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in the "degree of mixing" does not change the polarity
of optical signal. "

' The use of a He' lamp to optically orient the He' sample
provides a strong source of D3 only light because of the isotope
shift of the spectral lines. In this case a signal reversal has been
observed as expected by ¹ D. Stockwell and G. K. Walters
(private communication) .
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The collision of a negative ion A and neutral atom B at a very low kinetic energy (a few eV or less) may
lead to the release of an electron through the reaction A +B~(AB)+e, known as "associative detach-
ment, "At higher energies, A +B—&A+B+e also becomes possible. A theory of these processes is formulated
by assuming that the electronic state is stable at large separations R of A and B, and changes adiabatically
as R decreases; at very small R, of the order of 10 ' cm, the electronic state turns into an unstable compound
state able to emit an electron. Expressions are derived for the total cross section for electron detachment, and
for the cross sections for detachment leaving the nuclei in a single discrete anal state. At thermal energies,
the total cross section can become very large because of Langevin spiralling, arising from the long-range
polarization between A and B.For example, in the reaction H +H—+H2+e, the cross section is estimated to
be of the order of 10 '4 cm' at a relative kinetic energy of k &&400'K.

I. INTRODUCTION

"NSTABLE compound states of negative molecular
ions which decay to neutral molecules by the

emission of an electron are well known. ' So far these
states have usually been generated by the bombard-
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ment of neutral molecules with electrons, where they
give rise to characteristic peaks in the cross sections as
a function of energy. The existing theory ' has been
tailored for this case, and reasonable agreement with
experiment has been obtained in those cases which have
been treated in detail. 5 '

In recent experiments, ~" similar unstable compound
states have been generated by another method, the
bombardment of neutral atoms or molecules by nega-
tive ions with kinetic energies up to a few electron volts.
The object of this paper is to formulate a theory of this
process, and to give expressions and estimates for the
cross sections for the formation of different fi.nal states
of the nuclei. We shall con6ne ourselves to the simplest
case of a collision between a neutral atom and a nega-
tive atomic ion.

It might seem at 6rst sight that no new theory is
needed, because electron-molecule and ion-atom colli-
sions are merely two different channels through which
the same unstable compound states are formed; there-
fore it might seem that the expressions for the cross
sections should diGer only in the entry width which has
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This paper reports the observation of the free electrons produced
by associative detachment involving 0 in H2, whereas Refs.
9 and 10 report the destruction of the negative ions.
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to be inserted in a Breit-Wigner formula. " That the
problem is more complicated, and a new theory is
required, comes from the fact that one is here dealing
not with a single isolated unstable stat" the case to
which the Breit-Wigner formula applies —but with

groups of such states. This in turn comes from the
existence of two different time scales in molecular
problems, related to the motion of the electrons and
the very much slower motion of the nuclei. As a conse-

quence, the compound states have to be defined
adiabatically for fixed nuclei, and their effect on the
motion of the nuclei treated in a second stage (as has
always been done for stable electronic states in mole-

cules). A single compound state for the electrons is the
common element either of a set of many discrete
vibration-rotation levels, if the compound electronic
energy has a minimum, or of a continuous band of
nuclear states, if the compound electronic energy is
repulsive. These sets of states have to be treated
together if the physical situation is to be seen in a
proper perspective.

The basic idea of this paper is that the electronic
state of the initial system A +B (where A is a
negative ion and B a neutral atom) is stable at large
separations R of the nuclei, and changes adiabatically
as R decreases. When R(R„where R, is a value
characteristic of the system, the electronic state be-
comes unstable with respect to electron emission, but
nevertheless continues to change adiabatically; its
energy becomes complex:

W(Z) =Z(Z) --,'sr(Z),
where E and F are real. The lifetime r is given by
v=fi/F. Electron detachment will be a probable out-
come of a close collision between A and 8 if v- is
short compared with the time the nuclei spend in the
region R(R, The assumption that the electronic state
continues adiabatically into the region of instability
constitutes the main difference between the point of
view of this paper and that in a discussion of the
process (1.2) below given by Demkov. "Dernkov sup-

poses that the original electronic state is bound for
R&R„merges with the continum at R =R„and ceases
to have any meaning when R&R,.

The plan of the paper is as follows. A wave equation
for the wave function describing the nuclear motion is
derived in Sec. II and given in Eq. (2.12). The deriva-
tion is based on the assumption that in the region of
configuration space where all the electrons are within
a few angstrom units of the nuclei, the complete wave
function may be approximated by ](R)P(q, R), where

P is the adiabatic electronic wave function calculated
for Axed nuclei and belonging to energy W(E). The
nuclear coordinates are represented by R, and the

&~ J. M. Blatt and V, F. Weisskopf, Theoretical Nuclear Physics
(John Wiley 8z Sons Inc., New York, 1952), Chap. VIII, Eq.
(7.19).

ra Yu. N. Demkov, Zh. Eksperim. i Teor. Fiz. 46, 1126 (1964)
(English transl. : Soviet Phys. —JETP 19, 762 (1964)j.

A +B +A+B+—e. (1.2)

The partial cross section for the states of the residual
molecule in (1.1) are derived in Sec. IV, the final
formula being given in (4.17). For process (1.2), the
cross section for leaving the nuclei in some small
finite energy range is derived in Sec. V and given in
(5.1). It is verified that the partial cross sections add

up to the total detachment cross section of Sec. III.
Process (1.1) is the inverse of dissociative attachment,
which has been studied extensively. ' ~ The process
will be exoergic —and therefore possible at zero initial
kinetic energy —if the separation energy in the reaction
(AB)-+A+B exceeds the electron affinity of A. It may
therefore be important in ionized gases at temperatures
down to a few hundred degrees or less as the only
mechanism for the detachment of electrons from nega-
tive ions by collisions without the participation of
photons. Examples are the destruction of H ions in
stellar envelopes through the reaction H +H~Hs+e,
and the reaction 0 +0—+Os+e which is thought to
play a role in the maintenance of the electron density
at night in the earth's upper atmosphere. ' Process (1.2)
can occur only if the initial relative kinetic energy of
the nuclei exceeds the electron aflinity of A, which may
vary from a few electron volts down to a few tenths;
this process is therefore not likely to be very important
in ionized gases at temperatures less than some thou-
sands of degrees K. (A theory of this process at kinetic
energies of the order of hundreds of electron volts has
been developed independently by Bardsley, ' and com-

pared by him with experiment. )
To calculate numerical values for the detachment

cross section would in general require a detailed
knowledge of F as a function of R. There is, however,
a large class of compound states for which this is not
necessary, at least for rough estimates. These are the
states for which 1 is so large that the amplitude of the
outgoing & wave is small compared with the incoming;
then almost every close collision of A and 8 leads to
detachment. The detachment cross section becomes
independent of I' and is determined solely by the
maximum impact parameter for which the colliding

"J.N. Bardsley Proc. Phys. Soc. (London) 91,300 (1967).

electronic coordinates by q. An important consequence
of the presence of I' is that ] is a damped wave in

R(R„ the damping representing the loss of probability
in the incident channel (A +B) due to electron emis-

sion. The total cross section for electronic detachment
can be obtained directly from the difference of the
incoming and outgoing probability Quxes. The relevant
formulas are given in Sec. III.

