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The (He', pp) stripping reaction is studied in the distorted-wave Born approximation, with simplifying
assumptions which allow a two-body formulation of the problem. Two limiting cases are investigated.
(1) The emerging protons are closely correlated; their final-state interaction with each other is treated
appropriately, but those with the nucleus are approximated by one with the center of mass of the pair. (2) The
protons interact individually with the residual nucleus but their mutual interaction is neglected. It is found
that for a given relative momentum q of the two protons the angular distribution for the recoiling residual
nucleus is essentially the same for the two cases. However, the differential cross section depends only on the
magnitude of 9 in case (1),whereas it depends on both the magnitude and direction of q for case (2). Thus,
an experimental distinction between the limiting cases should be possible.

I. INTRODUCTION

S TRIPPING reactions have been widely employed in
the study of nuclear spectroscopy. Most of the reac-

tions studied so far have a single emergent particle in
the Gnal state, so that there is no degree of freedom in
the kinematics, given the scattering angle and the state
of the residual nucleus.

In this work we investigate the (He', pp) reaction,
which is the simplest stripping reaction with multiple
(unbound) emergent particles in the 6nal state. From
such reactions one could hope to learn more about the
mode of nuclear excitation in the stripping process, by
a measurement of the correlation between the two
emergent protons. The (He', pp) reaction is also of in-
terest because it allows excitation of isospin states in
the residual nucleus which cannot be reached by an
analogous reaction in which only one particle emerges,
such as (d,p) stripping. In the latter case, if a deuteron
is incident on a target of isospin zero, and if isospin is
conserved, then the residual nucleus must be in a state
with isospin equal to —,. For a (He', pp) reaction with the
same target, the residual nucleus may have isospin equal
to ~ or —', . The simple stripping model, with no core exci-
tation, predicts that only isospin ~ states are populated.
This assertion is clearly amenable to experimental
investigation.

In this paper we do not consider core excitation. Kith
this simplilcation we treat (He', pp) stripping for two
limiting cases: (1) The emerging protons are closely
correlated and their Gnal-state interaction with each
other is treated appropriately, but those with the nu-
cleus are approximated by one with the pp center of
mass, and (2) the protons interact individually with the
residual nucleus but their mutual interaction is ne-
glected. There has been some discussion whether Gnal-
state e6ects are measurable'; our results suggest that
a (He', pp) experiment can be used to detect such final-
state rescattering.

In Sec. II we formulate the problem, for the two
limiting cases mentioned above, in the distorted-wave
Born approximation using optical potentials in the in-
coming and outgoing channels determined from elastic
scattering (Sec. III). The results of the calculations are
presented in Sec. IV and discussed in Sec. V.

In the present paper we restrict ourselves to a two-
body formulation; this necessarily involves some ap-
proximations (Sec. II). A more exact analysis of the
(He', PP) reaction would involve a correct treatment of
a four-body problem, viz. , the target nucleus (taken as
one particle), the captured neutron, and the two emer-

gent protons. This can be done, at least in principle, by
an extension of the Faddeev formalism. ' This aspect of
the problem is currently being investigated.

II. THEORETICAL DEVELOPMENT

A. Introduction

The theory of direct nuclear reactions in a distorted-
wave Born-approximation (DWBA) framework has
been treated extensively in the literature' so that only
the matrix is given here,

K=(Xt ) Voi+Vos)&;+).

We assume the following: (a) The initial nucleus, or
"core," acts merely as a spectator and is unaGected by
the reaction. (b) The residual nucleus is left in a single-
particle state of well-deGned total and orbital angular
momenta; for simplicity, we assume that this corre-
sponds to the ground state. (c) The j-j coupling scheme
is applicable. (d) The captured nucleon is bound in a
finite Saxon welL (e) The interaction potentials re-
sponsible for the reaction $V„i and V„s in Eq. (1)g are
spin-isospin-independent central potentials. Although
these assumptions are not essential, they are physically
reasonable and simplify the calculation considerably.

For a target of 3 nucleons, the center-of-mass system

* Supported in part by the U. S. Atomic Energy Commission
.under Contract No. RL0-13888.' C. Zupancic, Rev. Mod. Phys. 37, 33& (1965).

' V. A. Alessandrini, J. Math. Phys. 7, 215 (1966).' See, e.g., W. Tobocman, Theory of Direct Nuclear Reactions
(Oxford University Press, New York, 1961).
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FIG. I. Pictorial representation of
the relation between the vectors r1,
r2, r„, R, r, and g. The heavy arrows
indicate the coordinates used in the
R, r formulation LSec. IIBj; the light
arrows indicate the coordinates used
in the r&, rs formulation LSec. IICj,

TARGET

optical-model wave functions for the initial and Anal
states are (the notation of Henley and Yu is used, 4 with
A=c=1)

X,+=x„+(R+-,'()4;(1, ,A) &H.(g,r)
XLfiis"(He)wis"'(He)], (2)

Xr ——Xq,q
—

(ri, rs)4~(1, , A+1)f(1,2)p(1,2), ( )

where R, ri, rs, and r„are measured relative to the
initial nuclear center; R is the position of the pp center
of mass, r~ is that of proton 1, r2 that of proton 2, and
r„ that of the neutron. We have introduced the vectors
r=ri —rs and $=—r„—R. The relations between ri, rs,
r„, R, r and ]are shown in Fig. 1.The subscript K is the
momentum of the incident He' particle, and the pair of
inomenta k', k" refer to the final pp system; their choice
depends on the formulation of the problem Lsee Secs.
IIB and IICj.

