
PHYSICAL REVIEW VOLUM E 160, NUM B ER 4 20 AUGUST 1967

Finite-Range Effects in the Distorted-Wave Impulse Approximation

R. M. HAYBRoN

Oak Ridge ¹tional Laboratory, Oak Ridge, Tennessee

(Received 6 March 1967)

The usual (zero-range) distorted-wave, impulse approximation applied to the inelastic scattering of
high-energy protons by nuclei ignores the averaging of the two-nucleon t matrix over the range of mo-
mentum transfers introduced by the distorted waves. The effects of including this averaging (the finite-
range calculation) are investigated here at 50, 100, and 150 Mev for quadrupole transitions in "C and "Ca
using a much simplified form of the two-nucleon t matrix. It is found that the finite-range sects are not
negligible even at the highest energy; in particular, the 150-MeV cross section for "C is reduced by a factor
of two in the forward direction, while the peak cross section for @Ca is reduced by 20% at this energy.
An attempt is also made to fit the data on the 2+ level of "C at 45.5 MeV using the finite-range calculation,
and it is found that the strength of the transition predicted by the impulse approximation (using the sim-
pli'fied t matrix) is too small by a factor of more than three. Exchange effects were ignored in the finite-range
calculations.

L INTRODUCTION

HE distorted-wave impulse approximation
(DWIA)' applied to the inelastic scattering

of high-energy protons from nuclei has proved to be
a powerful tool in the determination of the structure
of the nuclear levels involved in the transition. ' ' At
energies of a few hundred MeV, proton wavelengths
are small enough to give a rather sharp picture of the
overlap of the Anal and initial nuclear states, and this
knowledge can be of considerable value in testing
predictions of structure calculations. Although the
calculations to be done in the DWIA are lengthy, they
can be performed quite easily with the use of high-speed
computers and available computer codes. 4

The signi6cant feature of the DWIA is the fact that
the force assumed to be producing the inelastic scat-
tering is just the free, two-nucleon interaction acting
once. One then obtains a transition matrix element
describing the process which is expressed in terms of
initial and final distorted waves (which are determined
from the elastic scattering), the free, two-nucleon
transition matrix (which is determined from the study
of nucleon-nucleon scattering), and the nuclear tran-
sition density (essentially the overlap of the initial and
final nuclear states), the latter being the quantity to
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be determined. In eGect then, the only unknown quan-
tity is that which is to be determined, namely, the
transition density.

This brief description indicates that, according to
this picture, one should be able to somehow invert the
high-energy proton scattering data and obtain in an
unambiguous way the nuclear transition density. This
is not the case, however. In the erst place, these data
are as yet relatively dMicult to collect and are not
extensive or very precise. Also, the computational
difhculties involved in "solving for" the transition
density appear to be virtually insurmountable. In the
third place, and most important, the use of the DWIA
involves a series of approximations which are diQicult
to test, so that the calculations which have been done
thus far must be regarded as testing the DWIA as well
as the transition densities used. It is the purpose of this
note to look at one of the simplest corrections to the
DWIA as it is currently applied.

In the form in which the DWIA is almost always
used, one evaluates the two-nucleon, t matrix (which
is a function of bombarding energy and momentum
transfer) at the incident energy of the projectile, Es,
and at the net momentum transfer to the nucleus
q= kp —kf, where ks is the initial Projectile momentum
(in units of fz) and kr is the final projectile momentum.
If the motion of the projectile were adequately described
by plane waves, this would be exactly correct. However,
the use of distorted waves, which is necessary to account
for the inhuence of the nucleus upon the propagation
of the projectile, introduces a spread of initial and anal
momenta. Since the inelastic scattering takes place
within the nucleus, the projectile momenta which
pertain just before and just after the inelastic collision
are not ks and kf, but instead a range of initial momenta
k ' and a rage of final mornenta ks', the distribution
of components depending on the location in the nuclear
volume. Then in order to properly apply the DWIA,
one should somehow average the two-nucleon, t matrix
over the spread of bombarding energy and momentum
transfer produced by distortion eBects. In fact, the
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energy dependence of the t matrix is not too strong so
that it is probably adequate to use the matrix elements
corresponding to the initial projectile energy. On the
other hand, the dependence of the t matrix upon
momentum transfer is strong, so that ignoring the
"average" over q' (=k,'—kt, ') could lead to serious
errors in the cross section, particularly at forward
angles where refraction effects produce momentum
differences large compared to the asymptotic momen-
tum transfer. (Quantities such as momentum or mo-
mentum transfer which are characteristic of the
nucleon-nucleus system at large separation will be
referred to as asymptotic; quantities referring to the
system in interaction will be called local. )