The final state of the nuclei after an electron has
been detached may be bound, yielding the reaction

A +B~(AB)+e,
known as associative detachment, or unbound, giving
the reaction
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IL THE WAVE FUNCTION AND WAVE EQUATION

In this section we derive an approximate wave
equation for the nuclei. As long as the velocities of
the nuclei are small compared with those of the elec-
trons, say at kinetic energies not exceeding a few
hundred electron volts, one may approximate

+(5 R) =5(R)4(q, R), (21)
where R is the vector separation of the nuclei, as before,
and q the electronic coordinates. (We shall work in the
center-of-mass frame. ) The electronic wave function P
is to satisfy the wave equation in the adiabatic approxi-
mation;

Here
)H, i(q, R) —W(R) $$=0.

Iree= II E)

(2.2)

(2 3)

II being the complete Hamiltonian and E the kinetic
energy of the nuclei. The eigenvalue 8' is determined
by the boundary condition that whenever any one of
the electrons moves off to infinity either P—+0 exponen-
tially or P~ outgoing wave with a wave number
determined by the energy W. LSee Appendix, Eq.
(A13).$ If the first case holds for all channels, f is a
bound state and 8' is real; if the second is true for some
channels, f is unstable with respect to electron ernis-
sion, and 8" contains an imaginary part:

&I'(R) =&(R) —lil'(R) (2 4)

atom and ion approachclosely enough for I' to be large.
This maximum impact parameter is greatly affected by
the long-range polarization attraction between the
colliding atom and ion, which falls off with distance as
R 4 and. can lead to very large detachment cross
sections at low energies ())10 " cm'). This effect is
discussed in Sec. VI A. Section VI 8 deals with the
question of whether sufficiently large values of I' are
likely to be attained.

The paper uses a number of simplifications and
approximations, which could be removed without much
difhculty. They are:

(1) As stated before, we have not considered the
case where either A, or 8, or both are polyatomic
structures.

(2) All spin-dependent forces are neglected. (This
makes the Hamiltonian real ).

(3) The electronic states are Z states. (This implies
that the rotational wave functions of the nuclei are
spherical harmonics. )

(4) Only a single electronic state is available to the
residual molecule. (This simplifies some formulas in-

volving I".)
(5) The colliding atom and ion are supposed to be in

their electronic ground states.

For the purpose of illustration, we shall repeatedly
refer to the simple case H +H.

The eigenvalue problem (2.2) for unstable states has
been discussed in detail in two recent papers where
further references will be found. ' (These papers will be
referred to as I and II.)

To derive an equation for $, multiply the Schrodinger
equation

(H —e)%' =0 (2.5)

2M (
l 2V, k &qy"V, 0+i &q4"V,V) dq[P /'

(2.6)

We have dropped some kinetic-energy terms of order
(m/M) relative to those retained. (m = electronic
mass, M = nuclear reduced mass. )

We next show that the right-ha, nd side of (2.6) may
be replaced by zero. The second term on the right in

(2.6) will be smaller by a factor of order (m/M) than
the kinetic energy term in II,&, and will be dropped.
The remaining integral in the numerator on the right
of (2.6) may be rewritten

dg0 &&4'=k&@ dg I
at'

I + drfL4' &&0 0'&&0' 3
2

(2.7)

To make the first term on the right of (2.7) vanish,
we shall normalize f so that, for all R,

dq
/
P ['=1, (2.8)

the integral being taken over the interior of S. The
uncertainty in this integral due to the imprecise specifi-
cation of S will be small, because P itself must be small
on S if the notion of a compound state is to be physi-
cally meaningful. We shall consistently treat f on S as
a small quantity, and drop terms of the first and higher
order (see Appendix); the component added to the

by P* and integrate over the coordinates of all electrons
while holding the nuclei fixed. (e is the total energy. )
For sufficiently large separations R, the state P is
bound; the integration may then be carried over all
space. For the range of R in which I'WO,

~ P ~

increases
exponentially as r,—& ~, where r; is the radial coordinate
of the ith electron. LSee Eq. (A8).] However, there
will be an inner region where all r; are less than a few
angstroms, and where the electron density falls to a
minimum with increasing distance from the nuclei
before starting to increase exponentially. (See Appendix,
Fig. 6.) Therefore one can surround the negative ion

by a spherical surface S with a radius near the density
minimum, and integrate over the enclosed volume. If
one now replaces 4' by the approximation (2.1), and
uses (2.2), one obtains

fP

2M
V'ii'(+ [W (R) —~]$
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(e)

Fro. 3. Notation. The collision occurs with initial kinetic energy
60& and leads to a residual molecule with energy iy. The total
energy is e. The transition takes place near the point Ey, deter-
mined by the intersection of the horizontal iy with the curve
V~r +(e—Ei ). An electron with energy p/&'& is emitted. Rg is
the turning point in the initial channel 2 +J3; Eg is one of the
turning points in the anal state iy. Physically important inter-
sections are ringed.

incoming wave part is identical with that of a plane
wave exp(ikp R)/(27r)'/s; the vector kphaspolar angles
kp. In the case of H+H,

Hankel functions of order 3,

sP(R) —= (2M/fP) Le —Wi(R) j,

qi(R) —= /r&(R') dR',
&ot 8-+

ai(~) =kp, (3.7)

qp&—= limLq&(R) —kpR). (3.8)

To de6ne the points Rp~, one has to continue W~(R)
analytically o8 the real R axis and satisfy the equation

e —Wg(Rpi) =O. (3.9)

Unless F is very large, R«will be close to the turning

point R&p defined by

e —E,(R„)=O. (3.1o)

The physical significance of R« is illustrated on Fig. 3.
If we make a linear approximation near R&~,

W, (R)—E)(R,i) —WU(R —R,i) —-', il'(R, i) (3.11)

L
—Wu =—(de (R) /dR)//=r/„7,

we get
Rpl Al ss(I (Al) /Wti)

It follows from a comparison with (3.1) that

nz = expLi(2qpi+ Z~+-', w) g,
so that

(3.12)

~
g, ~= exp —2Im si(R') dR' (3.13)

whenever I'(R)«
~

(e—Et(R) ) ~, the integrand may
be rewritten

W(po) =EH+EH-, (3.3) 2 Ims, (R)=I'(R)/l't»(R), (3.14)

where EH and EH- are, respectively, the electronic
ground-state energies of the hydrogen atom and the
negative hydrogen ion.

The reaction cross section associated with the /th
partial wave is LRef. 16, Eq. (2.13)g

od, i=a~'(2i+1) (1—
~

r/g ~') (3 4)

where X=—1/kp. If r/~ is calculated by solving (2.12),
then 0-~ ~ becomes the detachment cross section, because
inelastic scattering enters only through the imaginary
part —-,'I' of 8; representing the decay of the negative
ion by electron emission. We shall denote the complete
cross section for detachment by O-d, so that

&tg = fTd, z (3.5)
l

r/& may be calculated by solving Eq. (2.12) in ~II'
approximation. The WEB solution regular at R =0 was
given in Eq. (2.47) of II. It is, when the coeflicient of
the incoming wave is made equal to that in (3.1),

$g (R) = $2kp'/' exp( —is (i+i's) ) exp( —iqz) j '

&&Lq (R)/ (R)j"'
&&I&v (q (R))+ p(' /3)& +(q (R))1

(3.6)

where H~I3+ and jV~~3 are outgoing and ingoing wave

where
»(R) —=Le—%(R)/HG"' (3 13)

is the relative velocity of the nuclei at R. Since this

approximation cannot be used near the turning point

R&~, it is convenient to split the range of integration in

(3.13) into two sections, from Rpi to Rii, and Rii to
infinity, R&& being a real point chosen to be suKciently
close to R~i for the approximation (3.11) to be valid,

and yet sufBciently far out to satisfy the inequality

~
e —E~(Rt~) ~&&i'(Rig). For the first integral we use

the linear approximation, obtaining

Rn g~) i/2

Im dR'~r(R') = Im ( I
Le —Wi(Ru) 3s/s.