In Eqs. (2) and (3), X+ and X are the distorted waves
representing the incoming and outgoing particles, re-
spectively, with the +(—) sign denoting outgoing
(incoming) boundary conditions. 4; is a completely
antisymmetric space-spin-isospin internal nuclear wave
function of total angular momentum J; and isospin t, ,
having third components 3f; and v, C ~ is defined analog-
ously for the final nucleus. &H,((,r) is the space part of
the He s internal wave function. f is a spin state and p an
isospin-state function, with the square bracket in Eq.
(2) denoting the completely antisymmetric spin-isospin
state function for He'. 4

We expand the wave function for the (A+1) particles
of the residual nucleus in terms of the wave function for
the A particles of the initial nucleus and the possible
neutron states:

bols (jij&rlim&I jm) are Clebsch-Gordan coeKcients,
and the subscript i' on C indicates quantum numbersJ, M, ', t,', and v . The Pq is the bound-state wave
function for the captured particle, and can be written as

m, s

XI'i"(f' )ft( '(e)pi( '"(e), (5)

where gt(r„) is the radial part of the wave function for
the captured nucleon in a 6nite Saxon well, and I t (r„)"
is a spherical harmonic of the angle dehned by the unit
vector r"„.

At this point we introduce some specific assump-
tions regarding the form of the pp wave function
X„.,k (ri, rs). We consider two limiting cases, viz. : (1)
The protons come oQ close together as an unbound
"diproton" with low relative energy ej, so that for the
small distances relevant in this problem we may take
the relative orbital angular momentum and total spin
of the pp wave function to be zero. In this case it is
convenient to use the coordinates R and r. We refer to
this as the "R, r formulation". (2) The protons come off
with considerable relative energy e~, i.e., in quite di-
vergent directions, so that their final-state interaction
with each other is negligible, w(r) =0. We refer to this
as the "r~, r2 formulation". Although these are but two
possible options, they describe limiting situations, which
we believe to apply in the present problem.

B(1,2) =—Va '/2M+ V(R') —V,'/2p+ u(r)
=a(R')+h(r) . (6)

In Eq. (6), the masses 3II and p, are M=mi+ms,
p= mims/(mt+ms), and the vector R' is the position of
the center of mass of the pp pair relative to the residual
nucleus. With the above assumption the pp distorted
wave function is a product,

X~. ~" (ri, rs)=X~ ~ (R', r)

B. R, r Formulation

In this formulation we approximate the interaction
of the nucleus with the individual protons in the 6nal
state by one with the center of inass of the pp pair as
though it were a single particle. 4 ' The Hamiltonian for
the pp pair then separates:

/ A 1=x; R-
A+I A+1 )

XX~ (r)|o'(1,2)pi'(1, 2), (7)

B(f,fr', J,J,Jg)4,(1, ",A+1)=
Jz', Mz', tg', vr",

X(f'' :P*' 2 I
f»~)(J'-'J~—''~

I ~f~f)

where k is the total momentum operator of the pp pair
In Eq. (4) the expansion coeKcients B(f,', fy, J,J,,'Jy)
are related4 to the usual spectroscopic factors; the sym-

4 E. M. Henley and D. U. L. Yu, Phys. Rev. 133, 1445 (j.964).

5 E. M. Henley, in Preludes in Theoreticoj I'hysics in Honor of
V. Ii. lV eisskopf, edited by A. de-Shalit, H. Feshbach, and L. van
Hove |',North-Holland Publishing Company, Amsterdam, 1966),
p. 89.
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and q is that for their relative momentum,

q= (kg —kR) j2.
Inserting Eqs. (4), (5), and (7) into Eq. (3) we have for
Xf ..

B(t,tr, J,J,Jr)
Js', Ms', ts', vs', m, e

X()! -', 5
——', Itr)fr)(J JM MI Jar)

X(l-,'ms' JM)xR—
i

R— g x, (r)—
(A+1 A+1

XC;(1, ,A)g)(r„)Y5"(r„)

Xf I/R (n)pf(R ' '(+)t o'(1,2)pg'(1, 2) . (8)

In terms of the matrix element PQ, the differential
cross section is given by

p; dp
=2~— P [R(R,

E dEyd~I(;

The interaction potential is also taken to be a Gaussian,

V„q+ V„R——V()Lexp{—P'(r„—rf)'}
+exp( —P'(r- —»)') 3= Vobxp( —P'(&—Rr)')

+«p( —P'(4+Rr)'}j, (»)
with' V()=70 MeV and P'=0.4 F ', to obtain an ap-
proximate match to the nucleon-nucleon low-energy
elastic scattering.

