
P «r VS ICAL REVIEW VOLUME 160, NUMBER 4

Deteixnination of Nuclear Rotational Parameters*

20 AUGUST 2967

I. KELsoN

I'hyszcs Department, Yale University, New Haven, Connecticut

(Received 9 March 1967)

The methods of extracting nuclear rotational parameters are critically reviewed. An external consistency
condition is proposed, as a necessary condition for the validity of such methods.

I. INTRODUCTION
' 'T is useful, when treating the question of rotational

(and collective) spectra and their "microscopic"
origin, to review briefly the hierarchy of problems of
which it is part.

It is observed experimentally that some nuclear
systems —in a few rather well-de6ned regions —have
low-lying rotational spectra. This is manifested both by
the typical I(I+1) energy-level rule and by the large
enhancement of the intraband electric-quadrupole-
transition probabilities. That a complicated many-body
system will —in selected cases—have such a simple and
neat behavior may, indeed, seem a puzzling accident.
To fully understand this phenomenon, one has to know
exactly the Hamiltonians describing the nuclear sys-
tems, and to find their pertinent eigenenergies and
eigenfunctions. This, in fact, is the ultimate solution to
nuclear structure in general, inasmuch as any level in
any nucleus —with its related properties —could be
traced back, quantitatively, to a common origin. This
ultimate solution, however, cannot be achieved. First,
the exact form of the Hamiltonian is not known. Second,
the techniques of many-body theory and the capabili-
ties of present-day digital computers are totally inade-
quate for exact numerical solutions.

Thus, one has to be satisfied with substitute Hamil-
tonians, often taken on an ad hoc basis, and with treat-
ing them by various approximative methods. It is,
usually, when the derivation of exact eigenenergies is
completely out of question, that one has to resort to the
rotational (or—in general —collective) description of
motion.

Two, basically diferent questions now arise. First,
under what conditions will a rotational spectrum
emergeP Second, assuming that such a spectrum actu-
ally exists, how does one determine its quantitative
characteristic, namely, the moment of inertia g, or the
rotation parameter A =A'/2g? Both questions have to
be answered, preferably without recourse to explicit
solutions of the many-body Hamiltonian.

To explain the occurrence of rotational behavior, we
make some assumptions about the nature of the low-
lying energy states of the system. (In a few cases, where
actual calculations could be carried out, these assump-
tions appear to be well founded. ) We assume that the
nucleus has a permanent deformation from sphericity,

* AVork supported in part by the U. S. Atomic Energy Commis-
sion.

and that this deformation is rigidly retained in time. We
further assume that an independent-particle motion
takes place in the average field described by this de-
formed shape, so that we may represent the nucleus by
a determinantal-product wave function. Such a wave
function, however, will not have well-defined angular
momentum. Rather, it will be a superposition of states
with different angular momenta. These states can, in
fact, be projected out of the determinantal wave func-
tion, and be properly normalized. We believe that they
represent the various members of the rotational band.

We believe, therefore, in the existence of an "intrin-
sic" state (as this determinantal wave function is often
referred to) which represents, in an internally corre-
lated manner, all the members of a rotational band
simultaneously.

It is extremely important to note, at this point, that
the notion of an "intrinsic" state is totally independent
of that of a product wave function. The quantitative
information concerning the band is inherent in this in-
trinsic state. It can, so we argue, be extracted from it
without actually performing the projection of angular
momentum. In Sec. II we give a concise review of the
cranking approach. In Sec. III we propose an external-
consistency condition, that this approach (or any other
theory that tries to get rotational parameters) should
obey. In Sec. IV a specific numerical case is presented,
where that condition is violated, and an attempt is
made to understand why this is so. In Sec. U, an alter-
native variational approach is discussed which does
obey the Sec. III condition, and some modifications of
it are suggested.

II. "CRANKING" APPROACH TO
ROTATIONAL MOTION

A definite procedure to obtain explicitly an intrinsic
state to represent the rotational band is provided by the
theory and philosophy of the Hartree-Pock theory, '
borrowed from atomic physics.

Given a Hamiltonian, in second-quantization notation

a, P
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~
yb)a. 'us'a a„(1)

'For a general review of the subject see, for example, M.
Baranger, in Cargdse Lectures in Theoretical I'hysics (W. A. Ben-
jamin, Inc., New York, 1963).
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where E is a one-body operator, and V& an antisym-
metrized two-body operator, we seek the determinantal
wave function g such that

or
8 i@I@&=minimum

5Q I~I~)=(5~1~i~)=0. (2b)

and
J )) )=e, [) )

hold simultaneously. p is then the antisymmetrized
product wave function of the set {X).An alternative
formulation may be followed by deining the one-body
projection operator

The self-consistency equations are then

and
Jst= &t+Trs&ups

LJ,pj=0.