3WUBol

I'(R') dR'

zpi ft»(R')o„=pris(2(+ 1) 1—exP —2

/MI'(RU) (RU —Ri) "'
—2

25'Wu

This formula expresses the intimate relation between

the damping of $ and o.s, ~. The first term in the exponen-

(3.16)

The second step is justified by the inequality governing

the choice of R~~. Thus if we suppose that I' is suffi-

ciently small to use (3.14) when Ru(R, we get, using

(3.13),
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tial gives the probability that the electron shall not be
detached away from the turning point on either the
inward or outward trajectories, LI'(R)/fijLdR/o(R)]
being the probability of detachment in distance dE.
(covered in time dR/o(R)$ when the decay rate is
I'(R)/5. The second term gives the probability that
electron should not be detached close to the turning
point.

The formula (3.17) enables one to estimate a rough
lower limit on I' in order that

~ gi ~'&&1. It will clearly
be sufhcient that

Icii/58i+ 1,

where I' and 8~ are suitable representative values of
I'(R) and ui(R), while the Bohr radius u~ is a measure
of the distance over which the damping is important.
If Ei is attractive, ai will be of order M 'I'(5'/maii') 'I'
Therefore one expects that

~
qi

~
&&1 if

I'& (m/M) 'i'(fP/mais') 0.1 eV. (3.18)

This inequality is satisfied by a large margin by the
lowest compound state of H2 (I). The lower limit
(3.18) is sufficiently small for the approximation (3.14)
on which the derivation was based, to be applicable. If
I' is larger, (3.14) may break down; but g will then be
smaller because of the increased damping, so that
(3.18) is sufhcient to ensure that

~
qi j &&1 for states

with attractive E~.
It is not easy to make a similar estimate for an ionic

state for which E~ is repulsive, because here the distance
through which the nuc1ei can penetrate into the un-
stable region will be strongly determined by the energy.

An instructive formula for 0.&, & may be obtained. by
multiplying (2.12) by Pi, subtracting the complex-con-
jugate equation, and integrating from R=O to R= ~.
Using (3.14), and the asymptotic form (3.1), one
obtains

2m'(21+ 1)
o&, i

—— dR I"(R) i &i(R) ~', (3.19)
'VpA

where ep is the initial relative velocity of the atom and
ion at large separations. Since O.q, ~ is proportional to
the fraction of the probability Aux lost from the
channel (atom + ion) during the encounter, (3.19)
relates this lost Qux directly to the rate of loss in each
interval dR.

IV. VIBRATIONAL STATES OF THE RESIDUAL
MOLECULE IN ASSOCIATIVE DETACHMENT:

REACTION A +8 +(AB)+e-
In Sec. III we discussed the total cross section for

electron detachment, irrespective of the 6nal state of
the nuclei. In this section we split this total cross
section into partial cross sections for the formation of
individual bound states of the residual molecule. (Such
bound states of course exist only if the final electronic
energy has a minimum as a function of R.) (The
production of unbound states of the 6nal molecule is
treated in Sec. V.) An example is the reaction H +

H-+H&+e, the final electronic state being the ground
state of H2, as shown in Fig. 1.

We need a notation for the Gnal channel. The
vibrational state will be denoted by a subscript e, the
rotational quantum numbers of the molecule by (t', m'),
the quantum numbers of the electronic state of the
residual molecule by n, and of the emitted electron by P.
It will often be convenient to use a single suKx f to
stand for (nPt'o) .

The cross section for detachment reaction leading to
the final state fm' is given by

of (2m)'m'
o@ ~ = — (Z+1) C'*f ( j) VpI (kp) dgdR

Vp A4

(4.1)
P

Here %(ko) is the exact state, corresponding to a
relative velocity vector with polar angles kp before the
collision, V; is the interaction potential of the emitted
electron —which we take to be the jth—with the other
particles, and Cf ( j) the final state calculated with
neglect of V;. The velocity of the outgoing electron is ey,
and the relative velocity of the colliding particles ~p.

The factor (Z+1) is the total number of electrons, and
allows for the possibility that any one of them may be
emitted.

We shall approximate 0' by (2.1), calculating $ from
(2.12) and (3.1) . For Cf ~ ( j) we have

Cf„(j) =xf (R) Sp I'i „(8)p (not j)
&&bxp(i&f rf)/(2~) '"3 (4 2)

Here Xf is the final vibrational and Fi. (8) the final
rotational state of the nuclei. p (not j) is the electronic
state of the residual molecule, which contains all elec-
trons except the jth. A, k~ is the momentum of the out-
going electron. Its spin state is denoted by Sp. The
normalization of 4 is such that

+—+IexpLiko R)/(2m)@'Ig(q, R)+ scattered wave

(4.3)

as R-+~. The state f is supposed to be normalized as
in (2.8), and is supposed to be completely antisym-
metric.

The cross section 0.@ ~ will be integrated over all
directions k~ of the outgoing electron, and summed
over m' and the spin Sp, the result will be denoted
by o-) v:

&i' s= g p dkfodfm' ~ (4 4)
Sp m~

Since this sum is independent of the direction kp of the
initial relative velocity, it remains unaltered if we
average over kp, i.e.,

oi „=(4nr) ' dkp dkfg Qa@„.. (4.5)
Sp mj

Performing the integration over kp and the summation
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over spins on (4.1), one gets

4m'm2 2

(8+1)Q Q — dk& dR Y*,,~, (R) Y&„(B) RdRx*r(R)$&(R)l~p(kr, R, 8)
A(4 lm .m~8p &0

(4.6)

where

exp ( i—kq r,.)f p= dq, S*pp p(not j)V;(q, R)P(q, R).

(4.~)

To do the sum over 1 and m one notes that I"*~ ~ and
I & oscillate rapidly with respect to angle. For example,
in a collision of two oxygen atoms at thermal energies,
say 0.03 eV, and at an impact parameter of 1 A, one
has 1 30; therefore a typical wavelength in angle is
2w/30. On the other hand, the factor f varies slowly
with angle, so that only terms with (l, m)~(P, m')
weigh appreciably in (4.6). We can therefore replace
$~(R) by P& (R), so that the sufFicies (l, m) appear only
in I'g, . The completeness relation

QY*i (8) Yi„(B')=h(B R') —(4.8)
L,m

then reduces the two integrations over 8 in the two
factors in the square in (4.6) to a single one. The
integration Id' makes the product of the two factors
independent of 8, so that the remaining integral over
R can be done by using the normalization of I'E .. The
sum g ~ then yields a factor (2l'+1) . One gets

o.( „——(4m'nz'/fi4) (8+1) (ir/vo) (21'+1)

XQ dkr dRRx*r(R)$). (R)l p(kr, RB),

(49)
This expression can be simplified further by noting

that the main contribution to the integral must come
from limited regions determined by the Franck-Condon
principle. To show this, note that the factor l' varies
slowly, with a characteristic distance of order 10 ' cm,
coming from the electronic wave functions in (4.7).
The nuclear wave functions have reduced wavelengths
of order (m/M)'I')&10 ' cm, where m is an electronic
and M a typical nuclear mass. Therefore most of the
contribution to (4.9) will come from points where the
wavelengths of xr and (&. are equal, since the rapid
oscillations of the product x*r$~. make the contribution
to the integral from other points small. To evaluate
the integral in (4.9), we shall replace xr by the WEB
approximation

Rxr (R) = (2M(u/m-fc) '~'

X I cosgqr (R) ,'n5/(K f (—R—))-"'I, (4.10)

R, is the smaller root of the equation er —V i.(B,) =0,
eq is the energy of the residual molecule in state +Pe,

the corresponding electronic energy, and a the
vibrational frequency. The normalization constant in
(4.10) has been calculated by assuming V to be
parabolic, and chosen so that

R2)x, (R) j2dR=1.