For purposes of computing the overlap of the neutron
wave functions in the matrix element, we neglect g rela-
tive to R. We justify this roughly by considering the
behavior of the He' internal wave function and the in-
teraction potential; both of these are exponentially
decreasing functions of P. Since the optical potentials
used in calcu1.ating XK+ and X~ give rise to strong ab-
sorption, the main contribution to the overlap integrals
in 5R~ comes from a region close to the nuclear surface,
E.=EN„,i„,=1.25A' '. For suKciently large A, there-
fore, the above-mentioned exponential factors will be
small for g comparable in magnitude to the nuclear
radius. We therefore approximate as follows:

A
R,

A+1 A+1
R

A

A+1
w here p; is the reduced mass of the He' particle and the
initial nucleus, QR denotes the solid angle for k, and
d'p/defdQR is the density of available final states. The
bar over the summation sign symbolizes the usual
average and sum over initial- and Gnal. -state magnetic ~3&
quantum numbers, respectively. After integrating over
the coordinates of the A nucleons, averaging over 3f;,
summing over Mf, and doing the spin-isospin sums we
gnrf (for the gxetf orbital angular momentum 1 of the og (x ~

R x
captured nucleon) (A+1

(14b)

(14c)

degdQI,

p; d'p 1 1 2Jr+1= 27r- BR(t;,tg, J,J;,Jf)
E derdQR 6 2t+1 2J;+1

X(V.t+V.r)lgxa(R)lx(f'r)). (15)

where

&& r&,x„. i I
~

i2 m i ~ ~t 2 ry0i We expand the incoming and. outgoing wave functions
in partial waves, taking the initial momentum K as the
axis of quantization:

( A
5K) = Xg — 'Xq—r ) r„ I'g r"„

IhA+1 A+1 1
xx+(R) =p i~'L4~(2L'+1))f(R

LI ER

X IIJrlr+(R) Yl,r (8), (16)
X(V +V ))Xx+(R+ f)rin, (f,r)). (11)

A A+1 4m- A
x;( R [= p i'VR~ (Z-/

(A+1 1 L.& A kR (A+1
N+

For simplicity we assume a symmetric Gaussian for
the He' internal wave function, '

XYr. (&)Yr. (k). (17)
@H,(g,r) =XH,

Xe p( & RL( r )R+(r r )R+(r r )R~} Inserting Eqs. (16) and (17) into Eq. (11)we can do the
integration over the internal variable g and the angular
integrations for R and r. II( thus reduces to

where SH, is a normalization constant,

~333/4~ —3/2
)

and4y= 0.36 F ' as determined from electron scattering.

4n- A+1
BR+= Q ((2L+1)(2l+1))'(R

kK

X (Ll—mm
~
L'0)(L/00

~

L'0) Yz, "(k)i~' ~Dd, (18)
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where d and D are

Sxy'3'~'Vo

(ps+~2) s/2
x,—(r)

Xexp—
Psps+0 75~4

r' r'dr, (19)
2

f ~1

U +l R lvxg. +(Z)gi(Z)dZ.
s &+1

(20)

We have used the relation

& l=&»+
+1 i

The partial-wave amplitudes U+ are obtained from
MscAT-4 (a modified form of the UCLA scAr-4 code')
which gives normalized wave functions as output. In-
serting the density-of-states factor we have finally

d'o- p,yf p (fi+1) ' 1 1 2Jf+1—(m~ .,)'I'l
defdQs 16m'Z 4 A i 621+1 2J~+1

to obtain D in the form given by Eq. (20).
The integration over E is part of a numerical program

which computes a quantity a(O~) given by

16+'
o(O) = -(2t+1)g

l Q (2L+1)'~s(Ll—msrslL'0)
k'E'

x (Ll00
l
L'0) Ff,

—~(0~,0)D l
'. (21)

d pd3o p,, 1 1 2Jf+1= 27r——
dEidQidQs E dEidQidQs 6 2E+1 2J;+1

x~ (~s ~fi JJ' Jf)(& " s-l&f—"f) 2 l~~"
l

(25)

where now

M,"= (x,—(r,')x,—(rs') g,(r„)Ir ("(r"„)
l

x V i+V.sl xK+(R)yH. ), (26)

g = s (ri+ rs+ r„),and the primes on ri' and rs' mean that
they are relative to the center of mass of the residual
nucleus, rather than the initial nucleus.

In order to make the nine-dimensional integral of Kq.
(26) tractable we introduce a simplification which has
been widely employed in deuteron stripping calcula-
tions, viz. , we assume that capture takes place at a point,
with

the Gnal-state wave function becomes

Xf———x;(r,)x;(r,)f (1,2)p(1,2)ef(1, 2+1), (24)

where the subscripts 1 and 2 denote momenta ki and
ks, respectively. We take the undetermined variables
in the diRerential cross section to be E~, Q~, and 02,
where E~ is the kinetic energy of proton 1, 0~ is the
associated solid angle, and 02 is the corresponding solid
angle for proton 2. These variables are most accessible
experimentally; any other choice can be obtained by a
suitable transformation. Substituting Eq. (24) into Eq.
(9), we integrate over the A nuclear coordinates, do the
implied average and sum over 3f; and My, respectively,
and carry out the spin-isospin sums to obtain

xB'(t tf J J Jf)(t;—,'v;——,ltfvf)'ldl'o(0) (22) lim Vse ~'"' ~ 7rs~sVsP sos(r),-
P~oo

(27)

where ms~ is the nucleon mass and py is the reduced
mass of the pp system and the residual nucleus.

