PHYSICAL REVIEW

VOLUME 160,

NUMBER 4 20 AUGUST 1967

Determination of Nuclear Rotational Parameters*

I. KELsoN
Physics Depariment, Yale University, New Haven, Connecticut
(Received 9 March 1967)

The methods of extracting nuclear rotational parameters are critically reviewed. An external consistency
condition is proposed, as a necessary condition for the validity of such methods.

I. INTRODUCTION

T is useful, when treating the question of rotational

(and collective) spectra and their “microscopic”

origin, to review briefly the hierarchy of problems of
which it is part.

It is observed experimentally that some nuclear
systems—in a few rather well-defined regions—have
low-lying rotational spectra. This is manifested both by
the typical I(I+1) energy-level rule and by the large
enhancement of the intraband electric-quadrupole-
transition probabilities. That a complicated many-body
system will—in selected cases—have such a simple and
neat behavior may, indeed, seem a puzzling accident.
To fully understand this phenomenon, one has to know
exactly the Hamiltonians describing the nuclear sys-
tems, and to find their pertinent eigenenergies and
eigenfunctions. This, in fact, is the ultimate solution to
nuclear structure in general, inasmuch as any level in
any nucleus—with its related properties—could be
traced back, quantitatively, to a common origin. This
ultimate solution, however, cannot be achieved. First,
the exact form of the Hamiltonian is not known. Second,
the techniques of many-body theory and the capabili-
ties of present-day digital computers are totally inade-
quate for exact numerical solutions.

Thus, one has to be satisfied with substitute Hamil-
tonians, often taken on an ad hoc basis, and with treat-
ing them by various approximative methods. It is,
usually, when the derivation of exact eigenenergies is
completely out of question, that one has to resort to the
rotational (or—in general—collective) description of
motion.

Two, basically different questions now arise. First,
under what conditions will a rotational spectrum
emerge? Second, assuming that such a spectrum actu-
ally exists, how does one determine its quantitative
characteristic, namely, the moment of inertia g, or the
rotation parameter 4 =%2/29? Both questions have to
be answered, preferably without recourse to explicit
solutions of the many-body Hamiltonian.

To explain the occurrence of rotational behavior, we
make some assumptions about the nature of the low-
lying energy states of the system. (In a few cases, where
actual calculations could be carried out, these assump-
tions appear to be well founded.) We assume that the
nucleus has a permanent deformation from sphericity,
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and that this deformation is rigidly retained in time. We
further assume that an independent-particle motion
takes place in the average field described by this de-
formed shape, so that we may represent the nucleus by
a determinantal-product wave function. Such a wave
function, however, will not have well-defined angular
momentum. Rather, it will be a superposition of states
with different angular momenta. These states can, in
fact, be projected out of the determinantal wave func-
tion, and be properly normalized. We believe that they
represent the various members of the rotational band.

We believe, therefore, in the existence of an “intrin-
sic” state (as this determinantal wave function is often
referred to) which represents, in an internally corre-
lated manner, all the members of a rotational band
simultaneously.

It is extremely important to note, at this point, that
the notion of an “intrinsic” state is totally independent
of that of a product wave function. The quantitative
information concerning the band is inherent in this in-
trinsic state. It can, so we argue, be extracted from it
without actually performing the projection of angular
momentum. In Sec. IT we give a concise review of the
cranking approach. In Sec. IIT we propose an external-
consistency condition, that this approach (or any other
theory that tries to get rotational parameters) should
obey. In Sec. IV a specific numerical case is presented,
where that condition is violated, and an attempt is
made to understand why this is so. In Sec. V, an alter-
native variational approach is discussed which does
obey the Sec. ITI condition, and some modifications of
it are suggested.

II. “CRANKING” APPROACH TO
ROTATIONAL MOTION

A definite procedure to obtain explicitly an intrinsic
state to represent the rotational band is provided by the
theory and philosophy of the Hartree-Fock theory,!
borrowed from atomic physics.