We then substitute (3.6) and (4.10) into (4.9),
replacing the Hankel functions in (3.6) by their
asymptotic forms t this will be justified because it
turns out that the main contribution to (4.9) does not
come from the neighborhood of turning points). The
integral in (4.9) then becomes, up to a constant factor,

dRI exp (~Lqi (R) —q~(R) ))

where
+ exp( ~l q~'(R) 'Vf(R)))IP( R) (4 12)

l(R) =l-p(&x, R, &),

Wp (Rf) —ty V~p (Rf) ~ (4.13a)

Although the solution of this equation will in general
be complex, we shall simplify the discussion by as-
suming that I' is su@ciently small for the imaginary
part of Rr to be neglected. LThere would be no great
difBculty in removing this restriction by introducing
linear approximations for Wp and V ~. (R) near Rr.)
Equation (4.13a) is an expression of the Franck-
Condon principle. The left- and right-hand sides are
the kinetic energies of the nuclei before and after the
emission of an electron. Therefore (4.13a) says that an
electron can be emitted only near a point Ey at which
the velocity of the nuclei remains unchanged.

Introducing the energy ay~') of the emitted electron,
then since

and where only those products of oscillating exponen-
tials have been retained which have a point where the
phase is stationary. Since in (4.12), f will be slowly
varying in comparison with the exponentials, the main
contribution will come from the neighborhood of points
E~ dined by

I (8/BR) L8 (R) qr(R))I g=~, —0, ——
i.e.,

where &~"=lV~ (Rr) —V ~ (Rr) (4.13b)

q(Rr) =— Kr(R') dR',
Rg

Kr (R) =—(235/fP) '~')~I V i (8 ))'". —(4.11)

This relation is illustrated in Fig. 3.
The slowly varying function f(R) in (4.12) will be

approximated by |'(Rr), taken outside the integral, and
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where
&f=—[(8/BR)LW (R) —V (R)]}=, . (4.16)

The formula (4.9) finally becomes

~~, = (2P+1)~Vrf (I'(R,)/A, ) I A, e '»i'+A-f+e'~«' I'

(4.17)
where

pf/2= —-',~+—Re(q p qf) ~=g,—, (4.18)

rf=Ado/vp (Rf) Af ~ (4 19)

A~+=—exp —Im
Bpi

zt (R') dR'+ ~i (R') dR'
Apl

Af =—exp —Im Ki (R') dR'
Ry

(4.2pa)

(4.20b)

Formula (4.17) is the final expression for the cross
section for associative detachment. The various factors
have simple physical interpretations:

(i) (2l'+1)~V is the geometrical cross section for
the collision of atom and ion with relative angular
momentum Al' and linear momentum 5/X.

(ii) rf is the time a classical particle moving with
velocity v& (Rf) would spend traversing the region
bRf =Rf (a'l'o+ 1) Rf (nl'n) —separating the point sRf
corresponding to two adjacent vibrational levels of the
final molecule. To see this, we note from (4.13) and
(4.16) that

I
~f

I I
bRf

I

=
I

e &''0+i —e-t"
I

=&eo; there
fore rf =bRf/vi (Rf) =fi~/I vi (Rf) Df], in agreement
with (4.19). This physical interpretation of rf must
rot be taken to mean that the R axis may be divided
into intervals 6R~ in each of which there is autoioniza-
tion to only one final vibrational level. The range of R
contributing to a single level v is the range near the
point R~ in which the phases of the exponentials in
(4.12) are slowly varying; from (4.15), it follows that
this is of order

I
2jP«, (R )/~gf I»~= (bR )U2(2$$, (Rf)/(g)i&2

which will generally differ from bR~.
(iii) I'(Rf)/5 is the decay rate in the region where

autoionization to the level e occurs.
(iv) The factor

I

~ ~ ~ I' is the square of the sum of
the probability amplitudes for the oscillating nuclei to

written in terms of I'(Rf) by the formula

I'(R) m'of=(Z+1), Q dkf I t~p(lrf, R) 8) I', (4.14)
27rA, Sp

which is derived in the Appendix. The remaining
integral in (4.12) may be evaluated by the saddle-point
method, using the notation

( —) }(b'i»') I qi (R) —qf(R) 3}~=~,—=~~f/&'«(Rf)

2 ~& dR' rf (e)

ri ~„v( (R')
(4.22)

rf(e) is the time a classical particle would take to move
from R~ to the turning point and back in the potential
Ep(R). Replacing rf(e) by a typical value r, we have
as a rough estimate for the period be of the oscillations

be 2m.5/r. (423)

This will be of the order of a typical vibrational spacing,
say about a tenth of an eV. The oscillations of the
partial cross sections with different /' will not be quite
in step because of the dependence of pf on l' LEq.
(4 18)3.

The dependence of pf in (4.18) on the final vibra-
tional state, through g, implies that the interference in
(4.21) will make oi „ fluctuate from one v to the next
at a constant initial energy. This effect may be esti-
mated by considering the change Ap~ in p~ as e changes
by unity. One obtains from (4.13) and (4.18)

Apf = 2(ur, (ef), —

where r„(ef) is the time a classical particle of energy
would take to move from R~ to the inner turning

point in the potential V. Since 2r„(ef) will usually be
a sizable fraction of (2m/&o), there will generally be a
change of order unity in the term containing cosy~ in
(4.21) from one vibrational level to the next.

The expression (4.9) can be summed over all final
states of the nuclei to verify consistency with (3.19).
To do this, we take t outside the R integral, replace it
by f(Rf) Las we did in treating (4.12)j, and substitute
for

I t I' from (4.14) . The result is

2~'(2l'+ 1) 2

oi, = I'(Rf) dRRX"'f(R)&i (R) . (4.24)
'vpA

One can now use the slow variation of I'(R) with R to

be at the point R~ during the inward and reflected
motions, multiplied by phase factors depending on the
final state. In the first term, the factor A~ contains
the damping of the incident wave from R = ~ to R =R~,
while the factor exp( —iaaf/2) contains the correspond-
ing phase. In the second terms, the factor A~+ is the
modulus of the reflected wave, damped from R= ~ to
the reflection point near Rp~ on the way in, and again
from the refiection point to R~ on the way out. The fac-
tor exp(iaaf/2) contains the phase of the outgoing wave.

The presence of the two terms in
I

~ ~ ~ I' in (4.17)
gives rise to oscillations in |r~ „as a function of e. One
has

I Af o '&f~'+Afro'»" I'=Af '+Af '+2Af+Af cos—fif.