C. r~, r2 Formulation

VsP '=constant=70 MeVX(0.4) s~' F'
=277 MeV Fs. (28)

In this formulation we assume that the protons inter-
act individually with the nucleus, and we effectively
neglect their interaction with each other. The Hamil-
tonian is then given by

Introducing the coordinates

p= sri+ srs,

r= fy —r2 )

(29a)

(29b)
H(1,2) = —Vis/2mi+ V(ri) —Vs'/2ssss+ V(rs)

=a(1)+a(2),
and inserting the delta-function interaction potentials
we have for the matrix Ms .

where V(ri) includes only the interaction of proton 1
with the residual nucleus, and similarly for V(rs). Al- ~,m 2 sisp sV V x —~ — L@+lrj
though, in the spirit of Sec. IIA, we could consider the &+1
interactions V(ri) and V(rs) to include an average in-
teraction of the two protons with each other, we do not 2 1

do this here; rather we assume that V(ri) and V(r,) are &3 ai i
determined by elastic proton scattering. With Eq. (23)

XXx+(p)p*(~+'sr)e-~'"ds&dsr, (30)
' M. A. MelkanoG, J. S. Nodvik, D. S. Saxon, and D. G. Cantor,

A Fortran Program for Flastic Scattering Analyses with the NNclear
Optical'/odel (University of California Press, Berkeley, California,
1961).

y+-', r
4*(o+sr) =&~(l e+srl) V~""

lt+srl
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1(V,q-
f(")~ 2 ~"'v-'—

I

—
I

~o(r)
~LA~s)

(31)fP,s)= e'"'f(rs)dor,

The r integration can be performed, in the following obtain for f(r'),
way s: Define e-&'"=f—(r') I.ntroduce the Fourier
transform

and its inverse

f(rs)=(2~)—o e
—ai rj(Xs)d9 (32)

Recalling the property of delta functions,

'"(*)f( )d*=(-) f"(o) (34)

If we expand f(g') in a Taylor series about X'=0 we and substituting Eq. (33) in Eq. (30), we find for Mi":

1(V')"!d"=2"P'v '&-H I'-o &K+(I) 2 —
I- o m!E4ys)

( 1)
X +1

I Lg+(I/3)r] X2-*I e—
I (2/3)+ —Ir I&*('+(I/»r) do'=2"~ 'v '"H ~o "I+(e)

(A+1 &A+I E A) -) r 0

exp ((1/9) Vi+(9/16) Vs+(1/9) V '—(1/2) Vi Vs+(2/9) Vi V-—(1/2) Vs' V.)
4~2

/A q A
9 14*(9) d'~ (35)&+I ) +1)

where Vi operates only on Xi *LAp/(A+1)7, V~ only on Xs 'I-Ap/(A+1)7, and V„only on P*(g). We can write

(I/9)(Vi'+(81/16) Vo'+ V '—(9/2) Vi Vo+2Vi V~—(9/2) Vs'Va)
= (1/36)(4Vi'+ (81/4) Vs'+4V '—18Vi Vo+8Vi V"—18VQ'V )

=(I/36)(13Vi+(117/4) Vis+137' '+26Vi V„—9V') (36)
where V= Vi+ Vo+V„operates on the product

ex '- 94*(9)
+I i

We have investigated the magnitude of the contribution from the 26 V~ V„ terms for the case of plane waves, i.e.,
e'~'~e'~'~P*(y), and, at the energies utilized in this work, found it to be small compared to the contributions from
the other terms in Eq. (36).We assume that this will be true for the DWBA case also. Then, by repeated applica-
tion of Green's theorem Eq. (35) becomes

~,-=2 op- -cv.v, Le- ' «'"x+()7. ~ ' «"x,
ILA+1)

t' A
X e ""'o""'"Xs*I e I

L'"""'"""4*(e)]d'~ (37)
(A+1)

If we also assume that the gradients of the potentials are negligible in comparison with the gradients of the wave
functions, so that we can write (V')"=L2m(V —E)7", then Eq. (37) becomes'

MR=2m'P 'y '1V'HsVo exp
9E (144/169) X 13&i ——(144/169) X(117/4)ks+13n'

' Gy. Bencze and J. Zimanyi, Phys. Letters 9, 246 (1964).'F. G. Percy and D. S. Saxon, Phys. Letters 10, 107 (1964).' Gy. Bencze and J. Zimanyi, Nucl. Phys. 81, 76 (1966).