The effects of the momentum transfer averaging will

be explored here to determine the importance of re-
fraction in computing the inelastic cross section. Since
the real two-nucleon, t matrix is a rather complicated
quantity, the investigation will employ a much sim-

pli6ed form, namely, a Yukawa in the momentum
transfer, with a range chosen so as to reproduce the

q dependence of the central part of the actual t matrix
as closely as possible. Calculations will be performed
for quadrupole transitions in "C and 'Ca as character-
istic of the type of transition and range of atomic
weight for which the DWIA has been applied. These
calculations will be done at 50, 100, and 150 MeV. The
two higher energies are in the range where the DWIA
is expected to apply; the 50 MeV calculations are
included for reasons to be discussed below.

It would be of great bene6t if one could use the
DWIA at much lower-bombarding energies, for instance
at 50 MeV. In this energy region many more nuclear
levels can be resolved than at the higher energies and
because of the larger cross sections, data are much more
detailed and precise. However, it has been assumed that
the impulse approximation would not be good at such
low energies. If one restricts his attention to single
scattering, the two-body operator which produces the
inelastic scattering can be written as r =a+v (1/
E He Hrr)r, wh—ere v—is the two-nucleon potential,
H~ is the Hamiltonian for the bound (target) nucleon,
and Ho is the Hamiltonian for the projectile. The im-

pulse approximation consists in replacing H& by the
kinetic energy of the target particle, in which case this
is just the equation for free, two-nucleon scattering.
This step is expected to be good at large projectile
energies where the binding potential term in H~ will

contribute a negligible amount to the propagator. On

the other hand, at low-projectile energies it is expected
that one must use the propagator as it is, that is, the
scattering cannot be properly described in terms of
the free, two-nucleon operator. However, this statement
depends on the region of the nucleus where the inelastic
event takes place. If, due to absorption into other
reaction channels, the inelastic scattering is restricted
to occur at the nuclear surface, then binding might still

not be too important and the impulse approximation
might hold where at hrst glance it would be expected
to fail.

Attempts are currently being made to describe
moderate energy ( 50 MeV) inelastic proton-scattering
data using simple, effective two-nucleon interactions. "
If such an interaction can be found it would be of great
utility in the interpretation of the many nuclear levels
which can be excited at these energies. Although we

cannot hope too seriously to apply the impulse approxi-
mation at these low energies, it may be that at some
intermediate eg.ergy we can 6nd an overlap which will

help to delineate the effective interaction mentioned
above.

For the reasons discussed above, calculations at 50
MeV have been included here. Clearly at these energies
where the incident energy of the projectile is comparable
to the depth of the optical potential, one would expect
large refraction effects and hence the momentum
transfer averaging will be important. In addition,
calculations using the approximate t matrix (which

represents the central part of the real t matrix fairly
accurately) for the excitation of the 4.43-MeV level

of "C have been included and compared to experiment
in order to ascertain by what amount the DWIA fai»
in predicting the strength of this transition. This pro-
cedure ignores the spin-dependent part of the inter-
action. However, the spin dependence of the effective
interaction proposed at low energies (Ref. 5) seems

quite weak, so that this is probably not a serious

omission for these preliminary calculations.
A few remarks are in order regarding nomenclature

in the following. In the usual form of the DWIA, the
interaction takes the form t(Ee,q) &(8(r—r;) where r is

the projectile coordinate and r; the coordinate of the

jth target nucleon. This form has come to be called the
sero-range form. In fact it would correspond to a true
zero-range interaction only if f(Ee,q)=1, but even so

we shall use the simple, if inaccurate, title just men-

tioned. In the calculations where refraction is taken
into account by averaging over momentum transfers,
it will be seen that in effect the 6 function in the form

above is replaced by a function of 6nite range; hence,
this type of calculation will be called finite ruege. -

We have neglected exchange scattering produced by
antisymmetrizing the projectile-target wave function
in the 6nite-range calculations. Since these exchange
terms involve matrix elements where the coordinates «
the 6nal nucleon differ from those of the initial nucleon,

they are quite complicated to evaluate and since we are

mainly interested here in the relation of distortion
effects to the form of the interaction we have elected
to ignore them. This point is discussed briefly in Sec. IV.