(4.21)

To estimate the period of the oscillations, we note that
from (4.18) and (4.13) and neglecting I',

deaf/de=2 Re(d/de) qi (Rf, e)
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insert F back into one of the R integrals, replacing
I'lf" I'by

I' ~ ~ ~ RdR R'dR. 'I'(R) (*v(R)(v(R')

to recover (3.19). This argument is still valid if some
of the final states of (A+8) are unbound, since (4.26)
remains true in that case.

If the individual levels v are not resolved, the inter-
ference term in (4.21) may be dropped because of the
Quctuations of cospj. One may then consider an interval
er to er+Aer for the final energy of the nuclei, containing
several levels (i.e., h~r))Scan). Denoting the cross sec-
tion for all final levels of angular momentum /' in this
interval by 0 v (er) Der, one finds that (4.17) is replaced
by

0 i. (er) her (21'+——1)m X'

X (Ar '+Ar+') . (4.27)
I'(Rr)

Vp f 5f

IThe physical interpretation of the factor L ~ .j is
similar to that of Eq. (5.1) in the next section. )

Equation (4.27) applies if the final levels are so close
that the nuclei may be treated classically; the two
contributions A~ ' and A~+' then correspond to nuclei
approaching and separating as they pass R~.

V. NONASSOCIATIVE DETACHMENT: REACTION
A +B~A+8+e

After the emission of an electron, it may happen that
the final state of the nuclei lies in a continuum, either
because the final electronic state is repulsive, or be-
cause the electron carries away too little energy to
leave the nuclei bound. The expression for the cross
section for detachment in this case can still be obtained
from (4.9) by taking the nuclear wave functions x to
be normalized within a box of radius I. large compared
with atomic dimensions. The cross section for leaving
the system A+B with energy between ~g and ef+def
will be denoted by oi (er) de~, as at the end of Sec. IV.
The difference between (4.27) and the present case is
that in (4.27) LQr has to spread over many discrete
final levels, whereas here we are dealing with a true
continuum so that d~y can be infinitesimal. On letting
1. tend to infinity, one finds that ai (c~) der is given by
(4.17) with rq replaced by

dry= der/wi (Rr) ar. — (5.1)

Rr is still defined by (4.13a) and hr by (4.16). It
follows, by an argument similar to that in point (ii)

Xxv. (R)x*v.(R') (4 25)

Equation (4.24) can then be summed over v by using
the completeness relation

Qxv. (R)x*v.(R') =8(R—R')/RR', (4.26)

below Eqs. (4.20) that dry is the time which a classical
particle would need to traverse the distance bR~
between the points Rr corresponding to ~r and ed+der

VI. ESTIMATES OF THE CROSS SECTION FOR
ELECTRON DETACHMENT

A. An Upper Limit on d~

The expression (3.19) for the cross section for
detachment depends on I'(R), so that exact calcula-
tions would require a knowledge of the complex
energies of the compound states involved. However,
the estimate (3.18) shows that it is easily possible for
the contribution of the /th partial wave in the incident
beam to reach the maximum attainable, according (3.4),
when

~
gi

~

=0. We shall calculate an upper limit to
the cross section by assuming that all partial waves
with / below some upper limit l, (e) are completely
absorbed by the process of electron detachment. We
shall consider later to what extent this upper limit may
be approached in practice.

If gi
——0 for 0&i&1, (e), the cross section for elec-

tron detachment will be denoted by 8d. It is

0'g& O.g(C) ~ (6 2)

Ke shall assume that there is a radius R~ such that
detachment takes place with certainty whenever the
nuclei approach to E.&R~. With a potential 8" having
an attractive real part, R~ will be of the order of the
separation at which the potential curve starts to slope
down sharply as the nuclei approach. For the sake of
illustrating orders of magnitude, we shall take Rq=
2)&10 ' cm. The quantity fi/ is the highest angular
momentum for which the particles can approach into
R&R~. In making the estimate, we shall neglect all
barrier-penetration effects.

A knowledge of the interaction potential is needed
only for R&Ed. To a good approximation this will be
given by the polarization potential

ne'/2R4— (6.3)

between an ion of charge e, and an atom of polariza-
bility n. Thus the complete effective potential for the
/th partial wave is

Wi(R) =—(e'cx/2R4) + (O'P/2MR') +W( ~ ) (6.4)

when R)~. For the sake of illustration, we shall take

0'g (e) =s'X g (2l+ 1) =7lk~l~g, „= h7t~ ,„8( )e. (6.1)
L=O

Here A, is the reduced wavelength in the incident beam,
and b, , (e) the classical impact parameter correspond-
ing to an angular momentum fi,/, . The values of / of
interest will be so large that one always replace (l+1)
by /. In reality, if the partial waves with /&/, have
q~ small but finite, one has
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for 0. the value

n=0.7X10 "cm' (6 5)

for atomic hydrogen. Curves for t/t/'& are shown in Fig. 4.
Note that when / is small, W~(R) has a maximum in
the region R&R~, when l is large, there is no such
maximum. The value of l marking the transition
between the two regions will be denoted by /, . It is
determined by the condition pW&, /aRjz=n, ——0 to be

lP =2nesM/fPRQ. (6.6)

With the reduced mass of two hydrogen atoms for M,
one gets 1,—24. The curve for /, is marked on Fig. 4.
In calculating I, (e), there are two different regimes
to consider, depending on whether Gp+60 ol 60+60„
where ep is the initial kinetic energy introduced in
(3.2) and

ep,=—W(. (Re) —W( po ) =+nes/2gg4, (6.7)

ep, is marked on Fig. 4. Kith the numerical values
quoted above, one gets ep, =0.3 eV.

(1) ep)ep . This case is illustrated by the lin. e
Fig. 4. Here

e =W(.„(Re),

5—
E

7 4-

lo 3—

I

I

1— I

I
I

0 i l I i i

0 0.1 0.2 0.3 0.4 0.5 0, 6 0.7 0.8
Initial Kinetic Energy, eV

l

0.9 1.0

(2) ep(ep . This case is illustrated by the line marked
es. The distance of closest approach at I, , which will
be denoted by Rl, (e), and I, itself are determined by

FIG. 5. Upper limit O.d to the detachment cross section on the
assumption that every collision in which the nuclei in A and 8
approach to within Rs(=2X10 ' cm) leads to detachment.
When the initial kinetic energy ep is less than ep, (=ne'/2Rs'), the
cross section is determined by Langevin spiraling and inde-
pendent of Rq. When ~0))60 the cross section falls to 21-Rq'. The
curve is drawn for a polarizability ex =0.7)&10~ cm'.

so that one gets from (6.4)

b (e) =)fit, /(2Mep)'~'j=R&$1+ne'/2epRe )'~'. (6.9)
LaWt. ..(R)/aR7s=g, ——0, W) ..(Rz) =e.

Rz(e) = (ne'/2ep) '~',

0.7—

0.6—

0.5—

04—

03 —————

)
0.2—

QC

0.1—

fol 60+ 6p
&

o g =z.Rg'(1+ep, /ep); (6.10)

for ep(ep„os ——2pr(ne'/2ep) 'I'. (6.11)

b . (e) =%2RI.(e).

Kith the value for 0, above, at op=0.04 eV, one obtains
E.J.=3.4X10 ' cm, and b~~=4.7X10 ' cm. At the
radius Rz, (e), the two particles can circle around each
other steadily at energy e. The classical orbits in a
polarization potential (6.3) and the special role of
Rz, (e) have been thoroughly discussed by Langevin. 'r

From b and (6.1) one can calculate oq.