Given a Hamiltonian, in second-quantization notation

H= Zﬂ (@|K|B)adtas
+i X (@B|Val|vdadagtasa,, (1)

a,8,7,8

! For a general review of the subject see, for example, M.
Baranger, in Cargése Lectures in Theoretical Physics (W. A. Ben-
jamin, Inc., New York, 1963).
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where K is a one-body operator, and V4 an antisym-
metrized two-body operator, we seek the determinantal
wave function ¢ such that

(¢| H|¢)=minimum (2a)

(2b)

or

8(¢| H|¢)=(5p| H|$)=0.

This variational principle is known to lead to the fol-
lowing self-consistency problem. A one-body (nonlocal)
Hamiltonian %, and a set {\} of wave functions (equal-
ing in number the number of particles in the system)
are sought, such that

h=Zh {{a|lK Iﬂ)—l—%ﬁ (M| ValBN)}adlas  (3a)

and

kIN)=ex|\) (4a)
hold simultaneously. ¢ is then the antisymmetrized
product wave function of the set {\}. An alternative
formulation may be followed by defining the one-body
projection operator

pP= Zx: afaa. (5)

The self-consistency equations are then

hi=K1+TrsVispe

[h7P]=O-

In Eq. (3b) the subscripts refer to the particle in
whose space the operators operate. The Hartree-Fock
Hamiltonian % gives rise to a complete representation,
spanning the nonoccupied states as well. This represen-
tation is considered to be of relatively great importance
for performing perturbation calculations on the system.

It is the stability of the solution ¢ against small varia-
tions which is believed by many authors>™ to be the
prime indication of the existence of a rotational spec-
trum, provided this solution is not spherically sym-
metric. This stability, in turn, may be inferred from the
magnitude of the energy gap between the occupied and
the nonoccupied single-particle states.

The prevailing methods of deriving a quantitative
expression for the moment of inertia stem from this
approach.

The function ¢, and hence the operators p and %, will
not necessarily retain all the symmetry properties of
the many-body Hamiltonian H. In the description of
the ground-state rotational band of an even-even nu-
cleus, ¢, p, and % have only axial symmetry. If the axis
of symmetry is chosen to be the z axis, it is easy to see

that
(62)

(3b)

and

(4b)

(@|7.]¢)=0.

2R. S. Nataf, Nucl. Phys. 2, 492 (1957).
3D. J. Thouless, Nucl. Phys. 22, 225 (1960).
4R. E. Peierls and D. J. Thouless, Nucl. Phys. 38, 154 (1962).
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We now investigate the response of the system to a
rotation around the x axis, which is perpendicular to
the axis of symmetry. To do this, the variational prob-
lem is solved with the additional subsidiary condition

@ T|@)="n, (6b)

using a Lagrange multiplier w. The modified solution
¢, will give rise to an increment in the energy, which is
attributed to the effect of rotation around the x axis
with angular velocity . Thus

(bo| H|dpo)— (0| H|p)=}907. @)

To express 4 in terms of the microscopic structure of
the Hamiltonian H, a detailed analysis of the varia-
tional problem must be carried out (see Appendix A).
Depending on what approximation to this problem one
makes, different expressions for § come out. Merely re-
placing % by h—wJ, gives rise to Inglis’s cranking

formula’:
z I<°'ljzl.“>12 .

L0 Ce—Cy

g=27 (8)

Including also diagonal elements of the Trop2V12 term,
one gets the Thouless-Valatin expression®

PP [{o]Talu)|?

e eo—eu—{ou|Valow)

9)

In both expressions, ¢ runs over nonoccupied and u over
occupied single-particle states of the unperturbed
Hartree-Fock representation.

In practical cases, the formulas may differ very ap-
preciably from one another, and they may both provide
a poor approximation to the sought-for infinitesimal
energy increment. As one clearly sees, this will depend
in a crucial way on the form and properties of the two-
body interaction.