5 W. S. Gray, R. A. Kene6ck, J. J. Kruaahaar, and G. R.
Satchler, Phys. Rev. 142, 735 (1966); M. S. Johnson, L. W.
Owen, and G. R. Satchler, ibid. 142, 748 (1966).

6N. K. Glendenning and M. Veneroni, Phys. Rev. 144, 839
(1965).



II. THEORY

A. The DWIA Matrix Element

The transition amplitude for the inelastic scattering
of a proton from an initial momentum state (in the
proton-nucleus center-of-mass system) k, to a final
state kb is given in the DWIA by

Tfo= ~'-'(kb, r')((&pf(ti') I Z «(r', tif': r, gf) I&po(p)))

plicated task, to evaluate (2) . However, we do not
know this operator, but only certain matrix elements
of it from free, two-nucleon scattering, so we must
restrict the momentum integrals occurring in (2), or
alternatively ignore the unknown parts of the t matrix
in the performance of these integrals.

We assume that the t-matrix elements at most depend
on three quantities

I 12—11
I

2 ~ initial energy of relative motion,

I 14—13 I

' ~ final energy of relative motion,
&&x«+& (k„r)drdr', (1)

and the momentum transfer dined to be
where p&(pro) =ttp&(g ijo2

' ' pt' ' ' pg) is the initial nuclear
wave function and &pf is the final nuclear wave function.
The functions X(+) and X& ~ are distorted waves in the
initial and final channels (we are ignoring spin-orbit
coupling for simplicity so that & (+) and X( & do not have
spin indices) . These functions can also be assumed to
contain projectile spin functions, although we shall be
mostly interested in the case where t is a spin scalar.
The quantity in curly brackets which is obtained from
the average of the t operator over the nuclear wave
functions will be called, for convenience, the effective
potential" 'U (r', r), and it is this quantity which is of
central interest. In writing (1) we have made the
multiple scattering and impulse approximations so that
"t" is the free, two-nucleon transition operator. It
should perhaps be emphasized that t contains the action
of the two-nucleon potential e to all orders in a given
nucleon-nucleon collision.

At this point we should emphasize that the ranges of
validity of both the multiple-scattering approximation
and the impulse approximation are of primary im-
portance to what we shall do although they are not
investigated here.

B. The Quantity 'U (r', r)

We now wish to calculate the effective interaction in
Eq. (1). Since the two-body t matrix is measured for
nucleons in states of sharp linear momentum, it is
necessary to write 'U (r',r) in terms of the momentum
space components of the quantities involved. Then one
has

'U (r', r) = &pf*(14)e'""(14,13 I
t

I 12,11)
(2~) '

&(e ""&pp(12)dlidlpdlpd14. (2)

In Eq. (2) we have written just one of the A terms in
Eq. (1), for instance the one for which j=1. Then

&pp (12)= — e '12 p&&po («21& t«2
—

p'~)dpi &

(2~)3/2

etc. Now if t were a known operator in momentum space
it would be a straightforward, though probably com-

q'=l, -l, .
With conservation of linear momentum, the t-matrix
element in (2) can then be written

wi th

(Itl)=~(11+12—13—I )t(ll —I I', I12—I I', q'),

0&q'&X II,—11I

that is, one obtains the elastic-scattering matrix
elements in a restricted range of momentum transfer.
The two-nucleon Inatrix elements required to evaluate
the nucleon-nucleon interaction, however, corresponds
to inelastic scattering, and, of course, are not deter-
mined by the free, two-body scattering. In order to
circumvent this difhculty, it is conventional to ignore
the dependence of the t matrix, on the Q.nal state energy.
Although difficult to justify without appealing to a
model for the two-nucleon interaction, this approxi-
mation is intuitively plausible for high-bombarding
energies and low-energy excitations and we shall use

it throughout.
The t-matrix element in (2) can now be written in the

simpli6ed form

(14 13
I «I 12 11) ~(11+12 13 I4)t( I

12 11 I & q ) ' (4)

If we now substitute (4) into (2), change variables and

perform the integral over the 6 function, the expression

for the effective interaction becomes

'U (r', r) = &pf*(12+ q')t( I I,—11I, q')&po(I2)
(2m)3

)( e'& & & ~ e &2 dlidlpdq ~ (5)

