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By assuming that the axial-vector current is partially conserved, a relationship is obtained between
the phenomenological meson-exchange operator in beta decay and the two-body pion-production operator.
An analysis of the experimental results for the process P+p —+ d+~+ in terms of this operator is made, and
the strength of the meson-exchange operator is then deduced from the relationship. It is found that the
strength does not agree with that necessary to account for the ft value of the beta-decay process
H' ~ He'+e +J/. Possible reasons for the disagreement are discussed.

J —J (v)+J (&) (2)

There is now strong experimental evidence (e.g.,
Ref. 3) that J„(v) is conserved (CVC theory) so that,
neglecting electromagnetic effects,

c)„J„(v)(x)=0. (3)

In addition, during the last few years it has become
fashionable to assume that J„(~' is partially conserved
(PCAC theory). This theory was originally proposed
by Nambu, Gell-Mann, and others, 4 and for the pur-
poses of this paper we take it to be dedned by the
following continuity equation:

where p is the renormalized Geld operator which
creates the m+, and u is a constant given by'

GsG.)vtvK. )vN (o)

' T. D. Lee and C. S. Wu, Ann. Rev. Nucl. Sci. 15, 381 (1965);
R. J. Blin-Stoyle and S. C. Nair, Advan. Phys. 15, 493 (1966).

A metric is used in which x= (x1, x2, x3, x4=x, y, z, ict) and in
order to ensure that IIp is a relativistic scalar it has been necessary
to introduce the notation Jts=LJ&t, Jst, Jet, —J4tj where the
dagger implies "Hermitian conjugate. "

3 R. J. Blin-Stoyle, Nucl. Phys. 57, 232 (1964).' V. Nambu, Phys. Rev. Letters 4, 380 (1960); J. Bernstein,
S. Fubini, M. Gell-Mann, and W. Thirring, Nuovo Cimento 17,
757 (1960); M. Gell-Mann and M. Ldvy, ibid 16, 705 (19.60);
J.Bernstein, M. Gell-Mann, and W. Thirring, ibid'. 16, 560 (1960).' S. L. Adler, Phys. Rev. 137, B1022 (1965).
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1. INTRODUCTIOH

T is common knowledge' that the phenomenon of
nuclear p decay is well described by an interaction

Hamiltonian density having the form

Sep(x) = (Gp/v2) )J„(x)j„(x)+Z„(x)j„(x)], (1)

where G(t is the p-decay coupling constant (Gp=1.4
X10 I erg F'), and the four-currents J„and j„refer
to the hadrons and leptons, respectively. 2 Explicitly,
j„= if,v„(—1+ps)P., where P, and P, are the usual field
operators for the electron and the neutrino. The hadron
current J„can be further decomposed into polar-vector
(V) and axial-vector (A) parts, thus

Here M is the nucleon mass, p, is the pion mass, G~ is
the P-decay axial-vector coupling constant (=—1.2Gs),
6 ~~ is the rationalized, renormalized pion-nucleon
coupling constant $G~)vN/4sr=14. 6j, and K~)vtv(0) is
the invariant pion-nucleon vertex function normalized.
so that K.)vN( —ts') =1.

This theory has been successful in giving a simple
account of the Goldberger-Treiman' relation and, in
conjunction with current commutation relations, has
enabled satisfactory calculations to be carried out of the
renormalization of the p-decay axial-vector coupling
constant. ' Kim and Primakoff' have also used the
theory in the context of p decay in complex nuclei
treating the different nuclei as "elementary" particles.
In this way they were able to obtain a "nuclear"
Goldberger-Treiman relation and to relate axial-vector
nuclear matrix elements to experimentally measurable
quantities in pion-nuclear processes. Unfortunately,
few, if any, of the necessary experimental data are at
present available so no real test of the theory could be
made.

