (153) js(143) j T MTT )
1 1
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A simple recoupling procedure yields
|nINLA (5 3)S,JM) Lo
= (—)J+S+A Zx_l__l (2]+1 1/2{ ]
RS IODEHOI
X|NL,(nl,S"J' JM). (17)

The fundamental matrix elements of the effective
interaction between antisymmetrized, normalized states
is (neglecting the second-order terms)

(=) (27" 1) (A1) 2N+ 1) (25+1)

(1+5n1n25h lzahiz)m (1+5nsn46l3l4513j4)1/2 AN ! UL LN L

X[ (214 1) 252+ 1) (254 1) 254 1) J20uadinalo\ | nlN INXnslsnad X' | 'V N LX)

l1 ls A rl;; N N
1 LV Ny(L 1
x13 3 sy 3 s { ][ ][1—<->I+S+TJ<(nz,s>J'sVeﬁ;(n'z',s>J'>, (18)
J s 7 rlls o
ji jo JI\Ugs 4o J

where the curly braces represent the usual 6-5 and 9-j
symbols, and

Vets= €8 (14 tat U1+ Us+v124-07P) e
— (ht+tt+U+Us). (19)

The operator ¢S is taken to act only on the wave
functions of relative motion, i.e.,

eiS| (nl,S)T)y=| (n,$)] e, (20)

where the subscript ¢ indicates a correlated wave. Only
that part of (4i+#+U:+U,) that depends on the
coordinates of the relative motion need be kept; thus,
using the Moshinsky transformation,

r= (1'1'— 1‘2)/\/—2—,

R=(r1+1)/V2, v
one may write
(ittat Ut Un) = (+a+U@M+UR), (22)
where
U(r)=3k2, UR)=3kR%, etc.
Thus
(l,S)T' | Vess| 'V ,S)J")
= {(nl,S)J' | t:+ U () +v15+ 270 | (0’ ,S)T").
(L S)T |t U @) | 'V, S)T"y. (23)
Again one puts
V2= (012" + V P)+ (vis'— V P) (24)

and writes

(W, S)T'|Vess| 0'V,S)J")
= (nl,S)J"| (012! = VP)| ('1,S)T") b1, v
+c((”l:1)]’ l z)TODI (nl,yl)Jl>cal,l’;|;2
+ L0, S)J' | (t:+U (1) +2v12"+ VP) | (0, S)T')e

=, $)7'| G+ U @) | (n,S)T).  (25)

Now one has
Lt U] (01,8) )= 2n+14-3) | (nl,$)T")  (26)
and requires (v12°+ V P) to be defined such that

AU () +v12*+VP]| (0, S) "),
=l (2"+l+%) l (nl:S)],>c-

With these definitions the last two terms in Eq. (25)
cancel so that, to first order in v7°P,

(b, S)T' |V ets| 'V, S)J")
= 0<(nl:S)Jll ('v12l—" VP) | (117,5)]')061.1/
+ L, 1) [02°P | (nd 1) T ") 81,00 2.

To avoid confusion, it is noted that the division of vy,
into v19°+915' and the possible addition of a pseudo-
potential term presents a different problem for each set
of the quantum numbers of relative motion, I, S, J'.
(The value of the isobaric spin T is specified once / and
S are given.)

While the effective interaction of Eq. (19) is Hermitian
the introduction of the pseudopotential VP leads to a
non-Hermitian effective interaction. This is due to the
fact that if one requires the healing distance to be the
same for all # in Eq. (27) it is found that VP depends

(27)

(28)
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TasLE I. Healing distances and pseudopotentials for the 1S, state
of the Yale potential. b= (%/Mw)V/2.
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TasLE III. P- and D-state pseudopotentials and healing distances
for the Yale potential.

