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We consider deuteron-alpha scattering, since it is a physical system in which the small separation between
elastic and inelastic (breakup) thresholds can lead to observable consequences. Taking into account the
three-body channel, we derive an approximate dispersion relation for the elastic amplitude and solve it in
the one-pole approximation. We test its internal consistency by Qtting the pole parameters to the Li'
binding energy and the d-a scattering length in the J~=1+ channel, and to the position and width of the
Li resonance in the 3+ channel. We then calculated the corresponding phase shifts and compared them
with the experimental values, obtaining good agreement. The good agreement of this fit gives us confidence
in our subsequent assessment of the qualitative influence of the nearby three-particle inelastic channel on
the (two-body) elastic scattering amplitude.

' 'HREE —BODY intermediate states occur in many
problems in nuclear and particle physics. The

proverbial difhculty of the three-body problem makes it
hard to assess the qualitative importance of three-
particle channels in two-body elastic scattering. A recent
model calculation by Bronzan' indicates that in some
circumstances a closed three-body channel can produce
bound states and resonances even when the Born term
is repulsive. Although the possibility of closed inelastic
channels dominating the erst-order interaction has
long been known, few specific examples of this behavior
have been discussed in the literature.

The case of deuteron-alpha scattering is interesting
because of the small separation, e= 2.225 MeV, between
elastic and breakup thresholds. Furthermore, the next
inelastic threshold (the He'+H' channel) lies well

above the breakup threshold, so that this system offers
the possibility of observing the effect of three-body
inelastic in a relatively unambiguous way. Finally, the
d-n scattering amplitude is empirically known with some
precision, so comparison with experiment is possible.

We study the e6ect of the three-particle threshold on
the analytic behavior of the elastic d-n scattering ampli-
tude by means of a simple model. We begin with the
unitarity relation for the elastic (on-shell) amplitude,
which has the form' ' (for convenience, all particles
are taken to be spiniess)
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' Our notation is identical with that of Goldberger and Watson
(Ref. 3} throughout. The energy is measured from the three-body
threshold in the barycentric system, and e is the binding energy
of d relative to n+p.
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In Eq. (I), k" and K" are the relative tt-p momentum
and the tt-p total momentum relative to u, respectively,
in the intermediate states. The reduced masses are

M=MgM /(Ms+M ), (2a)

tt =M~~/(M „+M~) . (2b)

(K'IA+(E) IIC) is the elastic (d-u) on-shell scatterimg
amplitude, and (K'k'IB+(E) IX) are, respectively, the
normal or time-reversed amplitudes for the breakup
reaction, in which the particle d, incident on 0, with
rnornentum K and energy E=E2/2M e, breaks up-
into tt+p, with relative momentum k' and total
momentum K' (relative to n).s We approximate the
5-dimensional integral in Eq. (1) by assuming that the
major contribution to it comes from states with low rela-
tive I-p momentum, i.e., k" near zero. In order to avoid
a divergent integral, we erst make the transformation

IK"
I

= (2ME")'" cos) ", Ik"
I
=(2/ E")'"»»".

The 5-dimensional integral is then given by
~/g
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LThis approximation is really quite reasonable: for
small E,

~

k"
~

must be small anyway; for large E, there
is experimental evidence that the protons from the
H'(n, n')ep reaction come off preferentially with small
momentum relative to the neutron. '$ We now approx-
imate the breakup amplitude with

~
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=0 by the ofF-

shell elastic amplitude
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where g is a constant. This approximation follows from
the exact operator relation~

$(W)= e(W)+t.,(W)G, (W)e(W), (5)

where $(W) and 8(W) are the formal scattering
operators for breakup and elastic d-e scattering,
t„„(W) is the e-p scattering matrix, and Gs(W) the
free-particle Green's function. 4 Taking the appropriate
matrix elements, and using a separable approximation4
l„„(W) ~s)rs(W)&t/~) we find that ( E'=E"/ 2M)
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Because ss' (=R ', where R is the deuteron radius) is
small, k'«(k) is peaked at small k (because of the
difFuseness of the deuteron), and so we have
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'K. Nagatani, T. A. Tombrello, and D. A. Sromley, Phys.
Rev. 140, 3824 (1965). Examination of the proton spectra given
by these authors, and comparison with the phase space normalized
to the same area indicates this correlation eGect. There are also
good theoretical reasons why this must be so. See Ref. 7 for details.' P. M. Fishbane and J. V. Noble (unpublished).