A
X g()&i-' 9 I's-'

p 4'(g)XK+(g)d'p, (38)
+1 ) +1
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where n'/2m is the binding energy of the captured nucleon, and

g(p) = exp
—18mB,VH, +(144/169) X26miVi+ (144/169) X (117/2) mmV2+ 26m V

(39)

Expanding the distorted waves in partial waves as before we And

da p 1 1 2Jr+1
=8~—— B'(t;,tg, J,J;Jr)

dEidQidQ2 E dZidQidQ26 2l+1 2J;+1

A+1 '
X(t 'v, -~trvr)'7r'P 'y '1VH'Vp'Q (4n-)@'

m L,X, ly, L2, ml

X((2/i+ 1)(2l2+ 1)(2l+ 1))'I'i~" "(izl2—mimi+ m
~
7im) (l'l200

~
7~0)

X (P.—mm
i
LO) (l7~00

i
LO) (1/Ekik 2) 7'i,—"'(ki) Vip'+" (km)

t A ( A
X Uirr, +(p) Ui, i,+i p Up, t,+i p Ri(p)g(p) p

—'dp '. (40)
(A+1 V+1

Equation (40) is evaluated numerically by a program which computes the quantity o(O'i, 0~2) given by

0
m L,)I„LI,tg, mg

(41)

III. DETERMINATIO5 OF OPTICAL
PARAMETERS

d'o (He', pp) t' (m~'Er) '
~ 2)

& 3idegdQI,

1'yH, ((,r)x,—*(r)d'&d'r ' do(He', d)
x (42)

1'4H.(g, r)ip&*(r)d'&d'r dQ

E. M. Henley, F. Richards, and D. U. L. Yu, Phys. Letters
15, 33i (i965).

If the incident energy of the He projectiles is suffi-

ciently high and the final-state pp relative energy er
is sufficiently small, then it is possible to relate the
A(He', pp)A' differential cross section directly to that
measured for the A(He', d)A" reaction. ' "This relation
requires (1) that the R, r formulation is valid; (2) that
the binding energy of the deuteron e& and e~ are both
much smaller than the incident energy (the er depend-
ence of the cross section is rot neglected); (3) that the
difference between the Coulomb interaction of the two
protons with the Anal nucleus A' and that of the deu-
teron with A" can be neglected; (4) that the nuclear
optical potential of the pp center of mass with A' is
identical to that of the deuteron with the nucleus A".
This last requirement assumes that the spin and isospin
dependences of the optical potentials are small. For
instance, spin-orbit effects must be neglected, since the
spin of the deuteron and that of the pp system are dif-
ferent; such a comparison is thus probably valid only
in the forward hemisphere of the emitted particle. The
kinematical differences and the e~ dependence can be
taken into account, and one obtains

where the factor in the first parentheses on the right
side of Eq. (42) is the ratio of the density of available
final states for the (He', pp) reaction to that for the
(He', d) reaction, and the factor in the second paren-
theses is the corresponding ratio for the spin-isospin
sums.

At low or medium en.ergies conditions (2) and (3)
cannot be met. Despite this shortcoming, it is possible
to relate the cross section for the (He', pp) reaction to
that for the (He', d) process by an optical-model
"extrapolation", if condition (1) is valid. If, in addition,
condition (4) holds, then the nuclear part of the optical
potential for the pp center-of-mass interaction with the
6nal nucleus is identical to that of a deuteron of the
same energy. However, even if there is a spin- and
isospin-dependent part of the optical potential, the
difference between the deuteron and pp potentials can
be taken into account if the dependence is known. Since
this is not the case, we have neglected these differences
in our work. However, we have relaxed conditions (2)
and (3) and have taken into account the Coulomb and
energetic differences between the pp center of mass and
the deuterons produced in a (He', d) reaction by means
of the optical model. The nuclear potential used was of
the Woods-Saxon form with volume absorption. The
parameters for He' and for d were obtained from elastic
scattering, " although small variations were made to
obtain an adequate fit to the (He', d) measured differ-
ential cross section in the forward hemisphere. The pa-
rameters actually used. are listed in Table I. With these

"J.Testoni, S. Mayo, and P. E. Hodgson, Nucl. Phys. 50,
479 (1964).
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Helium 3

TABLE I. Optical-potential parameters. IOO

THEORY

---- EXPERIMENT
V= —(U+iW) {I+expL(r—R)/a)} '
R=rpA113, rp=1.50 F, a=0.6 F,
V=55 MeV, 5'=60 MeV.

Deuteron

V= (U—+iW){1+e pxL(r —R)/uj} '
R=rpA'" rp ——1.50 F, a=0.6 F,
U=56.9 MeV, 8'=12.0 MeV

Proton
(r R l'—

V= —U{1+expP(r—R)/ag} ' —iW exp

R=rpA'" rp=1.25 F, a=0.6 F, b=0.98 F
U= (58—0.3R;,)MeV, W=3Z;," MeV

E;~,= Incident energy of proton

O.l—

I I I I

30 60 90 l20 l50 I80
8 (degrees)

parameters the differential cross sectionfor the(He' d) Fro. 2. Comparison between theory and experiment for the
0 ~ C"(He',dlN" difierential cross section. The laboratory energy ofreaction, given by the incident He' particle is 25 MeV.

do(He', d) p;pr Pr 1 1 2jr+1 A+1

dQ 4s-s P; 22l+1 2J;+1 A

8~V,&33»4
I4*(r)

(Ps+~2) 3/2

Xexp—
P'y'+0 75y4

r' r'dr (44)
P'+v'

' H. E. Wegner and W. S. Hall, Phys. Rev. 119, 1654 (1960)."P. E. Hodgson, in Direct Interactions and Nuclear Reaction
Mechanisms (Gordon and Breach, Science Publishers, Inc. , New
York, 1962), p. 103.

and Pq(r)=space part of the deuteron internal wave
function, is compared with experiment in Fig. 2."The
choice of C" as target was determined by (1) the
availability of experimental data, and (2) the fact that
it is a light nucleus for which the assumptions (a)—(e)
of Sec. II are expected to be valid. The comparison made
in Fig. 2 shows that good agreement can be obtained in
the forward hemisphere; it should be. noted that this is
so for the magnitude as well as for the angular distribu-
tion. The lack of agreement in the backward hemisphere
is ascribed, at least in part, to our neglect of spin-orbit
effects.