(3b)

(4b)

In Eq. (3b) the subscripts refer to the particle in
whose space the operators operate. The Hartree-Fock
Hamiltonian h gives rise to a complete representation,
spanning the nonoccupied states as well. This represen-
tation is considered to be of relatively great importance
for performing perturbation calculations on the system.

It is the stability of the solution P against small varia-
tions which is believed by many authors' ' to be the
prime indication of the existence of a rotational spec-
trum, provided this solution is not spherically sym-
metric. This stability, in turn, may be inferred from the
magnitude of the energy gap between the occupied and
the nonoccupied single-particle states.

The prevailing methods of deriving a quantitative
expression for the moment of inertia stem from this
approach.

The function P, and hence the operators p and Js, will
not necessarily retain all the synnnetry properties of
the many-body Hamiltonian H. In the description of
the ground-state rotational band of an even-even nu-
cleus, P, p, and Is have only axial syrrnnetry. If the axis
of symmetry is chosen to be the s axis, it is easy to see
that

&y)s.)y&=o. (6a)
2 R. S. Nataf, Nucl. Phys. 2, 492 (195'7).
~ D. J. Thouless, Nucl. Phys. 22, 225 (1960).' R. E. Peierls and D. J. Thouless, Nucl. Phys. 38, 154 (1962).

This variational principle is known to lead to the fol-
lowing self-consistency problem. A one-body (nonlocal)
Hamiltonian Js, and a set {X)of wave functions (equal-
ing in number the number of particles in the system)
are sought, such that

h=g {(~(Z~P&+g (~) [V, ~P) &)a.t~, (3a)

We now investigate the response of the system to a
rotation around the x axis, which is perpendicular to
the axis of symmetry. To do this, the variational prob-
lem is solved with the additional subsidiary condition

(~l &*Id) =~, (6b)

Including also diagonal elements of the Tr2p2V~2 term,
one gets the Thouless-Valatin expression'

l(~l ~-lp&l'
S=2hs P.,~ e.—e„—(op ~

Vg (
o.p,)

In both expressions, 0 runs over nonoccupied and p over
occupied single-particle states of the unperturbed
Hartree-Fock representation.

In practical cases, the formulas may di6er very ap-
preciably from one another, and they may both provide
a poor approximation to the sought-for in6nitesimal
energy increment. As one clearly sees, this will depend
in a crucial way on the form and properties of the two-
body interaction.

III. EXTERNAL CONSISTENCY CONDITION
ON MICROSCOPIC DERIVATION OF

ROTATIONAL PARAMETERS

From a conceptual point of view the "cranking"
formula, mentioned in the last section, is a recipe which
gives, for a given Hamiltonian, a value for a rotational
parameter A =As/25. The same holds true for any other
approach, which may vary in detail and technique but
tries to achieve the same end.

That H will at all have a low-lying rotational spec-
trum is not tested, but assumed. Clearly, if H does not
have this expected rotational behavior, the whole dis-
cussion is meaningless. But when it does, as we assume
it to, the validity or invalidity of the "cranking" —or
any other approach —becomes a mathensa6cal proposi-
tion. To investigate this question without actual re-

' D. R. Inglis, Rev. Mod. Phys. 25, 390 (1953).
s D. J. Thouless and J. G. Valatin, Nucl. Phys. 31, 211 (1962).

using a Lagrange multiplier ~. The modiied solution
P„will give rise to an increment in the energy, which is
attributed to the effect of rotation around the x axis
with angular velocity co. Thus

(~-I&l@-)-(el&le&=-l5 '. (~)

To express 0 in terms of the microscopic structure of
the Hamiltonian H, a detailed analysis of the varia-
tional problem must be carried out (see Appendix A).
Depending on what approximation to this problem one
makes, different expressions for rI come out. Merely re-
placing h by h —cd gives rise to Inglis's cranking
formula'.

l(~l~-lp&l'
S=2hs P
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course to a solution of H, we propose an exterecl-
coesistemcy criterioe.

Let us symbolically describe by the relation

(10)

any procedure which extracts the parameter A from the
Hamiltonian H. According to our basic assumption, the
system described by H has a low-lying rotational band,
with energies

Er=AI(I+1)= (R[HjI(I+1).

We now note that

8 I& &=1+O(')
Q-l&.)=1+O( ')

&y„-ly..&=1+O({n ~)')
FIJI&»=&4 IJ*I&&=Q IJ le)=0.