III. EXTERNAL CONSISTENCY CONDITION
ON MICROSCOPIC DERIVATION OF
ROTATIONAL PARAMETERS

From a conceptual point of view the “cranking”
formula, mentioned in the last section, is a recipe which
gives, for a given Hamiltonian, a value for a rotational
parameter A =%2/29. The same holds true for any other
approach, which may vary in detail and technique but
tries to achieve the same end.

That H will at all have a low-lying rotational spec-
trum is not tested, but assumed. Clearly, if H does not
have this expected rotational behavior, the whole dis-
cussion is meaningless. But when it does, as we assume
it to, the validity or invalidity of the “cranking”—or
any other approach—becomes a mathematical proposi-
tion. To investigate this question without actual re-

5D. R. Inglis, Rev. Mod. Phys. 25, 390 (1953).
$D. J. Thouless and J. G. Valatin, Nucl. Phys. 31, 211 (1962).
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course to a solution of H, we propose an exfernal-
consistency criterion.
Let us symbolically describe by the relation

#2/29=A=Q[H] (10)
any procedure which extracts the parameter 4 from the
Hamiltonian H. According to our basic assumption, the
system described by H has a low-lying rotational band,
with energies

Er=AI(I+1)=@[HI(I+1). (11)
We may now consider the Hamiltonian
H(e)=H+aJ2. (12)

If H has the spectrum (11), H(e) will clearly also have
a rotational spectrum

Ef(a)=AI(I+1)+el(I+1). (13)

Applying the “recipe” under consideration to H(a), we
obtain
Er(@)=A(@)I(I+1)=R[H+II+1). (14)

Equating (13) and (14), we impose a criterion on ®

®R[H+J*]=R[H +a. (15)
In a less stringent way, we may demand
94 (a)
=1. (16)
aOl a=0

The condition thus imposed is clearly only a necessary
condition for the validity of ®. It is by no means suffi-
cient. However, if it is violated by a certain “recipe” in
some particular case, it means that whatever agreement
such “recipe” achieves, it necessarily is to be deemed
accidental i that particular case.

Let us begin by investigating the cranking approach
in particular. To do this we have to determine the be-
havior of the self-consistency problem under the simul-
taneous perturbations aJ? and —wJ .

Let ¢ be the Hartree-Fock solution to the unperturbed
problem: ¢* to H+aJ?, ¢, to H—wJ 5, ¢,* to H+aJ?
—wJ 5. We can expand these functions up to second order
in @ and w, thereby defining the various functions ap-
pearing in the expansion. Thus

$*=+apM+a’p®,
$o=¢p+0X DF2X D,

bu*=0+ad V402 40X D42 X Ofawp®.  (17)

It can be easily shown that higher-order terms are not
necessary for the verification of the external criterion
(16).
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We now note that

(¢*|¢*)=14-0(c?),
($o|du)=140(cs?),
($a®|0®)=1+0({a,w}?),
(¢ T:|8)=1(9*|Tz| b)=(¢%] Ts| 6*)=0.

The moment of inertia g is extracted from the functions
in Eq. (17):

(18)

<¢w|~]zl¢w>=2w<¢lleX(1)>+O(w2)Eg0w (19)
and
(90%| T o| $0®)=20(| T o| X D)+ 20(d| J o | ¢ ®)
+20a(d® || XD)=d.w. (20)
Thus, one obtains
Go=2(p|J.| X V), (21)
Ia=90+2a{(¢| T |y P)+ (M [T X D)}, (22)
or
—|  =2{(| T ¥ @)+ (@D [T X D)}, (23)
X | a=0
The criterion may be expressed, therefore, as
9094
=—24,° (24)
da | o=
or
@72l @)+H (@D [T XD)=—4[(p|To| XD)|2. (25)

The relationship to be fulfilled may be conveniently
reexpressed in terms of J? expectation values. This is
done by explicitly using the fact that ¢.,* is a variational
solution to a problem of the general nature given by Eq.
(2b). As particular applications we write

(6D +2a¢p D+ @ | H+-a*—wJ z| p+apD+ap®
X D402 X D4 awp®)=0, (26a)

(X D420 X O4-ap @ | H4-al P —w] 5| oo D +a2%6®
FoX D02X Ot awp@)=0. (26b)