(14,13
I
t

I
I„l,)=& (11+12—13—14)

X t( I
14—13 I

'
I
12—11

I

' q')

In the free, two-nucleon scattering (ignoring p-p'y
experiments) we cannot determine the t matrix for the
range of variables in (3) required by the integrals in (2) .
For free scattering, one measures the subset of matrix
elements
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to yield

V(r', r) =8(r—r') e"'Vf*(9)A(e)~9

&(t(k,' q') e '&"-"dq'. (15)

Finally, we remember that in the plane-wave calculation
we obtained the result that the local momentum transfer
q' was equal to q, the asymptotic momentum transfer.
If we follow this and set q'=q in the t matrix in (15),
the effective interaction reduces to

v (r', r) =b(r—r') (2m)'t (k.', q)

ft*(9)~(9—r)A(9)&9 (16)

In (16) we have not performed the integral over the 8

function since this is the form in which the D%IA is
usually written.

As the previous statement implied, most DULIA
calculations to date have been done using the expression
in (16), wherein one ignores the average over local
bombarding energy and local momentum transfer
implied by the expression in Eq. (5).s Since the energy
dependence of the two-nucleon, t matrix is fairly weak. ,
we shall continue to ignore it. However the depend, ence
of t on momentum transfer is not weak and we propose
to investigate the importance of the average over local
momentum transfer by using Eq. (15) and comparing
the results to those obtained from (16). In order to
conveniently distinguish between (15) and (16), we
shall call the latter expression the "zero-range approxi-
mation" due to the presence of the 8 function in the
target-projectile coordinates and the former expression
the "6nite-range approximation. " Strictly speaking,
the expression in (16) corresponds to a zero-range
interaction only if t(k,',q) is independent of q, but we
shall ignore this in the interests of simplicity.

One would expect especially important differences
between the zero-range and Boite-range interactions at
small scattering angles where the asymptotic momen-
tum transfer is small. In this region of scattering angle,
refraction effects in the distorted waves introduce
6nite local momentum transfers even when the local
momentum transfer approaches zero. It is for just this
reason that the inelastic cross section for 0+ to 0+
transitions such as the excitation of the 7.7-MeV level
of "C shows a strong forward peak whereas in the plane-
wave approximation this cross section would be zero.
That is, the plane-wave cross section is proportional to
the square of (fez&iged ~jp (qr) ~ /gap„d). For q ~ 0, this
matrix element goes to zero due to the orthogonality
of the wave functions. The fact that the distorted wave
result peaks in the forward direction even at 150 MeV

8 See, however, M. Kawai, T. Tcrasawa, and K. Izumo, Nucl.
Phys. 59, 289 (1964).

indicates that finite momentum transfers have been
introduced by refraction effects. Since the two-nucleon,
t matrix is, in general, a rather sharply decreasing
function of q for sxnall q, we should expect that Qnite-
range corrections could. substantially reduce the cross
section at forward angles, at just this effect has been
found by Kawai and Terasawa (Ref. 7) for the exci-
tation of the 15.1 MeV spin-Qip level of "C by 156-MeV
protons.

We should not expect large corrections due to finite-
range effects for high-energy scattering (except possibly
for forward angles as just discussed) since we anticipate
that the approximations which have been mad, e to
obtain the zero-range form for the effective interaction
are well satis6ed for bombarding energies above 100
MeV. As the bombarding energy is lowered, we would.
expect that, in general, the finite-range effects will
increase in importance so that the zero-range interaction
no longer gives an adequate representation of the
process, and, this is one of the things we are looking for.
Of course, at lower energies with relatively larger re-
fraction effects, it is a distinct possibility that one
might be forced to use the more general form in Kq.
(5) where the average over the local bombarding energy
is included producing a nonlocal effective interaction.
However, the two-nucleon, t matrix seems to vary
rather slowly with energy down to perhaps 40 MeV so
that the nonlocality of the interaction may well be
ignorable to the erst approximation. More seriously,
it may be expected that at some lower energy the
impulse approximation as well as the single-scattering
approximation wi11 begin to fail. If this is the case,
then we hope to detect such a failure as a systematic
and increasing discrepancy between the results obtained
using the finite-range DWIA and experiment at pro-
gressively lower-bombarding energies. That the simple
picture presented here to describe the inelastic scat-
tering will fail at suKciently low energies is not in
doubt. The complexity of the problem, however, makes
it extremely difIicult to estimate just where it will fail,
and, it seems that direct comparison with experiment
may be the only means to answer the question. It is
unfortunate that there is virtually no proton data as
yet in the energy range between 60 and 150 MeV to
compare to, but it is expected that this situation will
be materially altered in the near future.