The moment of inertia 0 is extracted from the functions
in Eq. (17):

Q I J,ly„&=2o&Q I J.IX"&)+O(o&')=—s'oM (19)

We may now consider the Hamiltonian

H(n) =H+nJ'. (12)
Thus, one obtains

8- IJ.le- &=2~8
I
J*lx"'&+2~~9IJ.IO"'&

+2o&n&g(')
I J, l

X('&)=—g (0. (20)

Ez(n) =AI(I+1)+nI(I+1) . (13)

Applying the "recipe" under consideration to H(n), we
obtain

If H has the spectrum (11),H(n) will clearly also have
a rotational spectrum ~,=2/ I J,lx(»&, (21)

&-=it+2~{Q I
J la"'&+/"'I J Ix"'&}

88
=2{8I J*I&"'&+8"'IJ.lx"')) (23)

Bc ~=0
Er(n)=A(n)I(I+1)=(R[H+nJ')I(I+1). (14)

The criterion may be expressed, therefore, as
Equating (13) and (14), we impose a criterion on (R

(R[H+n J'j= (R[H)+n.

In a less stringent way, we may demand
or

a=o

2 (24)

BA (n) =1.
BQ ~—0

(16)

Pa—y+ o(y (»+ (&(0y (»

P„—=P+o&X("+o&'X(",
a—y+c(y(1}+~2y(2)+~X(1)+o&2X(2)+oo&$(2) (17)

The condition thus imposed is clearly only a necessary
condition for the validity of (R. It is by no means su%-
cient. However, if it is violated by a certain "recipe" in
some particular case, it means that whatever agreement
such "recipe" achieves, it necessarily is to be deemed
accidental in that particular case

Let us begin by investigating the cranking approach
in particular. To do this we have to determine the be-
havior of the self-consistency problem under the simul-
taneous perturbations nJ' and —o&J,.

Let P be the Hartree-Fock solution to the unperturbed
problem. (tP to H+n J', P„ to H o&J P to H+—aJ'
—MJ,.We can expand these functions up to second order
in n and co, thereby defining the various functions ap-
pearing in the expansion. Thus

(IIJ.I4")&+&0"'IJ.lx'"&= —41&IIJ*lx'"&I'. (2~)

The relationship to be fulfilled may be conveniently
reexpressed in terms of J' expectation values. This is
done by explicitly using the fact that P„ is a variational
solution to a problem of the general nature given by Eq.
(2b). As particular applications we write

Q (')+2'�(')+(eP (')
I
H+(}J'—o&J, I P+ay("+n'P(')

+o&X("+o&'X("+nrem (')
&
=0, (26a)

(X("+2o0X(')+c()&t(2&
I H+n J' o&J

I (t&+nP—(»+n'P(»
+o&X(')+o&'X(2)+n~(') &=0. (26b)

Equating the coefficients of o& in (26a) or of n in (26b),
one obtains

(27)

reflecting the fact that P(') can be obtained from P by
a linear combination of one-particle promotion opera-
tors. Writing the coeKcients of o&' in (26a) and of (io& in
(26b), we get, respectively,

8"'IHlx"')-O'"
I
J Ix'"&+8"'IHlx'"&

—Q(»l J.I4&=0, (28)

It can be easily shown that higher-order terms are not
necessary for the verification of the external criterion (O' "IJ~IX ")+2&X ' IHI& '

&

(16). +2&x"'IJ'le& —Q"'IJ.ly&=0 (»)
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FIG. 4. The exact cranked moment-of-inertia parameter,

as well as the Inglis and the Thouess and Vallatin formulas
for Ne', for the Hamiltonian H+aJ', as a function of o..
The best value indicates the actual value to be used, and
the slope of its curve is the one imposed by the external
consistency condition.
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I
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I

06 MeV

not change the principal quantum number of the
nucleons.

(H AJ')yg =O. — (34)

This ideal situation is, however, nonexistent. One hopes,
though, that the actual state of affairs is close enough to
it so that (34) may serve as a guiding principle. Desig-
nating by Pp the Hartree-Fock determinantal solution
of H—PJm, where P is a variable parameter, one has in
general

(II p~')4m= —x~ (35)

The length 12= (XsI Xs), as a function of P, is then sub-
jected to the requirement that it is as small as possible.
The value P where this occurs is identified as the proper
A of the Hamiltonian H. It was also shown" that the
length I~ provides an estimate of the dispersion of the
actual projected eigenvalues from a true rotational
band.