Pseudopotential (MeV)

\b\ 1.50 1.76 2.09 2.17 2.40

n
0 —5.0 0.0 0.0 0.0 0.0
1 —26.3 —16.3 —10.0 —-7.5 —5.0
2 —53.8 —33.8 —20.0 —17.5 —13.7
3 —86.3 —53.8 —32.5 —27.5 —20.0
4 —126.0 —175.0 —45.0 —40.0 —31.2
5 —181.0 —103.7 —61.25 —53.8 —41.3
6 —255.0 —135.0 —76.56 —68.8 —-50.0

Healing 1.09 1.09 1.09 1.09 1.09

distance

®)

on #. In particular, as # is increased, ¥V P must be made
more attractive to maintain a healing of the correlated
state at a fixed distance from the core. In the evaluation
of the first term on the right of Eq. (28) there is there-
fore the question of which pseudopotential to use. In
practice an average of the pseudopotential appropriate
to the state with #” nodes and the state with # nodes has
been used in evaluating the off-diagonal terms in Eq.
(28). This problem of the non-Hermitian character of
the effective interaction also arises if one does not
introduce a pseudopotential to obtain healing. In the
latter case the effective interaction becomes non-
Hermitian due to the dependence of the separation
distance on the quantum number 7.

The following suggestion for overcoming thisdifficulty
is proposed : One may choose some maximum value for
n and determine a set of # correlated functions as
defined by Eq. (27). These functions may then be
orthonormalized by a standard procedure. The operator
¢*S may then be defined as in Eq. (20) except that the
correlated wave indicated in Eq. (20) would be a mem-
ber of an orthonormal set. With this definition of 5, the
evaluation of the matrix elements of V. given by Eq.
(19) would lead to a Hermitian effective interaction.
[Since the correlated states would now be linear combi-
nations of the states defined by Eq. (27), the latter
equation would be useful in the evaluation of the matrix
elements of V.| This suggestion for obtaining a
Hermitian effective interaction has not been applied in
this work where the calculational procedure has been

TasLE II. Pseudopotentials for central 35, Yale potential.
Healing distance=1.13 F.

VP (MeV)
2.09

\b\ 1.50 1.76 2.17 2.40

™
0 —95 —90 -85 —85 -85
1 —115 —105 —95 —95 —90
2 —145 —120 —110 —105 —100
3 —180 —146 —120 —115 —110

[ 4 —225 —170 . —135 —130 —120
5 —290 —200 —150 —145 —130
6 —372 —235 —170 —160 —140

Healing distances (F)

State VP (MeV) (n=0, b=1.76 F)
1p, —687.0 0.99
3Py —254.0 0.99
3P, —262.0 0.99
3P, 0.0 0.87
3D, —50.0 0.80
3D, —200.0 0.96
3Ds —200.0 0.98
1D, 0.0 0.94

limited to using the average value of VP in evaluating
the matrix elements appearing in Eq. (28).

The method outlined above has been used in con-
nection with the Yale potential.® The pseudopotential
was taken to be a square well extending from the edge of
the core out to about 1 F. For the 1S, states, the state
with #=0 was usually allowed to “heal” without the
introduction of a pseudopotential. For the states with
n>0 a pseudopotential was found that gave healing at
the healing distance of the #=0 state. The pseudo-
potentials used are given in Table I for various values of
n and of b, the oscillator size parameter [b= (h/Mw)*].
The healing distances obtained are also given in Table I.
In Fig. 1 is shown the correlated wave function and the
uncorrelated wave function calculated for the 1S, Yale
potential with =1.76 F and »=0.

The 35 central potential was forced to heal at 1.13 F
by the introduction of pseudopotentials. The pseudo-
potentials used are given in Table II. Unlike the 1S,
case, a pseudopotential was needed to heal the n=0
wave. The coupling of the 2D, state to the 3S; state via
the tensor force is discussed in Sec. IV, where a per-
turbative method is described.

For the P and D states of the Yale potential the
variation of VP with the number of nodes was found to
be unimportant. In Table III are listed the pseudo-
potentials and healing distances for these states. The
healing distances are given for =0, 6=1.76 F, but the
variation with # and b of this quantity is quite small.

In the next section the important second-order terms
due to the tensor force are discussed, and also the
question of the convergence of the perturbation
(v12'—VP) is considered by evaluating second-order
corrections in this quantity. While it may be shown that
the second-order terms in v15! are quite small, some of
the pseudopotentials introduced are large and can con-
tribute significantly in second order.

IV. THE TREATMENT OF THE
SECOND-ORDER TERMS

In the previous discussion it was shown how one may
introduce correlated wave functions which deviate from
the harmonic-oscillator wave functions over only a small
region. Thus far, however, only central correlations have
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been introduced. It is known from nuclear-matter calcu-
lations that while the second-order terms in the per-
turbation expansion for the energy are small for central
forces, they are quite large for the tensor force.