E. Nonphysical t-Matrix Elements

The effective interaction for the 6nite-range DWIA
is from Eq. (15)

where for simplicity the delta function in (15) has been
dropped and has been written as a local interaction.

%e would erst of all like to investigate the range of
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Eo ——k,/2

and the momentum transfer Q is given by

(18)

q' required in the integral in (17), since as was pointed
out after Eq. (3) the range of q' permitted in the free,
two-nucleon scattering experiment is 0&q'&2k, . Sup-
pose we consider the scattering of a nucleon of lab
momentum k from a free nucleon at rest. The center-
of-mass momentum of the projectile is Eo, where

0.4

g 03

Z)
O

0,2
0oI-
C3

)I
a)l

Q= 2ZO sin(e/2), (19)

&0=
M

(20)

(we are assuming that M„=M = 1) and. a momentum
transfer q' given by

q'= 2ko sin(e/2), (21)

where e is the scattering angle. We use in (16) or (17)
elements of the t matrix corresponding to q'= Q which

from (19) and (21) gives

where 8 is the center-of-mass scattering angle. Now if a
projectile nucleon of the same laboratory momentum
scatterers from a nucleus of mass 3f it has a nucleon-

nucleus, center-of-mass momentum ko given by

0 0.5 I.O h.5
q(F )

2.0 2.5 3.0

Now suppose we consider excitation of the erst 2+ level
of "C where the ground state is a closed pp2 shell and
the excited state is a (pq~2)(p3~~)

' particle-hole state.
Then a simple computation yields

Tt0 ~ t (k,' q) q'e ""
if the oscillator wave functions have the form

(26)

FIG. 1. The nuclear form factor corresponding to the excitation
of the erst 2+ level of "C with this level represented as a p1/~
particle, p3~2 hole is compared to the physical cutoB ef the two-
nucleon, t matrix at various energies.

which is

e
sin( —

)

=—sin(e/2)z,
(22)

Qg~ ——Eg„re (27)

All the spectroscopic factors, etc. have been ignored in
(26) as inessential to the point to be made. The cross
section computed from (26) will be given by

el 2M

(2) M+1
sin(e/2) (23)

M+1
e)2 sin '

2M )
(24)

For "C, this angle is 65'. It should be pointed out
that this restriction applies both to the zero-range
interaction in (16) and the finite-range interaction in

(17), that is for q above the kinematic limit the ex-

pression in (16) is not defined and the integrand in (17)
is not dered.

A rather simple computation can illustrate the im-

portance of the momentum cutoff. If the zero-range
expression (16) is substituted into (1), the plane-wave

limit gives

2'to=t(k. ',a) ~ "V~*(r)A( )~ .

from (18) and (20). Equation (23) shows that the
nucleon-nucleus scattering requires elements of t for
nonphysical (off-the-energy shell) scattering angles.
Since the maximum physical, .value of 8 is 180' in the
nucleon-nucleon system, the nucleon-nucleus scattering
requires nonphysical momentum transfers for

dg—n)t(k 'q) l'Pe ~'~'».

dQ
(28)

The factor in (28) due to the nuclear part of the matrix
element peaks at q=g(8n), independent of energy.
This factor is shown in Fig. 1 compared to the physical
cutoffs of t at several energies. Clearly at 156 MeV and
at higher energies the cutoff will make little difference.
In the zero-range calculation the cross sections become
unobservably small for angles approaching the cutoff
and in the finite-range calculation, although the integral
in (17) presumably goes over all values of q, the peaking
in the distorted waves around the asymptotic momen-
tum transfer will, in fact, make large q values ineffective.
At lower-bombarding energies, however, the cutoB
momentum occurs at values of the cross section which
are observable, and hence one must have a procedure
to extend the t-matrix to nonphysical q values if this
picture is to be applied. Alternately, one could think of
inverting the problem and determining these "non-
physical" t-matrix elements from the low-energy experi-
ments, but in view of the approximations underlying
the 6nite-range DWIA, this does not seem to be a very
likely procedure. The desired matrix elements could be
generated using one of the existing two-nucleon po-
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tentials, ' and this is presumably the way the calculation
will ultimately be performed. At the moment, however,
we are interested in the importance of refraction effects
rather than in detailed fits to experiment so that we will
use the simplest possible procedure to define the inte-
grand in Eq. (17), namely guessing a not unreasonable
form for the large-q matrix elements of t.