The object of the present paper is to investigate the
implications of PCAC theory for the two-body meson-
exchange corrections which seem to be present in beta-
decay processes. "In particular, a relationship between
the p-decay meson-exchange operator and a two-body
effective Hamiltonian operator for pion production is
established. In Sec. 2 the contribution of exchange
effects to axial-vector beta-decay matrix elements is
discussed, and. a phenomenological two-body beta-
decay interaction is introduced. In Sec. 3 this operator
is related via PCAC theory to a phenomenological two-
body pion production operator. An analysis of the
process p+ p ~ (I+sr+ is given in Sec. 4 in terms of an
effective Hamiltonian consisting of one- and two-body
terms. In Sec. 5 the explicit form for the exchange

' M. L. Goldberger and S. B. Treiman, Phys. Rev. 109, 193
(1958).

r S. L. Adler, Phys. Rev. Letters 14, 1051 (1965).
e C. W. Kim and H. Primakoii, Phys. Rev. 139, B1447 (1965);

C. W. Kim and H. PrimakoB, ibid. 147, 1034 (1966).
9 J. S. Bell and R. J. Blin-Stoyle, Nucl. Phys. 6, 87 (1957);

R.J.Blin-Stoyle, V. Gupta, and H. Primakoff, ibid. 11,44 (1959);
R. J. Blin-Stoyle, V. Gupta, and J. S. Thompson, ibid. 14, 685
(1959/60)."R. J. Blin-Stoyle, Phys. Rev. Letters 13, 55 (1964); R. J.
Blin-Stoyle and S. Papageorgiou, Nucl. Phys. 64, 1 (1965).
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operator is obtained and 6nally in Sec. 6 the results are
applied to the p-decay process H' —& He'+e +&. It is
found that the currently accepted sign and magnitude
of p-decay exchange effects are inconsistent with the
predictions of PCAC theory. Possible reasons for this
inconsistency are suggested and discussed.

2. EXCHANGE EFFECTS IN NUCLEAR
BETA DECAY

In the case of allowed axial-vector matrix elements,
the relevant P-decay operator can be written3'3

Here, experience in nuclear-physics calculations using
phenomenological potentials suggests that this latter
approximation is not a, restrictive one. In the above
expressions k =0.78 F ', E is a normalizing constant,
and I' and e are phenomenological parameters. It is
then straightforward to obtain corresponding value of
I' and&zconsistent with M~"'=+z'DMIN&" (see Ref. 10).
Here Mg&z& is the usual matrix element of H/&

"& for the
'Si/3 state and has the value G~v3. Assuming, for
example, that n= (pion Compton wavelength) z=e. 'I

F ', requires F=0.1.

where

and

H/&= H/&&z&+He&'&

He&i& = G~ P o,r;+,

(6) 3. RELATION BETWEEN Hp AND THE
PION-PRODUCTION OPERATOR

We now return to PCAC theory. On the basis of this
theory Adler, ' for example, has shown that

H/&&3& =G~ P {Lgz(r)o,Xo,+gzz(r) (o;Xo,) r r7(~, X s,)+

+I hz(r) (o; o;)+—hzz(r) (o;—o;) r r7(r;+—r,+)

+Ljr(r)(o~+oz)+ jzz(r)(o;+o, ) r r7

x (.;++.,+)) . (8)

Here He&i& is the usual one-body P-decay operator and
H/&

"& is the most general, static form for the operator
representing exchange effects in P decay. ' The notation
is standard and for the present the g, h, and j are taken
to be arbitrary functions of the internucleon separation
r (=r;;).

The firmest evidence for the presence of exchange
effects in p decay comes from a comparison of the
33 —+ p and H' —& He' ft values. " Assuming that the
ground state of H' and He' is basically a fully space-
syznmetric 3Sz/3 state with a 6% admixture of 'Dz/3

state, " the implication is that the axial-vector matrix
element is enhanced by about 10% by exchange con-
tributions. In calculating this contribution using the
operator H/&&3& given in (8), it is sufficient to assume
that the three-body state is 100%3Sz/3. In this case, the
exchange contribution to the axial-vector matrix ele-
ment M~(2) is

Mg "=4V3G/(y(1, 2,3) I gz (rz3)+. 3gzz (rz3)

+hz(rz3)+3hzz(rz3) lp(1, 2,3)), (9)

where g(1,2,3) is the fully space-syzzunetric radial func-
tion for H' and He'.