Equating the coefficients of w in (26a) or of « in (26b),

one obtains
W®|H|$)=0, (7)

reflecting the fact that ¢® can be obtained from ¢ by
a linear combination of one-particle promotion opera-
tors. Writing the coefficients of w? in (26a) and of aw in
(26b), we get, respectively,

(O H| X @) (60| 7| XO)+ (o | H| X0

—W®|T,|4)=0, (28)
20X | H Iy @)+(X 0| 72| X0)
— (@D | T | XYL 2(X | H| D)
+2X®|J2|$)— Y ®|T.|¢)=0. (29)
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F1c. 1. (a) The experimental sequence of levels in Mg?* and
Ne20, belonging to the ground-state rotational band. (b) An exact
diagonalization result %T. Inoue, T. Sebe, H. Haqwara, and A.
Arima, Nucl. Phys. 59, 1 (1964). Also, B. French (private com-
munication).] for the Hamiltonian (33), with the lowest 0F state
matched to the Ne? ground state. (c) Results of projecting good
J from the Hartree-Fock determinantal state, displaying the very
good approximation to the calculated exact spectrum.

Upon multiplying (28) by 2 and subtracting from (29),
the matrix elements involving the Hamiltonian are
seen to drop out and one obtains the equality

(@] Ta| ¢ @)+ (@@ || X D)= — (X D | J2[ X D)

—26X®|J2[¢). (30)
Upon substitution of (30) into (25), the criterion
becomes

(XD XO)F2XD| 2| p)=4[($] J.| X D)2 (31)

The merit of this expression is that it involves only the
first- and second-order perturbative contributions, due
to the perturbative J ; alone. J being a one-body opera-
tor, the problem lends itself more easily to detailed
microscopic analysis in terms of the one- and two-body
parts of the Hamiltonian.

The perturbation of the self-consistency equations,
up to second order in w, is treated in the Appendix. The
complexity of the treatment bars one from making
rigorous statements as to what characteristics in the
Hamiltonian are essential for the fulfillment of the con-
dition of external consistency, by the cranking approach.

In the next section, a numerical example is treated by
the cranking approach, providing a case where the cri-
terion is not met. It should be stressed again that this
does not necessarily imply any general weakness of the
approach. Rather, it demonstrates its inapplicability in
the treated example.

IV. NUMERICAL EXAMPLE

As a numerical example of the application of the con-
siderations of the last sections, we take up the s-d shell
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and, in particular, the nuclei Ne?® and Mg?4 which have
been treated in great detail elsewhere.”

The Hamiltonian of the system, defined over the
subspace of the 2519, 1ds5/, and 1ds,s orbits, is composed
of a one-body part, with single-particle energies

e(ds2)=0, e(s12)=—4.2 MeV,
e(dsj2)=—7.0 MeV,

(32)

and of a two-body Yukawa potential, with a Rosenfeld-
type spin-isospin mixture®

1 T2 e—riele
Vo 3 (0.3+0.70’1'0‘2) .

r12/ @

(33)

The range parameter a is taken as 1.37X 10712 cm; the
basic states are eigenstates of a harmonic oscillator with
length parameter 5=1.65X10"1% cm; the over-all
strength of the potential V¢ is 50 MeV; and Vrg, as can
be verified, has the eigenvalues Voo=9/5, Vpi=—1,
Vie= —3/5, V= 1/3

In order to achieve a clear and systematic presenta-
tion of the relevant argumentation, we give a series of
statements and observations.

(2) Thelow-lying experimental spectrum of both Ne20
and Mg?* displays clear rotational characteristics. This
is evidenced both in the energy spectrum [see Fig.
1(a)] and in the E2 transition probabilities. This feature
explains why an effort to treat these nuclei in the
microscopic-rotational framework was made at all.