F. The t Matrix

The two-nucleon, t-matrix may be written in terms
of the spin, isospin operators of the two nucleons as'

1=A+8(e 8)(«8)+C(e+«) 8
+~(- q)(«q)+I" (- P)(-~ P), (29)

where the unit vectors p, q and 6 form an orthogonal
coordinate system dehned by

q= (kr —ko)/q,

6=kp Xkg/ i
k p Xk r i,

p=qXB.
(3o)

The operator e refers to the projectile while e& refers
to the target. ko and k~ are the initial and final projectile
momenta. The coefficients A, 8, C, E, and F are in
turn operators in the isospin of the nucleons. For
instance

&=4(3~i+~0)+&(~i—~0)~ ~i, (31)

f=A+C(e 6). (32)

etc., where 2» is the coeKcient for the triplet isospin
state and A p is the coeKcient for the singlet state. A p,

Ay, Bp, By, etc. , are all functions of bombarding energy
k02 and moinentum transfer q. In (31) ~ is the projectile
isospin, while c& is the target isospin.

The form of the t matrix in Eq. (29) presents an
immediate complication in the performance of the
integral in Eq. (17). This is due to the fact that not
only do the coefficients in the expansion of the $ matrix
depend upon the magnitude of the momentum transfer,
but the unit vectors also depend upon the directions of
the local momenta before and after the scattering as
can be seen in the Eqs. (30). This is an essential com-
plication. In order to know the directions of the local
momenta before and after the scattering, one must
decompose the distorted waves into their momentum
space components and such a procedure is prohibitively
dificult.

The situation can be mitigated to some extent by
noting that for the low-lying levels of a variety of
nuclei wherein transitions are predominantly collective
in nature, the "spin-flip" terms in (29) turn out to be
relatively unimportant, so that the part of the t matrix
which is active in the transition is just (see Ref. 3)

This simpli6es the problem but does not totally al-
leviate it since even in (32) one must account for the
"wobbling" of the scattering normal 8.

In view of the complications attendant to using either
(29) or (32) in the finite-range calculations, we shall
replace the "correct" form for the I, matrix by a simple
form depending only on the magnitude of the momen-
tum transfer. This will vastly simplify the calculations,
and will still allow us to ascertain the importance of
refraction corrections.

~(q) =~o(P'+q') ' (33)

will be studied in this section with P chosen to agree
as nearly as is possible with the small q dependence of
the central part of the real t matrix. These studies will
be performed at 50, 100, and 150 MeV in an attempt to
determine the importance of finite-range effects as a
function of energy, for transitions of multipolarity l= 2
in "C and 4'Ca. Quadrupole excitations have been
selected for this study because of their common ap-
pearance in inelastic scattering at all energies.

We still need the nuclear wave functions to evaluate
(17), or more accurately we need

f(&') = ~" Vr*(e)A(e)~e. '
(34)

f(q ) is essentially the form factor measured in inelastic-
electron scattering and a search code has been developed
to obtain a best fit form factor for the high-energy
electron data. " In this procedure, the form factor is
pararnetrized in the form

j(q)=Q C. 'e—»'&' (35)

and a X' search is performed on the data to obtain the
coefficients C; and y in (35). Such a form factor is

IIL USE OF AN APPROXIMATE t MATRIX

A. Yukawa t Matrix

The form of the two-nucleon, t matrix in Eq. (2) is
the quantity we wish to insert in Eq. (17) to perform
the finite-range DWIA calculations. However, the
qualitative aspects of the contrast between the zero-
range and finite-range forms for the effective inter-
action can be studied much more simply by employing
a simple analytic form for the t matrix as a function
of momentum transfer, postponing at this time the
complications attending the use of the real, two-nucleon,
t matrix.

The zero-range and finite-range results for a t matrix
having the Yukawa form

' T. Hamada and I. D. Johnston, Nucl. Phys. 34, 382 (1962).
'0 See Ref. 1.

"R. M. Haybron, M. B. Johnson, and R. J. Metzger, Phys.
Rev. 156, 1136 (1967).
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TABLE I. The optical parameters used in the calculations performed here are displayed.
All strengths are in MeV and lengths in fermis.