-0.1—

-0.2—

-0 3—
l R~

-V4h I

3

R, A units

Formulas (6.10) and (6.11) give the same values for o~
and doe/de at ep =ep,' Fig. 5 gives oe for the values or Re
and 0, quoted above. Note that 0.

& can become very
large at thermal energies; at ep

——0.04 eV (i.e., kT at
400'I) one gets os=0.7X10 '4 cm'. This large value
arises from the pulling together of the colliding parti-
cles over large distances by the polarization potential.

B. The Order of Magnitude of S~

FIG. 4. The range R)Rz outside the region where electron de-
tachment becomes almost certain. A and 8 interact only through
the polarization potential —oe'/2R'. When ep=es(ep„ there is a
6nite gap between Rq and the distances of closest approach (which
always exceed Rl.) in collisions which do not lead to detachment.
When 60=61+60 there is no such gap. RL, (@) is the I-angevin
spiraling radius at which A and 8 can circle about one another
if @&ed .

We can now make rough estimates of the values of
r& likely to be encountered in practice. Before doing
this, we have to remove the restriction to a single
electronic state on which the earlier sections were based.
In general, there is not a single unique electronic state

'7 P. Langevin, Ann, Chim. Phys. 5, 245 (1905).
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Oa= Qgn&dn) (6.12)

where e runs over the initial electronic states with
different sets of quantum numbers; o-~„ is the detach-
ment cross section one would have if the system were
prepared in the eth state initially, and g„ is the statis-
tical weight of the eth state. The g„must satisfy

Zg-=1. (6.13)

In the example of H +H, the two states in (2.13)
each have g=-,'. The 0-d„ for different n have to be calcu-
lated along the lines discussed earlier in this paper.
According to the estima, te (3.18), any state e with a
value of F exceeding about 0.1 eV will have a 0-d„

approaching a-d. If any of the states e have detachment
cross sections approaching cr~ they will dominate the
sum (6.12) .

There is a large class of compound negative-ion states
of which many will satisfy condition (3.18) by a large
margin; they are the states which give rise to shape
resonances in electron scattering. The associated wave
function f has approximately the form /=/st, where

Ps is the ground state of a neutra, l molecule, and p is
the wave function of the additional electron. The
reason for this large width can be seen from formula
(A25) in the Appendix and the remarks following. We
shall refer to these states as "shape compound. " That
some of the states e should be of this kind is probable
for the following reason. Since we may assume 3 and
8 to be originally in their ground states, the initial
electronic state of the configuration A +8 has a wave
function with a strong component of the form 1t~paq,
where Pg and P~ are the ground states of the neutral
atoms A and 8, and y is the wave function of the
additional electron attached to A. As the nuclei move
together, the product fzfa will go over adiabatically
into the ground state /~a of the molecule AI3, provided
that the angular momentum and spin quantum num-
bers are those of 1t~a, this will be the case with some
states e. The state 1t will then either remain bound, or
move up in energy relative to the ground state of (AB)

corresponding to the initial con6guration

A +8,
even if 3 and 8 are in their ground states. Instead,
if the ion A and the atom 8 have nonvanishing
angular momenta, there will be a number of different
states at large R which can be classified according to
the spin and the orbital angular momentum along the
internuclear axis. If the charges on the two nuclei are
identical, there will be in addition a quantum num-
ber corresponding to reQection in the plane which
bisects the internuclear axis and is normal to it. In
the example of H+H, there are two such states,
given by (2.13). Each has its own potential energy
curve given in Fig. 1. The cross section o-d may be
written

to become a shape compound state. Which of these
alternatives happens can only be settled by detailed
calculations in a particular case; in the example of
H +H, the lowest 'Z„state turns into an unstable
shape compound state.

There is another class of unstable negative ion states
which should generally have much smaller widths.
These are the states envisaged by Feshbach, ' consist-
ing of an additional electron bound to a neutral molecule
in an excited electronic state. Here electron emission is
inhibited by the need to change the state of the residual
molecule at the same time. The widths of these states
will vary widely from one case to another, and the
corresponding values of 0-& should vary from 0& down-
wards.

A high probability of electron detachment requires
not only that I" should be large, but also that the
colliding nuclei should reach the region where this
happens. If E(R) is attractive, then this will certainly
happen even at low energies if /(I, (s). If E(R) is
repulsive at short distances, then the energy may have
to exceed a threshold before the detaching region can
be reached.

In the example of H+H, the lower state shown in
Fig. 1 of paper II is attractive, and has a large I' at
small R. It should therefore have a detachment cross
section very close to od. The upper state is repulsive
so that more detailed calculations are needed before its
contribution to O.q can be estimated. According to
(4.12) with g=-', for each state, we therefore get, for
H+H,

At low energies, the value of O.d becomes the polariza-
tion limit given by Eq. (6.11), so that below about
0.5 eV, for H+H,

0.1X10 "cm' 0.2)&10 '4 cm'

[ss(eV) $'~' "
Les(eV)]'~'

The figure of 0.5 eV is very uncertain owing to its
dependence on the ill-defined parameter Rd. At higher
energies where the upper states also contributes, the
cross section will fall to vrRd', for R~—2 A, this is
10 "cm'.

VII. DISCUSSION

We have shown how a theory of electron detachment
in the collision of a negative ion and a neutral atom can
be founded on the assumption of a unique electronic
state which changes adiabatically with the separation
R of the nuclei, becoming autoionizing when E. is of the
order of 10 ' cm. Because the simplicity of the physical
picture is somewhat obscured by the mathematical
details, we shall now summarize the physical aspects.

The nuclear wave function $ in the channel A +8
satisfies the Schroedinger Eq. (2.9) in which the motion

"H. Feschhach, Ann. Phys. (N, Y.) 5, 357 (1958); 19, 287
(&w2) .
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of the electrons enters only through the adiabatic
energy W(R), which has an imaginary part —iF/2
arising from autoionization at small R. The function j
can be separated into partial waves corresponding to
definite orbital angular momentum Pal of the nuclei
[Eq. (2.11)); each of these consists of an incoming
wave and a wave reQected by the short-range repulsion.
The damping of ( by the term ( —iF/2) makes the
amplitude of the reAected wave smaller than that of
the incoming wave by the factor g& in Eq. (3.1). The
contribution of the /th partial wave to the total cross
section for electron detachment is proportional to the
loss of probability from the channel A +B during
reflection, i.e., to (1—

~
p& ~'); Lsee Eq. (3.57) j. For

incident kinetic energies up to a few eV in the channel
+B, a value of I' exceeding about 0.1 eV over a

region of atomic dimensions will be sufficient to make
electron detachment in a close collision so highly
probable that the g~ are negligible in all partial waves
affected (3.18). The total cross section for electron
detachment is then determined by the largest impact
parameter for which the colliding particles reach the
detaching region and will be of the order of 10 "cm'
except at kinetic energies so low that the Langevin
spiralling arising from the long-range polarization at-
traction can pull A and 8 together over distances
much larger than the gas-kinetic diameters (Sec. VI);
cross sections much larger than 10 "are then possible.
If one assumes that there exists a separation Ed such
that detachment becomes virtually certain whenever
the colliding particles approach to within I'd, the
detachment cross section approaches ~R~' at high
energies, and is proportional to (kinetic energy) '~' at
low energies; the transition occurs at the energy eo,

determined by R& and the polarizability and given by
(6.7). As a consequence the rate constant for electron
detachment is independent of temperature at low
temperatures (less than a few thousand degrees in the
case of H +H) and proportional to T" at high tem-
peratures. "