All of the above description refers to the R, r formula-
tion. In the r~, r2 formulation, the optical potential in the
initial state is identical to that of the R, r formulation.
The optical-potential parameters for the interaction of
the protons with C" were determined from elastic-scat-
tering data, as given by Hodgson. "

In the calculation of the r~, r2 cross sections, there is

an ambiguity regarding the momenta kt and ks to be
used in calculating Xy and &2 . This is because MscAT-4,
which calculates these wave functions, assumes there is
just one particle impinging on the target in the incident
channel. Several schemes which might plausibly be sug-
gested were tested by simulating plane waves for XK+,

X~, and X~,' this is achieved by putting in zero for all
optical potentials, as well as for the Coulomb interac-
tion, in MscAT-4. The results of this simulated plane-
wave Born approximation were compared with the re-
sults of the actual plane-wave Born approximation
(PWBA) )see Eqs. (49) and (50) and Fig. 9j. Best re-
sults were obtained by putting in the actual value of
kt and ks wherever they appear explicitly in Eq. (38),
but calculating X~ from the relative momentum x~
given by

K'+ (A+1)kt

A+2

where K' is the recoil momentum of the residual nu-
cleus; the analogous procedure was employed for cal-
culating X2—.

IV. RESULTS

The differential cross section for the C"(He',pp)C"
reaction was calculated with the formalism described in
Sec.II and with the optical-potential parameters (except
for Coulomb energy changes) discussed in Sec. III. The
results for 25 MeV incident He' particles in the R, r
formulation are presented in Figs. 3 and 5. In Fig. 3 the
differential cross section is shown as a function of the
pp center-of-mass angle for er ——1 MeV. The choice of
target and incident energy was determined by available
C"(He', d)N" data; although the use of the optical
model allows extrapolations to other energies, a "direct"
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comparison Lsee Eq. (42)$ can only be made at this
energy, and is shown in Fig. 4. In Fig. 5 the ~y depend-
ence is plotted for a pp center-of-mass angle of O'. The
choice of sf=1 MeV in Fig. 3 was determined by its

closeness to the peak of the final-state pp interaction
eGect."The enhancement in the cross section due to
the pp rescattering can be described by the factor
F(er):

Cross section with 6nal-state interaction included
F(er) =

Cross section with 6nal-state interaction neglected
(45a)

This factor is independent of the scattering angle Og, and
depends only on the ratio

X;*(r) exp—
psys+0. 75y4

'f df

Ps~2+0 75~4
e's' exp — r' r'dr . (45b)

p'+Vs

This equation also demonstrates that only the S-wave
part of Xs (r) is relevant; all other angular momenta do
not contribute because of the form we have chosen for
the He' internal wave function. The dependence of
F(ef) on ef is shown in Fig. 6. Comparison of this figure
with Fig. 5 demonstrates that the primary ef depend-
ence of the differential cross section in the R, r formula-
tion arises from the Anal-state factor. The matrix ele-
ment is a slowly varying function of the energy transfer.
This slowness is also partially responsible for the simi-
larity of the (He', d) and (He', pp) angular distributions,
as can be noted from a comparison of Figs. 2 and 3.

The R, r and the ri, rs formulations differ only
through the manner in which the final-state eftects are
approximated. From Eqs. (6) and (23) we see that if we

take the final-state distorting potentials V(R'), e(r),

V(ri), and V(rs) equal to zero, then the two formulations
are identical. Inclusion of the potential v(r) introduces
the final-state factor F'(q) =F'(~ q ~)

=F(eq). We can in-
troduce analogous factors for the effects of the other
final-state optical potentials; thus, if G(k) is that due to
V(R'), then the cross section in the R, r formulation is
tF(er)G(k) ~s times that for plane waves in the final
state. In the ri, rs formulation we have factors fi(ki)
and fs(ks) which arise from V(ri) and V(rs). LThis does
not imply that the factors G(k), fi(ki), and f&(ks) are
independent of the incident momentum K.j We note
that these two interactions are equivalent to the inclu-
sion of V(R') and the omission of v(r) for F(cf)j in the
R,r formulation, for ~R'~)) (r ~. Since the major contri-
bution to F(ef) comes from r RH, y ' Lsee Eq. (45)]
and that to G(k) arises from R')Rois, the above condi-
tion is satisfied approximately. If this argument is realis-
tic, then in order to compare the results of the r~, r2,
and R, r formulations we should neglect tI(r) Li.e., set
F(ei) =1 in the R, r formulationj, and should find