Nucl.

1~C

4'Ca
&2C

Ca
I~C

4'Ca

jVp

150
150
100
100
50
50

22.1
22
22.6
29.5
37.6
37.1

15.9
16.7
11.1
12.2
5.2
7.6

Fp

0.902
1.012
1.0
1.086
1.18
1.16

1.33
1.32
1.33
1.32
1.33
1.32

0.452
0.548
0.5
0.659
0.7
0.77

4.31
4.26
2.88
6.28
7.5
8.3

—1.07
—2.14
—1.53
—1.07

0.0
0.0

I
Tp

1.186
1.364
1.34
1.4
1.4
1.44

0.556
0.542
0.5
0.6
0.7
0.66

5'p

0.0
0.0
0.0
0.0
0.0
0.0

available for the 4.43-MeV, 2+ level of "C and it was

used here. The expansion coeS.cients are C~=0.23,
C4=0.0104, C6= —0.0052 and y=1.434. There is no
particular benefit accrued to using this relatively
accurate form factor for the computations in this
section, but it is, in practice, no more dificult to use
than the simplest form one could choose. For the
study on ~Ca, the form in (35) was used with Cs ——1
and y=2.28. This, of course, does not correspond to
any real level of "Ca, although p was chosen to match
the electron-scattering radius.

The distorted waves required to calculate the tran-
sition matrix element in Eq. (1) were generated in the

0.5

)56 MeV

usual way as solutions of the optical potential

d
U(r)= —vo+e') ' —~(w —4w o+e") '

dx'

d
+(h)3f C)s(U, tiIUV, )a l(1/r) (1+S*)—'+V, (r), (36)

dr
where

X= (r Rs)—/a, Re= rsA't',
X'= (r—Rs')/a', Rs' ——rs'A "s

and V.(r) is the Coulomb potential produced by a
uniform sphere with a charge of magnitude Z and radius
r, The coef.ficients in (36) are conventionally chosen to
give a best fit to the elastic-scattering data. The param-
eters used in this calculation are displayed in Table I.

In order to choose sensible parameters for the Yukawa
interaction (35), this form squared was compared to
iA(q) ~'=[ReA(It)~'+LlmA(g)j' at 40, 90, and 156
MeV where A (q) was expressed in terms of the Gammel-
Thaler phase shifts, and ts and P were chosen to match
the small g behavior of iA (g) is as closely as possible.

O.l

I

I

90 MeV

0.05
0,5

0.02
0.2

0.01

0.005
te= l.O

0.&

0.05

I
I
I'~ 1L P~x P=).25

0.002 0.02

0.001
0 0.5 1.0 1.5

q(F ')
2.0 2.5 3.0 0.0&

0 0.4 0.8 1.2
qiF-')

).6 2.0 2.4

Fro. 2. The solid line is iA (g) i' at 156 MeV while the dashed
lines show the results for a Yukawa t matrix with the indicated
range parameters.

Fzo. 3. The solid line is iA (g) i' at 90 MeV and the dashed line
is the result for a Yukawa interaction with range parameter
p =1.25 P-i.
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=0.5

0.2

I

40 MeV

P=I.435~-

indicate that the simple Yukawa is representing the
central part of the real interaction relatively well over
the region of primary importance. One refinement
which could have been included would have been to
fit the real and imaginary parts of A (q) separately with
Yukawas and use the resulting complex form of (35)
for these studies, but since we are primarily interested
in refraction effects rather than choosing a very accurate
representation of the t matrix, this was not done.

O.l
0.2 0.6 0.8

q(F ")
).0 ).2 ),4

2x)0

10

Fro. 4. This shows IA(q) I' at 40 MeV compared to a Yukawa
with P=1.435 F '. A(q) in each case was obtained from the
Gammel-Thaler phase shifts as tabulated in Ref. 1.

The results of this comparison are displayed in Figs.
2—4 along with the values of to and 8 used. It can be
seen that the Yukawa form is quite good at 40 Mev,
but not too representative at the higher energies as
one would expect. However, inspection of Fig. 1 indi-
cates that the peak inelastic cross section for the
quadrupole level of "C is at q 1 F ' and Figs. 3 and 4
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Fzo. 6. The excitation of the 2+ level of "C for the
three approximations is shown for 100 MeV.