In Eq. (9) a separation was made of the two-body
force into those parts that were diagonal in the orbital
angular momentum of the relative motion and a part
which was nondiagonal in that quantity. The important
second-order terms will arise from the latter part. This
effect may be understood by noting that if the relative
motion of a pair of particles in a 35 state is considered
and some admixture of a 3D; wave is allowed in their
relative wave function, there will be a significant gain in
energy due to the large tensor force which acts between
these states.

The treatment of the second-order terms given below
is somewhat lacking in precision and is therefore not
completely satisfactory. However, the results obtained
yield reasonable agreement between theory and experi-
ment for various quantities and also provide important
insight into the role of the tensor interaction in nuclei.
The various treatments of this problem—those due to
MacKellar,”* Kuo and Brown,® and others,’® and the
one presented here—are in basic agreement as to the

1 '
10 12 14

i 1 i L 1

16 1.8 20 22 24
r— Fermi
5

- 200
= 400
- 600
- 800
- 1000
= 1200
- 1400

(MeV)

F1G. 1. Correlated and uncorrelated wave function (dashed line)
for the 1S,-Yale potential. Here, 5=1.76 F and n=0. The 1S,
potential is shown and the vertical scale indicates its strength. The
horizontal scale is in Moshinsky units which may be converted to
fermis by multiplying by V2. The shaded portion of the potential
is the “long-range” part as determined by the separation
procedure.

14 A. D. MacKellar, Ph.D. thesis, Texas A & M University,
1966 (unpublished); A. D. MacKellar and R. L. Becker, Phys.
Letters 18, 308 (1965).

15 A. Kallio, Ann. Acad. Sci. Fennicae, Ser. A, No. 163 (1964);
A. Kallio and K. Kolltviet, Nucl. Phys. 53, 87 (1964); 59, 211
(1964); J. F. Dawson, I. Talmi, and J. D. Walecka, Ann. Phys.
(N.Y.) 18,339 (1962); J. F. Dawson and J. D. Walecka, 3bid. 22,
133 (1963); R. K. Bhaduri and E. L. Tomusiak (unpublished);
T. T. S. Kuo and G. E. Brown (unpublished); Y. E. Kim
(unpublished).
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(ocBIVett 178) = (%5 lu, + VP U1 + (Vg lu® Ly ¥,

Fi16. 2. Schematic representation of the effective interaction used
in this work. Double lines are meant to indicate the use of corre-
lated pair states. Plane-wave states are used for the intermediate
states in the second-order terms.

over-all size of the 3S; matrix elements. This general
agreement is encouraging. None of the calculational
procedures is free from criticism and it will be of interest
to understand which is most accurate.

The approximation used in this work for the effective
interaction may be specified diagrammatically. In Fig. 2
a double line is used to indicate that correlated pair
states have been introduced (which have central corre-
lations only). In the basis of correlated states (vi— VP)
is taken to first order and v7°P to first and second order.
Some discussion of the second-order terms in (v'—VP)
will be given at the end of this section and in a following
work where their contribution to the binding energy will
be estimated. The second-order terms in v7°P have been
extensively calculated only for the 3S; state of relative
motion. For the treatment of the intermediate states the
same approximation is used as Kuo and Brown® for
their discussion of this problem—plane-wave inter-
mediate states and an angle averaged operator to take
account of the Pauli principle in the intermediate states.
However, unlike these authors, there is no attempt to
make a division of the tensor force into a short- and a
long-range part. Since the correlated basis functions
have been introduced, one is able to calculate the matrix
elements of 2700 in that basis. It still seems to be an
open question as to whether there exists a useful
separation method dividing the tensor force into short-
and long-range parts.

The calculation of the second-order terms in the 3S,
state is carried through as follows. One evaluates

Mnl.»'lNL

Q
=(NL,(#il,S)J M |v7°P—0,OP | NL,('L,S)T M), (29)
(4

with I=0, S=1, J=1. The notation 7'l and 7 refers to
the use of correlated states of relative motion. With Kuo
and Brown,® intermediate plane-wave states of mo-
menta k; and k; are introduced. The transformation

k= (ki—k,)/2,

K= (it ko) G0)
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is made and the operator Q is specified as