It is easy to see that this prescription (doing first a
self-consistency problem for fixed P, and then varying P)
satisnes automatically the external-consistency condi-

"T.H. R. Skyrme, Proc. Phys. Soc. (London) A70, 433 (1957)."C. A. Levinson, Phys. Rev. 132, 2I84 (j.963).

V. ALTERNATIVE VARIATIOÃAL APPROACHES

A difrerent approach, also of a variational nature, for
determining the moment-of-inertia parameter, was sug-
gested by Skyrme, "and also employed by Levinson. "
This approach centers on two familiar assumptions:
first, that the various members of the rotational band
can be projected from a single intrinsic state; second,
that this intrinsic state is precisely the Hartree-Fock
determinantal ground state P~ of the intrinsic Hamil-
tonian B—AJ'. Clearly, if both assumptions were
rigorously true, then, , for the true moment-of-inertia
parameter A, we would have

tion, formulated in Sec. III. Clearly, if we replace II by
H+n j', the minimum of (Xst X~) will shift from A to
A+a. Moreover, the method has the great merit of not
only providing a meaningful value for A, but also giving
a quantitative estimate of how good a rotational spec-
trum the intrinsic state is generating. This estimate is
contained both in the absolute magnitude of I~, as
well as in the sharpness with which this minimum is
attained. Figure 5(a), which is reproduced from Ref. 12,
illustrates the results of applying this method to Ne",
using the same Hamiltonian as in the previous section.
At the same time, Fig. 5(b), demonstrates the failure
of this variational prescription for Mg'4. The curve of
I lies very high and does not display a clear-cut mini-
mum. This, we presume, is closely related to the fact
that the axially symmetric determinantal wave func-
tion, used in this treatment of Mg", is improper for this
purpose. The intrinsic state is much more likely to be
axially asymmetric, thus giving rise to other states of
the rotational bands (corresponding to an additional
X=2 band) upon projection. In the framework of axial
symmetry, the axially asyrrilnetric determinant can be
expressed as a particle-hole expansion series about an
axially symmetric determinant. It therefore seems, in
this framework, that the failure of the Skyrme varia-
tional approach for Mg'4 is due to the fact that the
sought intrinsic state is of a rather complicated nature.
In other words, we are justified in conceiving the exist-
ence of such an intrinsic state, but unjustified in attri-
buting to it the very simple form of an axially symmetric
determinant. Incidentally, to account for the large en-
hancement of electric quadrupole transitions within a
band, one similarly requires only the existence of an
intrinsic state, while its detailed character is of second-

ary importance. An extension of the set of wave func-
tions over which the intrinsic states are varied may
therefore be significant. Of. course, the extended set in
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The su6ixes, where they appear, refer to the space on
which the corresponding operator operates. We now ex-
pand, up to second order,

h =h (')+(0h(')+a)'h('&, (A4)

p
—p(0)+ (0p(&)+~2p(2) (A5)

and compare in (A2) and (A3) corresponding powers of
or. Thus the zeroth order yields the equations for the un-
perturbed consistency problem, presumably solved:

h&,
(') =Eg+Tr2pp(') Vgm, (A6)

[h(0) p(0)]—0 (A7)

The 6rst order yields

0
-0.2 0,2

MeV

0.4
I

06 P

Fro. 5. The "remnant" curves as a function of P, for Ne 0 and
Mg'4, displaying the drastic difference of behavior in the two
cases.

hq(') = —Jxq+Trmp2 V/2,

[h (0) p(~)]+ [ho) p(0)]=0

and the second order yields

(As)

(A9)

the case of Mg'4 is still of a determinantal nature, but it
is indicative of the possibilities in more general exten-
sion. In particular, one might expect this to be useful
in treating nuclei which are not good rotators. This,
incidentally, could provide a solution to the s-d shell
dilemma discussed in the previous section.

Relaxing the condition that the intrinsic state be a
single-particle determinant may thus open various pos-
sibilities for modi6cation and improvement. Moreover,
the interaction with the vibrational modes of motion
may be better treated. Such possibilities, and related as-
pects, will be pursued and reported on elsewhere.