We now take

p(1,2,3) =zV expL —-', h(rz3+rz3+r33)7 (10)

and for simplicity assume that the combination of radial
functions in (10) can be represented by a Yukawa
function, i.e.,

exp( —nr)
gz(r)+ 3gzz(r)+hz(r)+ 3hzz(r) = I' . (1l)

0!f
» J. M. Blatt and L. M. Delves, Phys. Rev. Letters 12, 544

(1964).

a(23r)"'
(pl~.&.(0) I-)= T( + p),

q2+p2
(12)

H = S„(r)B„y (r)d'r, (13)

where S„(r) is a four-vector function of the coordinates
(momenta, spins, and isospins) of the nucleons involved
in the pion production and P is the pion-field operator.
The detailed form of S„(r) will be discussed shortly.

Given (12) and (13) and the usual relationship be-
tween the transition amplitude and the matrix element
of a perturbing Hamiltonian, it follows that

~(le —p- —«)(PI~.~.'"'(r)
I )

a(23r)"'
= &(1&e

—1&-—«) &(~++~~ p)e "'
g

2+/3
2

a(2~)3/2(2~ )1/3

(p I
&.In~+)e—'&'

q2+p2

a(2~) 3/3(2/d ) 1/2

(p I
S„(r')B„y (r')d r'

I
3zz)zer+*'3'.

Il
2+/3

2

(14)

Now in allowed p decay In) and
I p) are nuclear states

having the same parity so that selection rules prohibit
any contribution from J4 and similarly from 54 apart
from small retardation effects. These terms can therefore
be dropped from (14).In addition the momentum trans-
fer is small and so Eq. (14) can be evaluated in the limit

where &3 and p are nuclear states (say), q= pt/
—p and

T(3r++n —+ p) is the transition amplitude for the
process 3r++&3 —+ P or, conversely, by time-reversal
invariance, p —& 7r++n. Our purpose now is to relate
T(7r++r// —+ p) to an "effective" Harniltonian H which
we take to be responsible for the pion-production
process. H is assumed to have the following form:
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q ~ 0. Carrying out a partial integration on the right-
hand side and using the usual pion annihilation property
of P, it is then straightforward to show that

(pl& J'"'(r) ln)5(ye —y-)
= (a/z')(pl& S(r) ln)5(ye —y-) (»)

Here it is to be noted that we might at an earlier stage
have identified J'„(r) essentially with ( a/p s)S„(r),
since in a gradient coupling theory the identification of
J„&"& with the pion source term (aps. rt from a constant)
leads at once to the PCAC Eq. (4) (see, e.g. , Gell-Mann
and Levy4). However, the procedure adopted above is
rather more general and does not imply the assumption
of a furzdamemtal gradient coupling theory but only an

effective

Hamiltonian involving gradient coupling. Mul-

tiplying both sides of (15) by u r, where u is a constant
vector, and integrating over d'r gives

(Pl Jz"&(r) ud'rln)5(ye —y.)

= (a/~')(p I S(r) «'r
I )5(ye —y-) (16)

If u is taken to be the space-independent part of the
lepton (V—A) covariant, it is then clear that in an
allowed Gamow-Teller transition the effective p-decay
operator can be taken to be

a
He ———Ge S(r)d'r.

The next problem, therefore, is to consider the form of
S(r) as evidenced by the pion-production process. To
this end we consider the process p+ p -+ d+m+.