&&&K'is+(E')
i K). (7)

LThe contents of the braces are what we have called $
in Eq. (4).j Putting expression (4) into expression (3)
and taking partial-wave matrix elements

&X ~~+(E) ~X)

=QL(2l+1)/4a jE"A(+(E)P)g' X) (8)

one can write a partial-wave dispersion relation for the
function A/+(E). Writing A~+(E)=X~(E)/D~(E), we
obtain the usual relation

where
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Using the fact that X&(s) is analytic for Re(s) &~—s,
we may write'
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where Rg(E) has no singularities for Re(E) &~—s. (In
fact, if the left-hand cut is approximated by poles, the
function p/(E) =R/(E)//Vq(E) turns out to be a poly-
nornial in E.j It is clear that p~(E) is meromorphic in
the E plane excluding the left-hand cut. The radius of
analyticity of /V~(E) p~(E) at E= —s will be the distance
between the left-hand branch point and the elastic
threshold, which is typically larger than s. (For d-cr

scattering it is around 6 MeV. ) Furthermore, the
analytic properties of R&(E) turn out to be independent
of the number of subtractions needed to make the
dispersion integral converge, so this result is general.
What we have found is completely analogous with the
situation in potential scattering, in which partial-wave
dispersion relations lead to the construction of a func-
tion of the energy analytic at the elastic threshold, and
whose nearest singularity is the left-hand branch point.
This function is what is usually written k"+' coth&(k)',
the expansion of this function in a power series (in
energy) is the usual effective-range expansion. Applica-
tion of the two-body effective range formalism to the
d-0. problem is limited, because the radius of conver-
gence of the effective-range expansion is only c. In our
model, the partial-wave amplitude may be written
$E= (Es/2M) —s, and we have let E"A +(F)=u+(E)j-
a)+(E)=E"LP,(E)—M(2M)'+'/ e/E+ ln

~

E
~

+i~p((E)j '. (13)-
The generalized e6ective-range expansion is obtained,
by expanding pq(E) about E=—s and keeping only the
two lowest-order terms:

pg(E) Mt 1/a, (l,t)+ r, (l,g)Eq. (14)
This approximation may be useful, as it exactly satis6es

This result follows straightforwardly from the assumptions;
we shall include the details in our forthcoming article (Ref. /).
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Tmx,E I. Comparison of s-wave phase shift derived from Kq.
(13) using one-pole calculation of ps(E), with experimental ho'(E)
given in Ref. 2. For a discussion of the uncertainties in the
experimental values, see Ref. 2.

TA&I E II. Comparison of d-wave phase shift derived from
Eq. (13) using one-pole calculation of ps(E), with experimental
Sss(E) given in Ref. 2.

~Lab
(MeV)

2.0
2.5
3.0

.3.5
4.0
4.5
5.0
6.0
7.0
8.0
9.0

10.0

bs' (theory)
(deg)

118.0
112.5
108.5
105.0
102.0
99.5
98.0
94.0
91.5
89.0
87.0
85.0

Ss' (experimental)
(deg)

126.4
116.5
109.2
104.4
106.0
68.0
84.6
69.9
78.4
84.8
83.6
80.5

~Lab
(MeV)

2.0
2.5
3.0
3.5
4.0
4.5
5.0
6.0
7.0
8.0
9.0

10.0

sss (theory)
(deg)

175.0
173.5
172.0
170.0
168.0
165.5
163.0
155.5
145.5
131.5
116.5
98.0

Sss (experimental)
(deg)

171.7
171.5
167.6
169.6
172.4
180.0
164.5
159.7
156.5
154.6
156.8
154.0

two-body unitarity, and as we have seen, approximately
satisfies three-body unitarity. Putting )=0 in (13) and
(14), we recover the ordinary effective-range expansion.
If

~
g~s is taken to be a free parameter, the generalized

effective-range expansion LEq. (13) together with (14))
is a three-parameter fit to the scattering amplitude.