(b) In the case of Ne2, the Hamiltonian (33) can be
diagonalized exactly, although with a certain amount of
toil. The results of this exact diagonalization do bear a

MeV

2 1 [ | | | |
-0.6 -0.4

MeV

F16. 2. The Hartree-Fock single-particle energy levels in- the
case of Ne®, for the Hamiltonian® with a term «J? added to it, as
a function of a. The occupied level is underlined.

7 For example, W. H. Bassichis, C. A. Levinson, and I. Kelson,
Phys. Rev. 136, B380 (1964).

8 L. Rosenfeld, Nuclear Forces (North-Holland Publishing Com-
pany, Amsterdam, 1948), p. 233.



160

MeV
o —

-4 —

-20 1 ! 1 n -
-0.8 -0.4 -0.2 o 0.2 0.4

Fic. 3. The Hartree-Fock single-particle energy levels, in the
case of Mg?¢, for the Hamiltonian® with a term «J? added to it,
as a function of a. The occupied levels are underlined. The fact
that the axial-symmetry approximation is poor is reflected in the
small energy gap between occupied and unoccupied levels.

great similarity to the experimental spectrum, and in
fact, by slight changes of the parameters in (33) this
agreement can be made perfect. This is gratifying in-
deed, but has no direct bearing on our present problem.
We are dealing with a purely mathematical proposition
which has to do with the model Hamiltonian, whether or
not it agrees with experiment. The essential point is that
our basic assumption about the existence of a low-lying
rotational spectrum of a particular Hamiltonian can,
in this case at least, be actually checked and shown to
be true [Fig. 1(b)].

(c) The Hartree-Fock (HF) Hamiltonian, possessing
only axial symmetry, and derived from our model
Hamiltonian, does indeed have the general characteris-
tics we originally assumed it to have. (This is so for
Ne20; for Mg? the axial-symmetry condition does not
seem to be justified.?) Namely; (1) There is a large en-
ergy gap between the occupied and nonoccupied single-
particle states, which implies relatively high energetic
stability against particle promotion. Figure 2 (for Ne¥)
and Fig. 3 (for Mg?%) give the HF Hamiltonian for
H+aJ? as a function of a. (2) The single-particle wave
functions are similar to those obtained by solving for a
particle in a deformed-harmonic-oscillator local poten-
tial (Nilsson wave functions'). (See Table 1.)

(d) The Hartree-Fock determinantal ground-state
wave function does provide, upon projection, a good de-
scription of the various members of the rotational band.
The energies of the projected angular-momentum com-
ponents are shown in Fig. 1(c), where the similarity to
the results of the exact diagonalization is readily ap-
parent. The overlap between the exact and the projected
wave functions is also very high.

9 J. Bar-Touv and I. Kelson, Phys. Rev. 138, B1035 (1965).
10S. G. Nilsson, Kgl. Danske Videnskab. Selskab, Mat.-Fys.
Medd. 29, No. 16 (1955).
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(¢) Having thus confirmed that all the necessary con-
ditions for the application of the cranking approach in-
deed exist, we may proceed to calculate the moment-of-
inertia parameter 4 as a function of a. The exact value,
as well as the Inglis formula [Eq. (8)] and the Thouless-
Valatin formula [Eq. (9)] values, are plotted and com-
pared to the actual relevant parameter of the model
Hamiltonian. They are shown in Fig. 4, which is based
on Fig. 2.

One clearly sees that the Thouless-Valatin (as ex-
pected) is a better approximation to Eq. (21) than
Inglis’s formula is. Paradoxically, the less rigorous for-
mula provides in this case, for «=0, a better approxima-
tion to the actual value of 4. Had one merely concerned
oneself with the present situation, one would have had a
real puzzle, in particular, when recalling the historical
fact that Thouless and Valatin’s formula was suggested
to correct for inadequacies of Inglis’s expression in other
regions.

However, we see upon examination that both expres-
sions, as well as the exact one which they approximate,
totally fail to fulfill the criterion of Sec. III. They are
very slowly varying functions of «, instead of going up
linearly with it at a 45° slope.

Therefore, in this case, the success or failure of the
cranking approach appears to be accidental. This, in
fact, will always be the case, unless the external con-
sistency criterion is specifically met.