G(k)

1 1 2 2

(46)

This relation implies that the differential cross sections
in the ri, rs, and R, r formulations are approximately

)0

e)= I MeV
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FIG. 3. DiGerential cross section for the C"(He', pp) C" reaction
in the I, r formulation, for ~f =1 MeV. The laboratory energy of
the incident He' particle is 25 MeV.
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Fin. 4.&Differential cross section for the C"(He', pp) C" reaction
predicted by a "direct" comparison arith the C"(He',d}N"
reaction.
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FIG. 5. Dependence on e~ of the C"(He', pp)C" reaction in
the R, r formulation for e&=0'. The laboratory energy of the in-
cident He' particle is 25 MeV.

related by

d'o(R, r) 4vrF(er) d'o(rt, r2)

deydQI H dE»dQ»dQ2
(47)

where H is the 6nal-state ratio given by

d6ydQg&~
H=

dE»dQ»dQ2
(48)

8 I I I I I I I

7-

In Eq. (48) the variable ce, refers to the angular variables
for the relative momentum q.

The factor H depends on ey, E», and the angle 8»2

between kt and k2 (see Fig. 8). We have taken e~ ——1
MeV as in the R, r calculation. In the rt, r2 calculation
the reference point for E» is chosen so that E»= E2 at
8»= 82=0 . The 8»2 dependence of H gives rise to an in-
crease of 13% as Ht2 goes from 0' to 90, or, stated

I I I I

0 IO 20 30 40

8& (degrees)

F»G. 7. Comparison of the di6erential cross section for the
C"(He', pp) C" reaction in the rI, rI formulation, with that for the
R, r formulation.

more precisely, keeping 8» fixed at 0' and letting 02 go
from 0 to 90 as described below.

In order to make the comparison suggested by Eq.
(47) we must have comparable physical situations. In
the R, r formulation the scattering angle Hq refers to the
polar angle for k, the momentum of the pp center of
mass. In the rt, r2 calculation we fix kt at Ht=0', its
magnitude being determined by the reference point E»
as described above, and vary the direction 82 of k2 from
Oo to 90o. Under these conditions k2 (and hence k) is
determined by energy-momentum conservation. As 02

goes from 0 to 90 the magnitude of k2 increases by
7%, introducing an error of 14% due to the 1/kg

factor in the cross section. However, the 13% error in-
troduced by neglecting the 8» dependence of H is in the
opposite direction, so that the over-all error is only a few
percent. We have therefore simplified the r», r2 calcu-
lation by neglecting the 0» dependence of H and by
taking kt~ = k2~ =constant=2m~Et. Taking Hq ——0
and ~kt ——~k2 implies H~ ———,'82.

5-

P

FIG. 8. Relation between the incident mo-
mentum K of the He'particle, the momentum
k of the center of mass of the pp pair, the
momentum k1 of proton 1, and the momen-
tum k2 of proton 2.

K

~ I I I I I I I I
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Fro. 6. "Enhancement" factor E(er).
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The results of the r~, r2 formulation, calculated from
the right side of Eq. (47) under the conditions just de-
scribed, are shown in Fig. 7. The results from the R, r
calculation are included in Fig. 7 for comparison. Both
curves are normalized absolutely and have not been
multiplied by any arbitrary constants. The r&, r2 calcula-
tion was carried out for only ten angles because of the
large amount of computer time required for evaluating
the r~, r2 matrix element.

V. DISCUSSION

The two formulations that have been used in this
paper to approximate the description of the (Hea, pp)
reaction are complementary ones. In the R, r formula-
tion the interaction between the two protons is properly
taken into account, and the interactions of the two pro-
tons with the daughter nucleus are approximated by one
with the pp center of mass. This formulation is thus one
which approximates the two-proton system by a
"virtual bound-like" state. In the r~, r~ formulation the
interactions of the two protons with the nucleus are re-
placed by optical potentials (which can be thought to
approximately include the force of one proton on the
other) but the interaction between the protons is not in-
cluded specifically. Despite this difference, Fig. 7 shows
that the angular distribution of the center of mass of the
two protons is essentially the same for the two formula-
tions. Although the magnitudes of the differential cross
sections differ by a factor of approximately 3, this dif-
ference is not suKciently large to constitute an experi-
mentally determinable distinction, since both Eqs. (22)
and (24) contain parameters which are not fully deter-

mined experimentally. Thus, as might have been ex-
pected, the angular distribution of the recoiling nucleus
is primarily determined by the angular and linear mo-
mentum transfers.

The distinguishing feature of the two complementary
descriptions is the treatment of the relative motion of
the two protons. This suggests that measurements of
their correlation could serve as a distinguishing tool.
We therefore consider the dependence of the magnitude
of the cross section at a 6xed recoil angle as a function
of the relative momentum of the two protons, q. We
have already seen that in the R, r formulation the cross
section depends only on ey or equivalently only on the
magnitude of q, but not its direction. This dependence
was shown in Fig. 5.