We now discuss the application of our model to the
analysis of the properties of the deuteron-n system.
Restricting ourselves to a spinless formulation (note
that spin can easily be included via the matrix ED '
method'), we consider any physical J+ channel to have
definite L=J—1. The lowest-lying states in I.i' are
the T=O, J =1+ level at —3.697 MeV below the
breakup threshold (ground state) and the T=O, J'=3+
resonant state at —1.513 MeV (with I"= 21 keV). )The
J=O+, T=1 state at —0.137 MeV is clearly irrelevant
to d-He' elastic scattering. j The parameter $ can be
evaluated assuming a Hulthen form for the deuteron
wave function Lsee Eq. (7)j."Since the dimensions of

$ s are those of volume, it is most natural to consider
( s/Es, with R the deuteron radius; this number turns

out to be 0.02. To complete the specification of our
model scattering amplitude, we solved the ED '
equations in the one-pole" approximation, with sufIi-
cient subtractions to obtain convergence. These subtrac-
tions were chosen in such a way that they did not
increase the number of free parameters beyond the two
from the pole approximation.

Equation (11) gives (s waves) as 0.014, seemingly
indicating that the contribution from the three-body
threshold is negligible. Actually, this is not the case:
Because of the logarithmic singularity, the three-body
channel contributes a substantial attractive force
below threshold. In order to assess the qualitative
importance of the three-body closed channel, we fitted
the binding energy and scattering length in the 1+
channel with the two parameters of the pole approxima-
tion. We compared our 1+ phase shift Lderived from

9 J. D. Bjorken, Phys. Rev. Letters 4, 473 (1960).
'o Y. Yamaguchi, Phys. Rev. 95, 1628 (1954).
"See, e.g., S. C. Frautschi, Regge Poles and S-Matrix Theory

(W, A. Benjamin and Company, Inc. , New York, 1963), p. 5 g.

Eq. (13) with /=0j with the J = 1+ (lower) eigenphase
shift given by McIntyre and Haeberli. 2 The results are
contained in Table I. We then took

~ g~ =0, and using
the previously determined pole parameters, recalculated
the 1+ amplitude below the elastic threshold. We found
that the bound state shifted from —3.697 to —3.12 MeV.
This represents a change in binding energy of 40%
(as measured from the elastic threshold. ) which corre-
sponds to a change of 15% in the strength of an
effective Hulthen potential with range corresponding to
the position of the left-hand pole. In other words, the
closed three-body channel contributes about 15% to
the attraction of the effective d-n potential.

The 3+ resonance in the L=2 partial wave is much
closer to the inelastic threshold and should therefore
be much more sensitive to its presence or absence than
was the 1+ state. We found, when we Gt the position
and width of the 3+ resonance with our pole approxima-
tion, that this was indeed the case. Putting

~ P~ =0 and
keeping the 6tted values of the pole parameters led to
the complete disappearance of this resonance (we
searched up to 2.5 MeV). We also compared our 3+,
L= 2 phase shift with the experimentally determined
'phase shift of Ref. 2. This comparison is presented in
Table II.

Previous work" on Coulomb perturbation of weakly
bound states and investigations currently being pursued
by one of us (JVN) indicate that correct inclusion of
the Coulomb repulsion between He4 and the proton
does not substantially modify our results or our
conclusions.

Inherent in our treatment is the possibility of
calculating the breakup amplitude using an Omnes-type
equation. One can also more fully pararnetrize the
partial-wave elastic amplitude to include both eigen-
phase shifts and the mixing parameter. Work on these
extensions is currently in progress.
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