It may be argued that the failure of the cranking ap-
proach in the case of Ne? is due to the small number of
particles in the variational treatment. In that case one
might suspect the results, because of the fluctuations in
the expectation value of J,2. However, a similar treat-
ment of Si?® (which has three times as many nucleons
outside the O core) reveals that the criterion is badly
violated there, too. The calculated value of d4/da is
0.08 instead of approximately 1. Also the inclusion of the
16 particles of the core does not seem to change the
results much, essentially because the operators J. do

TasiLE I. The components of different j, in decreasing order, for
the Hartree-Fock single-particle levels resulting from the Hamil-
tonian (33), for Ne2 and Mg?, compared with the corresponding
Nilsson levels, for n=2.

Ne?0 Mg Nilsson (n=2)

k=1/2 0.819 0.848 0.879
—0.380 —0.251 —0.198

0.429 0.466 0.410

k=3/2 0.997 0.974 0.992
—0.080 —0.226 —0.125

k=35/2 1.000 1.000 1.000
kE=1/2 0.552 0.467 0.413
0.321 0.770 0.424

—0.769 —0.435 —0.806

k=1/2" 0.155 —0.249 —0.061
0.867 0.587 0.895

0.473 0.770 0.440

k=3/2 0.080 0.226 0.125
0.997 0.974 0.992
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Fic. 4. The exact cranked moment-of-inertia parameter,
as well as the Inglis and the Thouess and Vallatin formulas
for Ne, for the Hamiltonian H4-aJ? as a function of a.

780 I.
MeV
0.3 —
INGLIS
ozl EXACT CRANKING
THOULESS — VALATIN
A

o - BEST VALUE

o | | | ] ] |

-0.6 -0.4 -0.2 o 0.2 0.4 0.6 MeV
a

not change the principal quantum number of the
nucleons.

V. ALTERNATIVE VARIATIONAL APPROACHES

A different approach, also of a variational nature, for
determining the moment-of-inertia parameter, was sug-
gested by Skyrme,!! and also employed by Levinson.!2
This approach centers on two familiar assumptions:
first, that the various members of the rotational band
can be projected from a single intrinsic state; second,
that this intrinsic state is precisely the Hartree-Fock
determinantal ground state ¢4 of the intrinsic Hamil-
tonian H—AJ? Clearly, if both assumptions were
rigorously true, then, for the true moment-of-inertia
parameter 4, we would have

(H—AJ?)$4=0. (34)

This ideal situation is, however, nonexistent. One hopes,
though, that the actual state of affairs is close enough to
it so that (34) may serve as a guiding principle. Desig-
nating by ¢s the Hartree-Fock determinantal solution
of H—fJ?, where 8 is a variable parameter, one has in
general

(H—BTH)ds=Xs. 35)

The length I2=(Xs|Xs), as a function of B, is then sub-
jected to the requirement that it is as small as possible.
The value 8 where this occurs is identified as the proper
A of the Hamiltonian H. It was also shown!? that the
length I4 provides an estimate of the dispersion of the
actual projected eigenvalues from a true rotational
band.

It is easy to see that this prescription (doing first a
self-consistency problem for fixed 38, and then varying )
satisfies automatically the external-consistency condi-

11T, H. R. Skyrme, Proc. Phys. Soc. (London) A70, 433 (1957).
12 C. A. Levinson, Phys. Rev. 132, 2184 (1963).

The best value indicates the actual value to be used, and
the slope of its curve is the one imposed by the external
consistency condition.