In the r~, r2 formulation we therefore investigate the
il dependence of the cross section for two cases. In the
first of these we keep I kt I

=
I
kz I

= constant as described
in Sec. IV, and vary q by changing the angle 0» between
kt and kz so that the direction of the pp center-of-mass
momentum (i.e., k) is kept fixed at 0 . We see that for
this situation q is perpendicular to k. The results of the

r», r2 calculation for this situation are shown in Fig. 9.
To gain some insight into the behavior of the r~, r2

cross section in Fig. 9, we turn to the plane-wave Born
approximation. Inserting plane waves in the r~, r~

matrix element
I Eq. (26)) we find that, under the con-

dition that g is perpendicular to k (see Fig. 8), the
PWBA overlap integral Io is given by

( mv er+E'/36)
Ie constant X ——jt(QR)%t(R) expl—

)

IO

I.O

O

O.I

E

rP U
V

f~
LATION

t'2m~(V~ —E~))+exp
I I

R2dR, (49)
)16y'

)2+1 ) 1/2

0=K—2
I

iN~(& —er) I &)
2+1 EH+3

(50)

where K is the momentum of the incident He', Q= K
—(kt+ k2) is the momentum transfer, V is the potential
seen by the captured nucleon, and E„ is the energy of
the captured nucleon. The momentum transfer Q is
related to the 6nal relative energy e~ by

.OI

I

O.OOI I I I I 1

0 5 IO 15 ZO 25

&,(Mev)

FIG. 9. Dependence of the C~'(He', pp)C" reaction on Ef foI
q perpendicular to k, 81,——0', and incident He' energy of 25 MeV.
The PWBA result is included for comparison but is arbitrarily
normalized, whereas the r1, r& DWBA result is absolutely normal-
ized according to Eq. (47).

where E is the center-of-mass energy of the entire system
in the final state. The PWBA cross section (arbitrarily
normalized) is included in Fig. 9; it passes through the
first zero at ef 17.2 MeU. The comparison of the
DWBA and PWBA shows that the effect of the optical
potentials on the t.f dependence of the r~, r2 formulation
is primarily to decrease the energy ef at which the first
zero occurs.

For the second case q was varied by keeping k& and
kz fixed in the forward direction while changing their
magnitudes, so that g is parallel to k. The results of the
(DWBA) rt, r2 calculation for this situation are shown
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in Fig. 10, with the curve from Fig. 9 included for com-
parison. (Figure 10 exhibits the cross section d'o/
dErdQrdQs, rather than d'o/derdQs t as computed from
Kq. (47)$ which is shown in Figs. 7 and 9.) It is clear
that the latter decreases much more slowly with increas-
ing e~. Thus, as might be expected, the cross section in the
r~, r~ formulation depends on the direction of q, as well
as on its magnitude. This difference from the R, r forrnu-
lation serves as an experimentally distinguishable
feature.

Although the comparison of the two formulations for
similar conditions is of interest, it is not expected that
they are applicable in the same region of phase space.
For small values of the relative energy ey, the r&, r2
formulation is expected to be a poor approximation, and
the R, r formulation is clearly preferred. The reason is
that the two protons are closely correlated in the in-
cident He', and they will therefore continue to interact
strongly with each other if the two protons in the final
state emerge in the same general direction with approxi-

Q OOOI & t i i I I i I i I i i i i I t a

0 5 IO l5.,(Mev)

FIG. 10. Dependence of the C"(He',pp)C" reaction on eI for
q parallel to k, 81,=0', and incident He' energy of 25 MeV. The
analogous result for q perpendicular to Ir (see Fig. 9) is included
for comparison. In Fig. 10 both curves are absolutely normalized
according to Eq. (40).

mately equal energies. In fact, as can be seen from Fig.
9, the cross section in the r~, r2 formulation fails to go to
zero as e~ approaches zero; that it should vanish in this
limit is due to the Coulomb repulsion between the two
protons, which has been neglected.

For large relative energy e~, on the other hand, we
expect the R, r formulation to be poor. In this case, the
two protons emerge in quite different directions, so their
Anal-state rescattering would be expected to be small.
In other words, for large e~, the "enhancement factor"
F(er) =1, and we expect the interaction of the two pro-
tons with the 6nal nucleus to be more important than
that of the two protons with each other, which is strong
only in a relative 5 state of angular momentum.

Thus, we see that there are two extremes, namely
small e~, where the R, r formulation is expected to be
reasonable, and large e~, where the r~, r2 formulation is
preferable. In the intermediate region the extrapolation
of the two complementary pictures can serve as a guide.
However, it is quite possible that a more complicated
Faddeev-type four-body treatment is required; this
could even be true in the limiting situations of small and
large ej. %ithin the context of our development, the
most crucial difference between the various formulations
appears to be measurements of the correlations between
the two protons.

In the above discussion we have concentrated on the
reaction mechanisms for the (He', pp) reaction. How-
ever, as stated earlier there is another aspect of this
process which is of interest. It can be used, in conjunc-
tion with (d,p) reactions, for spectroscopic studies. In
both cases a neutron is captured by the initial nucleus;
however, differences can occur due to core excitation,
e.g., change of isospin of ss in the (He', pp) reaction, as
well as due to the differences of the internal structure of
deuteron and He'. A further interest of the reaction is
thus to explore these differences, if they exist.
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