QK kr)=0 for E+HK2/4<kg?,
=1 for k—K/2>kp,

= (k*4+K?*/4—k?)/kK otherwise. (31)
Further, one writes
h? ?
e=— (k24 k2)+A=—(R+3K%)4-A, (32)
2m m

where A is a measure of the binding of the interacting
pair in the nucleus.’
Some rather straightforward angular-momentum alge-

bra yields
Q(%,K kr)
Mol =—/K2dK/k2dk
e(k,K,A)
X (DT | Swe| @42, 1)T)|?
XEnr (K ni(B) L i(R),  (33)
with

Fyi(K) " (KR> (R)R2R
NL = /; JL V3 ©ONL )

o(B)= / FOZRDY 2 () Bmrdr,

6[J (J+41)]
2J+1

The tensor interaction is denoted as Vp(r)S1s with the
usual definition of Sy2. [ This S;2 should not be confused
with the S5 of Eq. (4).] Further, ¢,:(7) is a correlated
state of relative motion, ;s a spherical Bessel function,
¢n1(R) is a harmonic-oscillator function, and R and 7
are Moshinsky coordinates for the center-of-mass and
relative motions, respectively. For the 35 state one has
{(0,1)11]S12] (2,1)1)=2V2, so that

(@D |Se| (+2, )I)=

Mno,n/oNL=/w f(k)dk ) (34)
with ’
Qk,K kr)
f(k)~—~k /K dK————— D
XFn 2 (B o(k) L nro(k).  (35)

In Fig. 3 is plotted the function f(k) for the case
b=150F,A=20MeV,n=Il=N=L=0,andkr=14F"L
The upper limit on the K integral was taken as 2kp. As
pointed out by Kuo and Brown, the values of % con-
tributing to the integration in Eq. (34) are quite large.
This result implies that the uncertainty in the specifi-
cation of A appearing in Eq. (32) is not a serious source
of error. In the present calculations A=20 MeV has

SHAKIN, WAGHMARE, AND HULL

161

f(k)

(MeV Fermi)
n
T

1 1 L 1 I
(o] | 2 3 4 5 6
k ( Fermi™)

Fi16. 3. The function f(k) [Eq. (35)] plotted as a function of %
for the case 5=1.50 F, A=20 MeV, kp=1.4 F1, and n=I=N
=L=0.

been used. This value is reasonable for the least tightly
bound orbitals where one usually applies shell theory.
The error made in using the same A for the more tightly
bound orbitals is not large. One may consider the
specification of kr and A to provide a parametrization
of the second-order terms. At some later stage of this
work it is possible to estimate the errors introduced via
this simple parametrization (see Appendix B).

A sample of some first- and second-order matrix
elements for the Yale potential is given in Table IV. The
size of the second-order tensor terms does not imply
nonconvergence, as might appear, since the study of
Dahlblom ef al.'® shows that the second-order contri-
bution of the tensor force is anomalously large. They
estimate the third order to be less than 209 of the
second, and the fourth order to be smaller. The con-
vergence in the quantity (vie!—VP) is estimated by
calculating the second-order terms in a manner quite
analogous to the second-order tensor calculation. The
results are given in Table IV, where it may be seen that
in most cases the convergence is reasonably good. It is
possible that the use of plane-wave intermediate states
overestimates the size of these terms somewhat. It was
also found that small variations of the healing distance;
i.e., equivalently, the use of different pseudopotentials
in the various states did not change the sum of the first-
and second-order terms appreciably.

Studies have also been made of the dependence of the
second-order tensor matrix elements on the choice on kp
and A and on the values of N and L, the center-of-mass
quantum numbers. At 4=1.76 F (A=20 MeV) in-
creasing £y to 1.50 F~ decreases the second-order tensor
elements by about 0.3 MeV, while decreasing kp to
1.30 F~'increases that element by about 0.3 MeV. (This
represents about a 49, change in the matrix element.)
Also at b=1.76 F, k=1.4 F~1, an increase of A by about
20 MeV yields about a 59, decrease in the second-order
matrix element. For a A appropriate to the more deeply

18T, Dahlblom, K.-G. Fégel, B. Quist, and A. T6rn, Nucl. Phys.
56, 177 (1964).
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TaBLE IV. I'irst- and second-order matrix elements for the Yale
potential. Pseudopotentials and healing distances as in Tables
I-I11. (b=1.76 F.)