tion, formulated in Sec. ITIL. Clearly, if we replace H by
H+aJ?, the minimum of (Xg|Xg) will shift from 4 to
A-+a. Moreover, the method has the great merit of not
only providing a meaningful value for 4, but also giving
a quantitative estimate of how good a rotational spec-
trum the intrinsic state is generating. This estimate is
contained both in the absolute magnitude of I4, as
well as in the sharpness with which this minimum is
attained. Figure 5(a), which is reproduced from Ref. 12,
illustrates the results of applying this method to Ne2,
using the same Hamiltonian as in the previous section.
At the same time, Fig. 5(b), demonstrates the failure
of this variational prescription for Mg?% The curve of
I? lies very high and does not display a clear-cut mini-
mum. This, we presume, is closely related to the fact
that the axially symmetric determinantal wave func-
tion, used in this treatment of Mg?4, is improper for this
purpose. The intrinsic state is much more likely to be
axially asymmetric, thus giving rise to other states of
the rotational bands (corresponding to an additional
K =2 band) upon projection. In the framework of axial
symmetry, the axially asymmetric determinant can be
expressed as a particle-hole expansion series about an
axially symmetric determinant. It therefore seems, in
this framework, that the failure of the Skyrme varia-
tional approach for Mg?* is due to the fact that the
sought intrinsic state is of a rather complicated nature.
In other words, we are justified in conceiving the exist-
ence of such an intrinsic state, but unjustified in attri-
buting to it the very simple form of an axially symmetric
determinant. Incidentally, to account for the large en-
hancement of electric quadrupole transitions within a
band, one similarly requires only the existence of an
intrinsic state, while its detailed character is of second-
ary importance. An extension of the set of wave func-
tions over which the intrinsic states are varied may
therefore be significant. Of course, the extended set in
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FiG. 5. The “remnant” curves as a function of 8, for Ne® and
Mg?, displaying the drastic difference of behavior in the two
cases.

the case of Mg?* is still of a determinantal nature, but it
is indicative of the possibilities in more general exten-
sion. In particular, one might expect this to be useful
in treating nuclei which are not good rotators. This,
incidentally, could provide a solution to the s-d shell
dilemma discussed in the previous section.

Relaxing the condition that the intrinsic state be a
single-particle determinant may thus open various pos-
sibilities for modification and improvement. Moreover,
the interaction with the vibrational modes of motion
may be better treated. Such possibilities, and related as-
pects, will be pursued and reported on elsewhere.

This relaxation may also be of importance to a modi-
fied application of a cranking-type approach. In its
present form, the “cranked” moment of inertia seems to
represent the response of the system, not so much to
physical rotations, as to the artificial requirement of
strictly independent-particle motion. Consequently, the
wider the class of states available for the description of
the intrinsic state, the better the cranking approach
will describe the response to rotations.
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APPENDIX A

Let the Hamiltonian H be composed of a one-body
and a two-body part

H=K+V. (A1)

The perturbation —wJx, which is a one-body operator,
is added to (A1), and the self-consistency conditions are

hi=Ki1—wJx1+TropsVis (A2)

[%,0]=0.

and
(A3)
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The suffixes, where they appear, refer to the space on
which the corresponding operator operates. We now ex-
pand, up to second order,

h=hO4-h D% ® | (A4)
p=pDFwp®W+4wH® (A5)

and compare in (A2) and (A3) corresponding powers of
w. Thus the zeroth order yields the equations for the un-
perturbed consistency problem, presumably solved:

2@ =K+Trep. Vs, (A6)
[A© p©®7=0, (A7)
The first order yields

BV = —Jx1+Trep: PV 1o, (A8)
[}L(O),p(l)]_*_[h(l),p(o)]:0, (A9)

and the second order yields
P =Tryps® V1, (A10)
(Ao @T4+[AW pWH[A®,p®]=0. (All)

First Order

To solve for the first-order perturbation equations, we
substitute (A8) into (A9), getting

(219,010 — [T 1,01 J4-[Trape P Vig,p1 @]=0. (A12)

Taking matrix elements of (A12) between states a,8 of
the unperturbed Hartree-Fock representation, and des-
ignating by #, the occupation number of the state (1 if
occupied, 0 if unoccupied), we get
(ea— Gﬂo)<a[ p® lﬁ>—' (ug— “a)<a| Jx|ﬁ>

+ (ug—ta) (1| Trops P V12| B1)=0, (A13)

where €., €g° are the unperturbed Hartree-Fock ener-
gies. But,

(01| Trep2®V 12| B Y=2" {aryz| p2® ViaBryz)
Y
=3 g (e8| V[ByXv[p®]8). (A14)
p
We get a set of linear equations for the matrix elements

of p@, of the form

Aaﬁyapvﬁ(l) = Qag, (A15)

where

Aap?= (1g—12){ad| V| By)+ (€a®— €5°)Saydps (A16)

and
Qap= (ug—ua){c| Jx[B).