4. ANALYSIS OF THE PION-PRODUCTION
PROCESS p+p-+ d+pp+

The part of the effective Hamiltonian for pion pro-
duction [Eq. (13)) in which we are interested has the
form

II.= S(r) Vy (r)d'r

and is therefore responsible for p-wave pion production.
In the process p+ p —+ d+e.+, p-wave production follows
from initial 'So and 'D2 states. An analysis of the various
experimental data (angular distribution, energy de-
pendence, polarization phenomena) near threshold due
to Woodruff gives for the corresponding transition
amplitudes

a('Sp) = {(0.60&0.20)

Xexp[i(2 6—p.s+ ' ))jets mb' (19)

a('Ds) = (1.93&0.10)z1'" mb'"

where g is the center-of-mass pion momentum and the
phase is taken relative to that of a('Ds).

The notation used here is due to Mandl and Regge"
and is such that the cross section for the process is

given by

do
4&—=-', [{I

a(zso)
I
s+-; la('Ds)

I
s+K~ Re[a( Sp)*a('Ds))+

I a(spaz) I }
dQ

+{-,'
I
a('Ds)

I

'—V2 Re[a('Sp)*a('D, )))3 cos'8). (20)

Various theoretical treatments of the above process have been given in the past, "'4 the most sophisticated of

which allow for rescattering of the pion. The intention in this paper is to interpret the experimental data in terms
of an effective Hamiltonian consisting of the usual one-body terms and of a phenomenological two-body term. To
this end, S(r) is taken to have the form

S(r)=/&2 Iz. zvq(0)r, +o;8(r—r;)+P{[S;,T,, '+T;, S;,')[nz(r)(o, —o,)+nzz(r)(o, —o,) r r)(r;+ 7,+")—
2M i&j

+[T;,'T; +S,,'S; )[Pz(r)(o, o,)+Pz—z(r)(o, —o,) r r)(r,+ r,+)—
+[pz(r)(o, +o )+yzz(r) (o;+o ) r r')(r~++r, +)) ', [5(r r;)+5(-r r;—)), (21)—

where S;j and T;, are the singlet and triplet projection
operators in ordinary spin space and S; and T; are
similar operators in isobaric spin space. The n(r), P(r),
and y(r) are arbitrary functions of the internucleon
separation r (= lr;—r, l). Two-body terms antisym-
metrical in the 5 functions have not been included since

they do not contribute at pion threshold.

The spirit of this approach, therefore, is to use an
effective Hamiltonian including the usual one-particle
pion-nucleon interaction and to account for all multi-

"F. Mandl and T. Regge, Phys. Rev. 99, 1478 (1955).
"A. E. Woodruff, Phys. Rev. 117, 1113 (1960).
'4 See Ref. 13 for references to other theoretical work on the

process p+p ~ d+vr+.
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that the above values (24) for c are obtained. Since the
transition in the process p+p —+ d+Ir+ with which we
are concerned is from a spin-singlet, isospin-triplet to a
spin-triplet, isospin-singlet, it is clear that the only set
of two-body terms in (21) which can contribute is

P T;,'S;,'[III(r)(o;—e,)+nII(r)(o;—o;) r rj
i&j'

&& ( *+— +)l(3( —')+3( — )l. (25)

In order to calculate the nuclear-matrix element of
(25), the functions III (r) and nII (r) are taken to have the
Yukawa forms

0 .8 1.0
a(fm ')

1.2
1

1.4

III(r) =AI
e
—ar

nrr (r) =A II (26)
~G. i. Bands showing the allowed values of AI and —~3Arr

as a function of the range parameter 0..

nucleon effects in terms of a two-body operator. The use
of a two-body term is similar to the method used by
others" in interpreting the pion capture process which,
however, is mainly from the pion S state. The two-
nucleon term is completely phenomenological; however,
it is to be expected that the radial function will have a
range of the order of the pion Compton wavelength.

Now in calculating transition amplitudes using the
Hamiltonian (18) with S(r) given as in (21) the results
will be obtained in the form

o('Sp) = (b ('Sp)+ c ('Sp) )c"prPn mb'"
(22)

o('Ds) = (b('Ds)+c('Ds))n" mb'",
~here the amplitudes b and c derive from the one-body
and two-body terms in S(r), respectively. Tp is the
phase of a(ISp) relative to a(IDs) and depends on the
phase factors occurring in the initial diproton wave
function.