First

order Second order
State nl NL (Vi—VP) VroP(Q/e)VroD (Vi—VP)(Q/e)(Vi—VP)

351 00 00 0.631 —8.59 —0.61
351 10 00 3.19 —9.59 —0.95
1So 00 00 —5.96 .. —0.14
1Se 10 00 —3.91 —0.14
1Py 01 00 2.49 —1.39
3Pe 01 00 —2.17 —0.23
3Py 01 00 2.62 —0.33
3Py 01 00 —0.84 ..
1D, 02 00 —0.58

D1 02 00 1.09

3D, 02 00 —2.01

3Ds 02 00 0.06

bound orbits (A~80 MeV) the second-order tensor
matrix elements are decreased by about 15%,. Further,
it is found that the neglect of the dependence of the
second-order terms on the variable N and L leads to
about a 109, uncertainty in the value of these terms. To
keep the calculation within bounds, the second-order
terms were extensively evaluated for N=0, L=0,
kr=14 F7, A=20 MeV only. Tables of the effective-
interaction matrix elements for these parameters will be
presented in a subsequent paper for several values of b.

V. DISCUSSION

In this work an attempt has been made to investigate
the usefulness of the unitary-model-operator approach
for the discussion of the effective interaction in nuclei.
The importance of the second-order tensor terms has
been stressed and some questions of convergence have
been discussed. The use of the pseudopotentials to
produce healing of the correlated states appears as a
useful procedure which is reasonably convergent. The
treatment of the second-order tensor terms is reasonably
simple and yields results in good agreement with other
approximations. Generally, the methods presented pro-
vide a reasonable approximation for calculating the
effective-interaction matrix elements in finite nuclei. In
a subsequent paper extensive tables of matrix elements
calculated by the procedure outlined here will be
presented as well as the results of Hartree-Fock calcula-
tions based on the effective Hamiltonian which has been
constructed in this work.
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APPENDIX A

Recently, Bethe and Moszkowski have discussed the
contribution of higher clusters in the Brueckner-Bethe-
Goldstone theory of nuclear matter.!”'® Bethe has

17 H. A. Bethe, Compt. Rend. Congr. Internat. Phys. Nucl., Paris

(1964) 1, 101 (1965); H. A. Bethe, Phys. Rev. 138, 804 (1965).
185, A. Moszkowski, Phys. Rev. 140, 283 (1965).
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pointed out that in order to obtain reasonable con-
vergence in that theory one must consider an expansion
of the energy in terms of the density, the relevant
parameter being the correlation volume divided by the
average volume per particle. In practice this means that
one must consider the entire class of diagrams which
have three hole lines if one wishes to discuss the question
of three-body clusters. Moszkowski has suggested that
the consideration of Jastrow-like correlations are ap-
propriate for the discussion of the size of the three-body
clusters and that the contribution from these terms is
quite small.

It is possible to make some comparisons of the ap-
proach of this paper to the method of correlated basis
functions based on the Jastrow idea. A more general
version of the Jastrow correlation method is presented
by using the method of second quantization. (A recent
discussion of Jastrow-type wave functions is given in
Ref. 9.)

A correlation factor of the Jastrow type may be
written as

F=]I1(1+f:), (A1)

where f;; is a function of the distance between particles
1and j; more generally, one can allow f;; to be a general
two-body operator which acts upon the wave functions
of particles ¢ and 7. If the operator F is a many-body
operator, it is useful to write

N
F=1+ Y F®, (A2)
n=2

where F™ is an n-body operator and N is the number of
particles in the system. It may readily be demonstrated
that

1
F® =5—| 2 adtagt(aB] fro| vd)asay (A3)
1
F®= 3 2 aatagtayt(@By| frafist fisfest fiafes
) +f12f23f13lﬁ7l¢)a¢andp; (A4)

etc.

Consider the expectation value of an operator be-
tween wave functions of the Jastrow type. For example,
if one is interested in the expectation value of the
Hamiltonian it is useful to consider a cluster expansion:

H=FtHF=HO4+HOL+FO4..., (A5)
where H™ is the n-body part of A. One finds
AY=T=Y adlas(alt|s), (46)
H®=3}7% aztagt(@8| (14 fieh) (it-ta+v10)

X (A+ f12)— (att2) [v)asay, (AT)

and if one considers the term in H® arising from the
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potential energy there results
- 1
Ve =gl' > aa’fag’fayf(aﬁ'y] (H"fm") (1+f137) (1+f23T)