This relaxation may also be of importance to a modi-
6ed application of a cranking-type approach. In its
present form, the "cranked" moment of inertia seems to
represent the response of the system, not so much to
physical rotations, as to the artificial requirement of
strictly independent-particle motion. Consequently, the
wider the class of states available for the description of
the intrinsic state, the better the cranking approach
will describe the response to rotations.

hx"'= Tr~p2'" ~x2, (A10)

[h (0) p (2)]+[h (~)
p

(&))+[h (2)
p (0)]—0 (A11)

First Order

To solve for the Grst-order perturbation equations, we
substitute (A8) into (A9), getting

[h&."',p&. (')]—[Jx(,p(( )]j[Trgp2 ' Vyu, pg ]=0. (A12)

Taking matrix elements of (A12) between states n,P of
the unperturbed Hartree-Pock representation, and des-
ignating by I the occupation number of the state (1 if
occupied, 0 if unoccupied), we get

(~-'—~~')(~I p'" IP)—(I( —I-)(~lJ IP)
+(Np —I )((xylTr2p2(')V$2IP()=0, (A13)

where 6 6p are the unperturbed Hartree-Fock ener-
gies. But,

((fall»2p2 V12IP )=Q (~(v2lp2 V12Plv2)

=2 2 (~& I
V IPv)(v I

p"'
I &) (A14)
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APPENDIX A
where

~ap py8 ~ap y (A15)

~-s"=(Ns —I-)(~~l V IPv)+( -' ~p')4, &p
—(A16)

We get a set of linear equations for the matrix elements
of p('), of the form

AD=K+V. (A1)

The perturbation —~Jr, which is a one-body operator,
is added to (A1), and the self-consistency conditions are

Let the Hamiltonian H be composed of a one-body
and

and a two-body part e.p ——(I»—I )(nl JxlP).

Second Order

(A17)

and
hl +&. (dJ+1+Tr2p2V12

[h,p]=0.

(A2)

(A3)

In a similar way, we substitute (A10) into (A11),
obtaining

[hg ('&,pg('&] —[Jxg,pg ('&]+[Tr2p2('& Vgm, p&,
('&]

+[Trmpp("V&2, px('&]=0. (A18)
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Taking matrix elements for the various terms, one has where

(cr
I
Lh"' p"'g IP) = (e '—ep') (cr I

p"'
I P), (A19)

&~IV*p"'3 IP&= 2 (&~l ~*le&&v I
p"'

I t3)

. p&'= 8 p&' (A24)

&~ILTT2Ps l'12 PI"']
I p&

—&~lp"'Iv&&vvl ~l@&) (A»)

The Thouless-Valatin formula is obtained when one
restricts oneself to the lowest order in co and neglects the
oR-diagonal elements of A:

&~
I
p—"'

I v&&vn I
l'I P3&) (A21)

(9 p&'p, g(')=X) p, (A23)

Thus, the matrix elements p~q(" of p(') are subject to
the set of linear equations

The Inglis formula is obtained when one neglects not
only the oR-diagonal terms, but the two-body matrix
elements in the diagonal terms as well.

In the case where the space of allowed single-particle
orbits is truncated, the problem of 6nding p'" and p("
becomes finite. It can be solved with exactitude nu-
merically. The only operation of any complexity is the
inversion of the matrix M which appears both in the p( )

and p(') equations.
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Scattering of Alpha Particles by Oxygen. I. Bombarding Energy
Range 5.8 to 10.0 MeY*
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Absolute differential cross sections for the elastic scattering of a particles by 0"have been measured as
a function of bombarding energy in the range 5.8—10.0 MeV. Measurements were made at center-of-mass
angles of 90.0, 109.9', 114.0', 125.3, 131.4', 140.8, 149.4', 154.0', 158.8', and 163.8'. Detailed angular
distributions have been measured at 6.97, 8.63, and 9.92 MeV (lab). Sixteen resonances have been observed
corresponding to energy levels in Nen at 9.50, 9.99, 10.30, 10.49, 10.55, 10.7, 10.83, (10.93), 11.03, 11.29,
~11.6, (11.89), 11.99, 12.27, 12.39, and 12.58 MeV (c.m.). Spin and parity assignments have been made
for six of these levels, tentative assignments are suggested for seven, and two or more possible assignments
are given for two levels. Phase shifts have been extracted from the angular distribution data at 6.97, 8.63,
and 9.92 MeV (lab). New rotational bands in Ne' are suggested by the data and previously reported
bands have been extended. Information about the levels in Ne~' is compared with that obtained in previous
studies of other nuclear reactions. The correspondence with the results of an 0"(n,y)Nemo investigation
is generally good. The set of Ne" levels found in this work is somewhat diferent from the set determined
by the C"(C",cr)Ne'o reaction experiments, and this difference is discussed.

I. INTRODUCTION

l
'HE elastic scattering of n particles by 0" has

been studied from 0.94- to 4.0-MeV bombarding
energy by Cameron' and from 3.7—6.5 MeV by Mc-
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