The total cross section for electron detachment may
be split into partial cross sections to individual states of
the residual system A+B. All these cross sections may
be calculated from the overlap integral of g with the
states of the residual system LEq. (4.1)j. Because of
the rapid oscillation of both $ and the nuclear wave
functions of the final states, the major contribution to
each overlap integral will come from the neighborhood
of a point determined by the Franck-Condon principle,
i.e., where the wavelengths of the two wave functions
are equal. Since f consists of two separate components,
the incident and reQected waves, each overlap integral
consists of two terms, as shown by the last factor in
(4.17) Lthis gives the cross section for a bound state
of A+B, while (5.1) gives it for a continuum state).
The interference of these contributions leads to oscilla-

'9 M. R. C. Mcnowell, Observatory 81, 240 (1961).This paper
predicts a T'" dependence for T&10' 'K.

tions of each cross section as a function of energy
$Eq. (4.23) $, and to fluctuation in the cross sections
from state to state. If the total detachment cross
section is close to the upper limit o.d, the outgoing (
wave will be small compared with the incoming, and
may be ignored for a rough estimate of the partial
cross sections. In this case, associative detachment
should produce a highly inverted population of vibra-
tional levels in the final molecule (AB), since detach-
ment is more likely to occur just after entry into the
autoionizing region at large separations than in the
Franck-Condon domains of the lower vibrational levels
where the $ wave has a much reduced amplitude.

No experimental detachment cross sections at well-
defined energies on which the theory could be tested
have been published. The nearest available are measure-
ments of the rate constant for electron detachment in
drift tubes containing negative ions and neutral atoms
or molecules "at laboratory temperatures. These rate
constants correspond to average cross sections of the
order of 10 "cm' in many cases, i.e., greatly in excess
of gas kinetic. " It should be noted that although this
order of magnitude is in general agreement with the
theory for the interaction of negative ions with neutral
atoms, in the case of interaction with neutral diatomic
molecules the polarization potential (~R ') may be
dominated at large separations by the ion-dipole
potential (~ R ') for a heteronuclear molecule, or the
ion-quadrupole potential (0-R ') for a homonuclear
molecule; in these cases the simple theory given in
Sec. VI does not apply.

ACKNOWLEDGMENTS

The suggestion that the concept of unstable com-
pound states should be applied to the electron-detach-
ment problem was made by Professor Sir Barrie
Massey, F.R.S. I am grateful to the Westinghouse
Research Laboratory for its hospitality while this
work was done, and to many of its members, especially
P. J. Chantry, A. V. Phelps (who made me aware of
Langevin spiraling), and G. J. Schulz for stimulating
discussion. I am also grateful to Dr. J. N. Bardsley for
informing me of his results (Ref. 14) before publication.

APPENDIX: DERIVATION OI' EQUATION (4.14)

Equation (4.14) expresses the decay width of an
unstable electronic state in terms of the volume integral
(4.7). This relation has been derived before (see, e.g. ,
Ref. 18) for Feshbach states —autoionizing states con-
sisting of an electron bound to an excited target —but
we need it under more general conditions. At no point
have we made any restrictive assumption about the
physical nature of the compound state of the electrons,

' The first interpretation of these large cross sections in terms
of the Langevin spiralling process seems to have been given in
two independent papers by E. Ferguson and the author at the
Symposium on the Physics and Chemistry of the Lower Atmos-
phere, University of Colorado, Boulder, 1966 (unpublished),
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We expand f in a series

4'=( —1)'Zv ( otj)0 (&)
aP

where
rp p(not j)—=p, (not j)Fp(r;) Sp( j),

satisfying the orthogonality relation

(A4)

(AS)

L
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IO

I

I
I

I

I

I

1 l

4 6
r, atomic units

FrG. 6. Schematic electron density in an unstable compound
state. There is a central peak falling to a minimum followed by a
slowly groveling exponential tail. The tail arises from the open
channels /see Eq. (A9) g. The radius rs of the surface 5 is to be
taken at the density minimum.

H.) ——H, )(not j)+E,+V;. (A2)

(There are as many such ways of splitting up H, & as
there are electrons. )
fp(r;, e') is the radial factor of an eigenfunction of E;
with energy e', the suffix P standing for the spin- and
orbital-momentum quantum numbers; thus

(A3)

Fp(r, ) is a spherical harmonic (r; denoting the an-
gular coordinates of the jth electron).
Sp( j) is a spin function for the jth particle.

whether it be a Feshbach or a shape compound reso-
nance. It is therefore desirable to derive (4.14) with
the same degree of generality; that is the purpose of
this Appendix.

The method we shall use to establish (4.14) is to
imagine a spherical surface 5 surrounding the system
2 +8, and to express both sides of (4.14) in terms
of amplitudes on S. (Only the case where the nuclei
lie within a few Bohr radii of one another has to be
considered, since only then is I'WO. ) The radius of S
will be denoted by ro, its magnitude will be important
in what follows and is discussed below.

The following definitions are needed:

H,&(not j) is the electronic Hamiltonian with the jth
electron omitted,
p (not j) is one of its eigenfunctions belonging to the
eigenvalue e, so that

LH, &(not j) —e jp (not j) =0. (A1)

depends on the separation of the nuclei, i.e., c =~
(E); this dependence will mostly be left to be under-
stood.
IC; is the kinetic energy of the jth electron, and
V; its interaction with the rest of the system, so that
the complete Hamiltonian is

dr, dg(not j)p* p(not j)p p (not j) =5
happ . (A6)

Pfdq(not j) . denotes integration over all coordinates
except the spatial coordinates of the jth electron. )
Clearly there are as many expansions of the form (A4)
as there are electrons. The factor (—1) ' ensures anti-
symmetry, provided that the coordinates in p are
written in ascending order, and p is itself antisym-
metric.

The electron density associated with lf is, after
averaging over angles,

p(r) = constant Xg ~ P p(r) ~', (A7)
aP

from Eqs. (A4) and (A6). If P were a bound state, all
the functions f s(r) would decrease exponentially as
r~~. If P is an unstable compound state, most of the
f s (the closed channels for which E(e ) will still fall
off exponentially; however, in the open channels one has
E)e, so that

P s(r) ~(constant/r)

X expfir)(2m/5') (W—e ) J'"I as r +~. —(A8)

If I'&((E—e ), then approximately

~ P p(r) ~
~(constant/r)

X exp/I'r/2fiv $, as r—+ao, (A9)

t.=L(2/m) (E—e )]'~',

so that each open channel contributes an exponentially
growing tail to p(r) at large r The fu.nction p(r) in a
well-defined compound state must look as in Fig. 6,
with a central maximum falling to a relatively low
minimum before the exponentially rising tails start to
predominate. The tails make it necessary to cut off p(r)
at some arbitrary radius before it can be normalized;
therefore p is defined only up to a constant. An example
of a quasistationary state behaving as in Fig. 6 would
be a particle confined to the neighborhood of a point
by a high but nevertheless penetrable barrier; then the
probability density is high in the space enclosed by the
barrier, falls exponentially through the barrier, and
rises again from the outer edge of the barrier to infinity.
Another example is a compound state of Feshbach's
type' consisting of an electron temporarily bound to
an excited state of an atom; there the closed channels
give the major portion of p close to the nucleus, while
the open channels contribute exponentially growing
tails at large distance.
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We shall choose ro at the minimum in the electron
density. If the compound state is to be physically
meaningful, then p(rp) must be small compared with
the order of magnitude of p in the central peak. Since
the individual channels contribute additively to (A7),
it follows that

«'
I 0-p(ro) I' dq I y(q) I'«1 (A1o)

for each (n, P), the integral in the denominator being
taken over the interior of 5 for all particles. In what
follows, we shall treat the surface amplitudes P p(rp) as
small quantities and repeatedly drop terms above the
lowest order.