X (v12+v23+v15) (14 f12) (14 f2s) (14 f13)
— (14 f1D) 012 (14 f12) — (A4 f1s)v1s (14 f15)
— (14 fasD)ves (14 fa3) | 011 0) 202405 -

The Jastrow form has some advantage in that one can
in principle calculate all the higher cluster terms; how-
ever, the calculation of matrix elements of various
operators, and the normalization of the states becomes
very complicated largely because the basis loses the
property of orthonormality on the application of the
correlation operator F. In the present calculation, there-
fore, a unitary-model operator e¢?S has been employed.
The price for this is that one cannot be as explicit in the
calculation of the higher-order terms in the cluster
expansion. This is due to the fact that the behavior of
€S in the space of three-body wave functions is
difficult to specify although one may attempt some
simple approximations. To the extent that e*$2¢(ry,)
=~ (14 f12) o(r12) for some uncorrelated state o(r1s),
there is a reasonably close analogy between the two
approaches. (It must be remembered, however, that the
approach taken here in determining the short-range
correlation structure is nonvariational.)

For example, in the unitary-model-operator approach
the correlation correction to the potential energy ap-
pears as

(A8)

1
V(a) =.3_' Z aafaﬂfa_yf (Olﬂ'y l 3—1‘(S12+Sza+Sla) (7)12—'_ 7)23+7)13)

X ei(S12+825+813) — e~ 812y 0812 — e—iSuv%e 2823

— 8181369813 o1 )@ ,a,a,.  (A9)

If it is assumed that to a reasonable approximation

e1S12+835+519) ~ (14 f19) (14 faz) (14 f13)
e (14 fip), (A10)

etc., it can explicitly be shown that the three-body
terms are small with the exception of those terms which
may be understood as giving rise to dispersive correc-
tions in the two-body matrix elements.! For example,
consider the contribution of the #;3 term in (AS).
Assume that particles 2 and 3 are not close together so
that fa3=0. Then there remains a term of the form

(14 f1eh) A+ f1sD)v1s (14 f13) (14 f12)
— (14 fishois(14 f1s)  (Al1)
in Eq. (A8). Defining a

o130t = (14 fist)v1s(1+ f13) ,
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one obtains from (A11)
(A4 frehvisot (14 f12) —v15°ft.

Terms of this type give rise to dispersive effects® on the
motion of particles 1 and 2. (Since one is only using
central correlations in our cluster expansion the dis-
persive effects of the tensor force are not apparent in
this approach.)

In the present work, harmonic-oscillator potentials
have been used to represent the dispersive effects of the
medium [Eq. (5)]. The actual importance of the
dispersive effects in nuclear matter depends strongly on
the size and nature of the core.!>!? It is possible that the
use of soft-core potentials will give matrix elements
quite similar to those obtained in this work and having,
at the same time, very small dispersion corrections.?’

APPENDIX B

In this Appendix the advantages of the present
treatment of the second-order terms in allowing the
achievement of a more rapid convergence for the energy
of the system than would be possible otherwise are
indicated.

Assume that one applies the Hartree-Fock method to
the effective Hamiltonian of Eq. (13). In this way one
would obtain a set of single-particle orbitals and an
estimate of the binding energy of the system. The next
step would involve the calculation of the corrections in
second order, the most important of which would in-
volve v7°P (Qur/enr)vr°P, where Qur would be a pro-
jection operator which would eliminate the occupied
Hartree-Fock states as intermediate states, and emr
would refer to the difference in Hartree-Fock energies
for the intermediate states and the occupied states. As
mentioned previously, this would be a very large
correction.

Now if one applies the Hartree-Fock procedure to the
Hamiltonian of Eq. (14) one could again estimate the
magnitude of the correction terms. As before, the most
important would be v7°P(Qur/enr)vr®?; however, a
term v7°P(Q(%,K ,kr)/e(k,K,A))v7OP has been added to
the interaction. Thus the correction to the calculation
would involve the difference between the second-order
term and the term which is added, i.e.,

] 82 QI

B1

CHF

With a good choice for k7 and A the correction to the
Hartree-Fock calculation for the binding energy from
these second-order terms may be about 1 MeV per
particle rather than about 8 MeV per particle.

( B H. S. Kohler and Y. R. Waghmare, Nucl. Phys. 66, 261
1965).
2 S, A. Moszkowski (private communication).