As far as b('Sp) and b(IDs) are concerned, part of
WoodruFs" calculations can be taken over at once."
Using the Gammel-Thaler potential' to determine the
diproton function and the Gartenhaus" deuteron wave
function, he obtains

where o. is a range parameter and Az and Azz are con-
stants. We take the deuteron wave function to be

t'p)Ils1
-C~(r)XI+~(r) X~jV. ,Ai

where X, (X,) is a triplet (singlet) spin state and
XII ——(1/2%2)SIsX„SIs being the usual tensor operator.
q, is a singlet isospin function. The S- and D-state radial
functions N(r) and w(r) are taken from the work of
Kottler and Kowalski" which uses the Vale inter-
nucleon potential. "

The initial diproton wave function is taken to have
the form

I/2

(Rp(kr) ——,'L3(k r)' —1)Rs(kr)}s 'I'nX, I)I,
kv

(28)

where k and K are the relative and the total momenta of
the two protons and the radial functions are approxi-
mated by Rp(kr) =0 for r&r„Rp(kr) = Lsink(r —r,)j/kr
for r)r, with r,=0.5 F and Rs(kr)= j&(kr) The ex. -

pression for Rp(kr) takes account of the hard core in the

b('Sp) =0.24,
b(IDs) =0.86,

rp= 2.65.
(23)

+l0-
0'(fm ')

Inserting these values in (22) and comparing with the
experimental results given in (19) then implies that

c('Sp) =0.36&0.20,
(24)

c('Ds) = 1.08+0.10.
The problem, therefore, is to choose values for the
parameters appearing in the two-body term in (21) so

Is S. G. Eckstein, Phys. Rev. 129, 413 (1963);P. P. Divakaran,
ibid. 139, 3387 (1963).

"The actual terms contributing are, in WoodruG's notation,
A 1, A2, B1,and B2, where A1 and B1are direct p-wave production
terms and A~ and B2 stem from the Galilean';-invariant~s-wave
interaction coupled with retardation eGects.

» L. J. GaInnMI and R. M. Thaler, Phys. Rev. 107, 291 (1937)."S. Gartenhaus, Phys. Rev. 100, 900 (1.955).

Ql

-10

-20

-30—

FIG. 2. Magnitude of the P-decay exchange elfect (expressed as a
percentage) as a function of the range parameter e.

"H. Kottler and K. L. Kowalski, Nucl. Phys. 53, 334 (1964).
~ K.K. Lassila, M. H. Hull, Ir.,'H. M. Ruppel, F.A. McDonald,

and G.'Breit, Phys. Rev. 126, 881 (1962).
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internucleon potential; it does not have the correct
asymptotic form for large r, but this is unimportant
since we are only concerned with the behavior of Eo for
small r. Finally, the pion is taken to be represented by a
plane wave function.

Using the above functions the calculation of the
amplitudes c('So) and c(zDo) is straightforward and
yields

C . t'~b, ,c('So) =—(Ax+ oAzz) N(r)Ro(kr) jo~
—je 'dr

Q- &2i

(gr)—oV2Axx ze(r)Ro(kr) jo( —(e "d»
k2)

(29)
C —

t pry
c(zDo) =—(Ar+ooAzz) ze(r)Ro(kr) jo~

—
~&

"«
k2)

qr)—oV2Arz N(r)Ro(kr) j o
—

~e "dr
2)

Here q is the pion momentum, and the constant C,
near threshold, is given by

C=8t '(3r/t )»'. (3o)

Since we are dealing with a threshold phenomenon
(q=0), it is permissible to replace jo(qr/2) by 1 in the
above integrals. After evaluating the integrals, values
of Ax Axx and n can be chosen which lead to the values
of c('So) and c(zDo) quoted in (24). Allowed values of
Az and —-', Azz are plotted as bands in Fig. 1. for 0.4
F ' &p(1.4 F '. For example, for e=m =0.7 F ',
Ax=(038+010) F ' Axr= —(195+038) F '