Second Order

(A17)

In a similar way, we substitute (A10) into (A11),
obtaining

[71©,0, D] — [T 01,01V T4 [Tropa® V1g,01V]

A [Trope®Vie,p1 @]=0. (A18)



782 I.

Taking matrix elements for the various terms, one has

(a| (2@ p®][B)= (e~ ") (| p®[B), (A19)

(@|[Tap®][B)=2 {{a| Jz|¥){(¥]p©[8)
—{a|p® [y)}v|/:|8)}, (A20)

(@|[Trops™® V15,01V ]| 8)
=3 {<’Y|P(1)ll3>zé: (182 | p2 @V 12| v182)
—(a[p(l) I’Y)Za <a152l02(1)V12l3162>}

= Za @leD M {(v]p®[B)an| V|vs)

—(ap®|v){vn|V|B8)}, (A21)

(@|[Trapa® V19,01 ]| B) = (15— 14)
XZB (ad| V[By)(y|p®[8). (A22)

Thus, the matrix elements p,;® of p® are subject to
the set of linear equations
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where

Bog?= Aup? (A24)

and

Dap=2 {{a| Jz|){¥[p P [B)—(a|p D@ |¥){v|T:]8)}

- 52 Blo® [m{{v]p©V|B8)an| V|vs)
—{a|p®|y)(yn| V|B5)}.

The Thouless-Valatin formula is obtained when one
restricts oneself to the lowest order in w and neglects the
off-diagonal elements of 4:

(A25)

Aag?® A0 005

The Inglis formula is obtained when one neglects not
only the off-diagonal terms, but the two-body matrix
elements in the diagonal terms as well.

In the case where the space of allowed single-particle
orbits is truncated, the problem of finding p® and p®
becomes finite. It can be solved with exactitude nu-
merically. The only operation of any complexity is the
inversion of the matrix .4 which appears both in the p®
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Bappys P =Dgg, (A23) and p® equations.
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Scattering of Alpha Particles by Oxygen. I. Bombarding Energy
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Absolute differential cross sections for the elastic scattering of & particles by O have been measured as
a function of bombarding energy in the range 5.8~10.0 MeV. Measurements were made at center-of-mass
angles of 90.0°, 109.9°, 114.0°, 125.3°, 131.4°, 140.8°, 149.4°, 154.0°, 158.8°, and 163.8°, Detailed angular
distributions have been measured at 6.97, 8.63, and 9.92 MeV (lab). Sixteen resonances have been observed
corresponding to energy levels in Ne® at 9.50, 9.99, 10.30, 10.49, 10.55, ~10.7, 10.83, (10.93), 11.03, 11.29,
~11.6, (11.89), 11.99, 12.27, 12.39, and 12.58 MeV (c.m.). Spin and parity assignments have been made
for six of these levels, tentative assignments are suggested for seven, and two or more possible assignments
are given for two levels. Phase shifts have been extracted from the angular distribution data at 6.97, 8.63,
and 9.92 MeV (lab). New rotational bands in Ne? are suggested by the data and previously reported
bands have been extended. Information about the levels in Ne® is compared with that obtained in previous
studies of other nuclear reactions. The correspondence with the results of an 0% (a,y)Ne® investigation
is generally good. The set of Ne¥ levels found in this work is somewhat different from the set determined

20 AUGUST 1967

by the C2(C2,a)Ne® reaction experiments, and this difference is discussed.

I. INTRODUCTION

HE elastic scattering of a particles by O has
been studied from 0.94- to 4.0-MeV bombarding
energy by Cameron' and from 3.7-6.5 MeV by Mc-
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