A relation between I' and P p(rp) may be obtained
by multiplying (2.2) by P*, subtracting the complex
conjugate, and integrating all electron coordinates over
the interior of S. The result is

52 8$ 8$*
r'dr dq(notj) p* ——p =I' dq I p I'

2fÃZ j rsgr0~ jgj ~rj r;=rp
(A11)

Now substitute (A4), constructing the coefficients P p(r) so that the sum of the series vanishes whenever any one
particle is outside S; this is permissible since the integrations in (A11) are carried only over the interior of S.
Using the orthonormality relation (A6) and the identity of all electrons, one gets

(~+1) . Z «4*-p(ro) —r4-p(ro) —[rpP-p(rp)]
8[roc.p(ro) ]

2m' Bro Bro
(A12)

The derivatives in (A12) can be expressed in terms of P p(rp) by means of the outgoing-wave boundary condi-
tion which, together with (2.2), defines f:

[1/4p(ro)]'(8/8ro) [re' p(ro)] =Fp'+'(«W e )

—= [hp&+& (rp, W—e )] '(8/8ro) [rplzp&+ (rp, W —e )], (A13)

where Izp&+& (rp, W) is an outgoing-wave spherical where
Hankel function, satisfying

Ir i(8P/8ro) r—Pp(ip+1) /ro]+ (2zzz/y) (W e) I—
Xhp&+& (r, W—e ) =0. (A14)

ro'
I 4-p(«) I'

28$rp

&((—z) [Fp&+'(rp W—e ) —Fp'+'*(rp, W —e )].

I = (Z+1)gl.p (A15)

In applying the boundary condition (A13) at rp

instead of at infinity, we are ignoring the interaction
of any particle outside S with the rest. With the aid
of (A13), Eq. (A12) becomes

(A16)

Equations (A15) and (A16) can be simplified by work-
ing with terms of lowest order in the P p(rp) . By writing
Fp&+&(ro, W —e ) =Fp&+&(ro, E—e )+ terms of order I',
one can construct from (A15) and. (A16) a series in
powers of

I P„p(rp) I'; the leading term is

fi' It'I'-p=,
I

'I 0-p( ) I'
2zzzrp' &

X (—i) [Fp&+&(rp, E—e ) Fp&+&*(rp, E——e )] for open channels (E)e ), (A17a)

=0

Here we have used the fact that for closed channels

for closed channels (E(e ) . (A17b)

Fp&+&(rp, E e) —Fp&+&*(rp—, E—e ) =0.

Another expression for the f p(rp) appearing in (A17) can be derived as follows. The product &p p(not i)fp
(r, , E—e ) satisfies

[E,+H, &(not i) —E]y* p(not i)f*p(r;, E e) =0. — (A18)

(We shall neglect all spin-dependent forces, so that IP=H. ) Multiply (A18) by f, (2.2) by &p* p(noti)f*p
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(r;, E—e ), subtract, and integrate all coordinates over the interior of 5. The result is

fP
rp dr;dg(notj ) p —

I
oo*~p(noti)f*p(r;, E e)——oo*„p(noti)f*p(r;, E e—)—

2m j r &rp i~j ~rj r)=r0

dye* p(noti)f*p(r;, E e)—VP ——',(iI') dg oo* p(noti)f*p(r, , E—e )&&t =0. (A19)

We shall suppose that the states p (not i) correspond-
ing to the open channels are bound, so that the magni-
tude of p (not i) will be small whenever one of the Z
particles whose coordinates appear in p (not i) is on or
outside S. Therefore we shall drop all the terms except
that with j=i in the sum over j, the magnitude of the
remaining term being determined by fp

To simplify the term containing Bfp/Br, in (A19), we
decompose fp into outgoing and ingoing wave compo-
nents; i.e., for any energy e' we write

fp(r, e') =fp~+& (r, e') +fp& & (r, e'), (A20)
where

(8/Br) Lrfp~+& (r, e') ]=Fp&+& (r, e') fp~+& (r, e') . (A21)

LF& & is defined by (A13) with k&+& replaced by k& &.$
Substituting (A21) into (A19) after dropping terms

with j4i, expanding P according to (A4), and neglect-
ing terms of second and higher order in P p(ro), one gets
finally

(fP/2m) rof p(ro)fp&+&*(ro, E—eu)

XLFp~+&(r..E—..) —Fp&-&(r.. E—..) $

Equation (4.14) is obtained by substituting (A24)
into (4.7), setting kg'/2m=E e(R—&) Lin accordance
with (4.13b)7, expressing Jdq ~ ~ in terms of P p(ro)
from (A22), taking the squared modulus, integrating
over the directions of kf, summing over /p, s~, and mp,
and using formula (A15) .

Formula (A1'I) can be used to give a rough estimate
of the widths of possible "shape resonances. "These aie
compound negative-ion states with wave functions P =
oooo, where Po is the electronic ground state of a neutral
molecule, and y the wave function of the additional
electron. The choice of ro at the minimum in Fig. 6
implies that ro must lie outside any possible centrifugal
barriers in important channels. Ke may therefore
approximate PFp&+& (ro, E—e ) —Fp&+' (ro, E—e )]=
2ik ro, where fPk '/2m= E e. T—he —structure of
makes Po cancel out from (A17). Moreover, as stated
in the Introduction, we are supposing that there is only
a single decay channel in which the additional electron
departs to leave the molecule in the state fo with energy
e . After summing over P, (A17) is replaced by

A,
2

&2mr02

dq q~ p(not i)f*p(r;, E e„) Vy—P (A22)

(using Fp&+&*=Fp& & for open channels). The factor

I
Fp'+& —Fp& &) may be expressed in terms of the

Wronskian of the functions fp& & and fp~+&, leading to

Ifp'"&(» E—-) I'

XLFp&+ (ro, E e) Fp &(ro,—E e)—]=i/7rk ro,—(A23)

where k '=2m(E —e )/6'. The functions fp have been
normalized so that

g
—ia.r $2II„2 t

, = 2& 'fp* r~
I

Vp(&) I'p*(r). (A24)
(2~)'~' &p,

"
2m j

X ro' drI q(ro, r) I' "«dr
I
o(«r) I' 2k-«

(A25)

With ro—2 A, and E—e 1 eV, one gets k ro 1 and
(&»P/2mroo) —1 eV. The factor in the bracket is the ratio
of the mean-square amplitude of

I
p I

on 5 to the mean
square within S, and must be substantially smaller
than 1 for there to be a physically meaningful com-
pound state at all. However, except for the possible
centrifugal barriers, there is no mechanism to mak. e

I
~ ~ ~

I very small, so that a value of I' of the order of
1 eV should be possible.