S. EXPLICIT FORM FOR THE BETA-DECAY
EXCHANGE OPERATOR

We now use the results of Sec. 3 [Eq. (17)j to obtain
an explicit form for the effective beta-decay operator.
Substituting (21) into (17) and carrying out the
integration gives

~GP Gm NN
Hp= PV2 K zz~(0)r;+o;+D[S~pT; +T~pS; j[nz(r)(o; o) +nx—(xr)(o;—o;) rrj(r;+ r;+)—

p' ' 2M

+LT" T"+S*'S"XA()(' )+P (—)( '—;)~]( —,')
+ [pz (r) (o'+o'&)+buzz (r) (o;+o;) r" rj(r;++r+)) . (31)

Using the value for a quoted in (5), it is clear that the
one-body term in (31) has the form

Hp&'&=G~ P r;+a, ,

which is the usual one-body Gamow-Teller beta-decay
operator [Eq. (7)j. This result, of course, is built into
PCAC theory and the value of u is chosen in order to
achieve it. Turning now to the two-body terms, by
using relations such as

2T;; (o;—o;)= (o, o,)+z'(o, Xo;), —
(32)

2S,,'(,—,)= (;—,) —o(,X;),
it is straightforward to show that they have the same
form as given in (8), namely,

Hp o =Gx Z([gz(r)ozXo'z+gzz(r)(o;Xo;) r r$(~;X~;)+

+[hx(r) (n, o;)+hzz(r) (o—;—o,) r" Pj(r;+ r;+)—
+Pi z(r)(o'+o )+jn(r) (o+o ) «j(»~++»~+)) .

The g, h, and j are given by

gz(r) =&[nz(r) —Pz(r)g, gxz(r) =&[nzz(r) —Pxx(r)7,
hz (r) =

&[nz (r)+Pz (r)j, hn(r) =
&[nzz (r)+Pzz (r)j, (33)

jx(r) = 2Xyz(»), jzz(r) = 2) yzz(r),

2zLE(Ax+ sr A zx)1'= 2lz(Az+~Azz) =
+G~NNKv Nzr

(36)

We thus have explicit expressions for the radial func-
tions occurring in the Gamow-Teller beta-decay ex-
change operator in terms of the functions occurring in
the two-body pion-production operator. These relation-
ships are now exploited for the case of triton beta decay.

6. APPLICATION TO THE BETA-DECAY
PR,OCESS H' +H'e+e +-v

In the beta decay of H' we have seen in Sec. 2 that in
order to account for the ft value it seems necessary to
appeal to exchange effects. It was shown that using a
phenomenological exchange operator the corresponding
beta-decay matrix element depended on the combina-
tion gx(r)+ ogzz(r)+hz(r)+ ohzz(r). But from (33)

g ()+lg ()+h ()+lh ()
= 2X[nz (r)+ onzz(r) $
=2K(Az+-'oAzz) (e "/nr), (35)

using the Yukawa forms for nz(r) and nzx(r) given in
(26). On comparing with (11),we have the relationship

where the constant X has the value

~~6 NN& NN~ ~

relating F to the parameters Az and Azz.
Taking the values of Az and Azz necessary to account

(34) for the pion-production process, F can then be calculated
as a function of the range parameter 0,. Correspondingly,
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the enhancement 8 of the axial-vector matrix element
due to exchange effects can be deduced. In Fig. 2, 8 (as a
percentage) is plotted against n.

It can be seen that far from giving an eehmcememt of
the order +10% there is a reductiom in the matrix ele-
ment which may be small but which could be quite
large. Within the range of values considered for n, only
for a very long-range two-body term (n&0.5 F ') does
the possibility arise that 5 might be slightly positive.

We now consider possible causes of this discrepancy.
Taking the theory set out in this paper, it is clear that a
number of approximations have been made. Most
serious of these, perhaps, is the use of a plane wave for
the initial diproton state. This is probably justi6able,
however, since the 'So and 'D2 phase shifts are small
(=10') at the energy in which we are interested.

As an overall check on the calculation, a comparison
can be made with Woodru6's work. '~ I'rom his paper it
is possible to deduce separately the contribution to the
pion-production amplitude from the four transitions
'So~'S~, 'So —+'D~, 'D2~'S~ and 'D2~'D~ where
the right-hand states refer to the S- and D-wave
components of the deuteron wave function. In par-
ticular, inspection of the 'So —+'S~ amplitude shows
that the contribution from rescattering, etc., which
corresponds to our two-body term, has magnitude"
—0.33. But from Eq. (29) the contribution of the two-
body term to the 'So —+ 'S& amplitude is proportional to
(Az+sAz) which, in turn, from Eq. (36), is propor-
tional to F. Thus a negative sign for F, and hence for 6,
is again implied.

Of course, this last conclusion and, indeed, the values
taken for fi(zS,) and b('D, ) in (23) depend on the model
used by Woodruff" and so some uncertainty must be
assumed here. In addition, the experimental values for
a(zSs) and zz('Ds) given in (19) are based on not
particularly accurate experimental work carried out
over 10 years ago, so leading to further uncertainty.
This being so, it is perhaps unwise to regard the dis-
crepancy as a severe and significant one. Even so, it is
interesting to reconsider the experimental data on which
the arguments for a positive exchange contribution
given in Sec. 2 rest. The two crucial measurements are
those currently accepted for the ft values of the neutron
and H3, namely,

(ft)„=1180+35sec (Ref. 22),

(ft) HI ——1137&20 sec (Ref. 23) .

Both experiments were carried out in 1959 and have not
been repeated since. The neutron lifetime experiment is,
of course, an extremely dificult one and doubts have

"In the notation of Ref. 13 the two-particle contribution is
given by A ~+A 6+A7+A8+A 10.

"A.
¹ Sosnovskii, P. E. Spivak, Yu. A. Prokof'ev, I. K.

Kutikov, and Yy. P. Dobrynin, Zh. Eksperim. i Teor. Fiz. SS, 1059
(1959) t English transl. :Soviet Phys. —JETP 8, 739 (1959)j."F.T. Porter, Phys. Rev. 115, 450 (1959).

been expressed about the accuracy claimed. '4 It seems
likely that the uncertainties in the experiment are such
that the actual ft value may be significantly smaller
than the above value.

In addition, using the above ft value including electro-
magnetic radiative corrections" together with the value
Gz/Gv = —1.250&0.044 obtained by Conforto" from an
analysis of neutron P-decay angular correlation and
polarization data leads to Gv ——(1.337&0.058)X10 '
erg F'. This is to be compared with Gv ——(1.4052
+0.0049))& 10 "erg F' obtained from data on 0+ ~ 0+
transitions (e.g. , see Ref. 1). The values are hardly in
agreement and again suggest that (ft)„should be
several percent smaller than the value quoted above.

In the case of the H' decay, the uncertainty lies in the
end-point energy Eo. Here it should be noted that the
ft value is extremely sensitive to the value taken for Es.
This point has been discussed in some detail by BahcalP'
who notes that two conQicting values for Eo have been
obtained:

Zs ——18.61&0.1 keV (Ref. 23),
Es 17.95&0.1 k——eV (Ref. 28).

Here the experimental uncertainties work in such a
direction that Eo tends to be underestimated. '4 This
being so, the value quoted above for (ft)H~ should be
regarded as a lower limit.

Thus, it could be that experiment is wrong to such
an extent that there is no need for positive exchange
effects at all. Indeed, negative exchange effects as
indicated by the calculations of this paper may be
necessary. "Clearly it is extremely important that the
ft values of the neutron and H' be carefully remeasured.
In addition, more detailed measurements and analysis
of the pion-production process p+p~ d+s+ would
also help to clarify things. But the over-all situation
must be regarded as considerably uncertain. However,
we do feel that the approach adopted in this paper
coupled with more accurate experimental results could
lead to further information about the validity of PCAC
theory.
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