Vl

5

Cy
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2+ OF t2C(4.43 MeV)
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Fio. 5. The zero-range, Rnite-range and 6nite-range with cutoff
results are shown for the 0+ to 2+ excitation of "C at 50 MeV.

3. Discussion of Results for the Yukawa t Matrix

The results obtained for the studies described in the
preceding section are displayed in Figs. 5—10. In each
case the finite-range results are given by a solid line
and the corresponding zero-range results are shown
with a dashed line. Figure 7 shows the effects of varying
the range P in the effective interaction at 150 MeV as
well as the results for the "best 6t" to the real t matrix
with P=1.2.

One can summarize the results by noting that the
effects of 6nite range at all the energies is to reduce the
cross section rather substantially at small scattering
angles, and to enhance it at large scattering angles.
The small-angle behavior is simply explained: It results
from the well-known phenomenon that at zero-scat-
tering angle (transfer of zero asymptotic momentum
neglecting the momentum change due to the inelastic
excitation) on.e has a finite local momentum transfer
produced by refraction. An incoming particle enters the
region of the nuclear potential and is deQected. Sub-
sequently it collides with a target nucleon (producing
the inelastic transition) and is scattered with a finite
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for a 2+ excitation of "Ca at 50 MeV.
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FIG. 7. The zero-range and 6nite-range results are shown for the
2+ level of '~C at j.50 MeV for several values of the range param-
eter. The cutoff result is also shown for P =1.2 I' ~.

momentum transfer. Leaving the region of the nuclear
potential, the projectile is deflected once more to emerge
at zero-scattering angle. Thus scattering in the forward
direction is characterized by an average over finite
local-momentum transfers and since the eBective 3

matrix is monotonically decreasing function of q, the
net result of including refraction effects is to reduce

the small angle-scattering cross section as compared
to the result obtained where refraction eGects are
ignored. Similar ray-tracing arguments could also be
applied to the large-angle scattering with the opposite
result that the average momentuln transfer is now
smaller than the asymptotic momentum transfer.

These computations have established that the average
momentum transfer at a given scattering angle is, in
general, not equal to the asymptotic momentum transfer
as is assumed in the zero-range theory of the D%IA.
One could, using the results obtained in this section,
deduce the average momentum transfer as a function
of scattering angle at the three energies where the
computations have been performed for the two levels
looked at. This average momentum transfer q, is
defined by

to iz (der) (dtr)
(3»

-P +ttair — idQI zero range kdD) finite range

where the zero-range cross section is that obtained by
setting P= ~ in Eq. (33). However this procedure is
not of any particular utility since the angular depen-
dence of the average momentum transfer would un-
doubtedly be a function of the optical potential used
as well as the level being looked at.

The inclusion of 6nite-range effects reduces the
inelastic cross section in the forward direction by a
factor of about two and this result was previously found
by Terasawa and Kawai in their study of the excitation
of the 15.1 MeV spin-Qip level of "C at 150 MeV which
is an /=0 transition and peaks in the forward: direction.
This reduction of the forward cross section relative to
the zero-range result seems to be present in the levels
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previously looked at in the DWIA using the zero range.
The surprising thing is that the reduction in forward
cross section is about the same for both levels looked
at here at all three energies. One might well expect that
the sects of refraction would become more pronounced
at lower energies. That this is not the case is probably
due to the fact that the range of the effective interaction

(1/P) is decreasing as one goes to lower energy as can
be seen in Figs. 2—4.

The finite-range corrections at 100 and 150 MeV do
not shift the location of the peak cross section appre-
ciably for either level and in the case of "C do not
substantially alter its magnitude so that except for
forward directions (the cross sections at large angles
where substantial corrections are required are un-

observably small) the zero-range DWIA should work

quite well for "C (and presumably other very light
nuclei) at or above 100 MeV. However, in the case of
"Ca the peak cross section is reduced by nearly 20%
at 150 MeV and more than that at 100 MeV. If this
reduction of 20%%uo is applied to the results obtained for
the 3.7-MeV, 3 level of ~Ca in Ref. 3, the agreement
with the data is substantially improved, since there the
theoretical prediction is about 20% too high compared
to experiment. This indicates that finite-range eBects

may have to be taken into account even at high energies
for levels in nuclei as heavy as, or heavier than, "Ca.

The finite-range corrections obviously must be made
at energies as low as 50 MeV as expected. The fact that
the corrections are not more severe is encouraging. We
have not, of course, demonstrated that the DWIA can,

Fxe. 10. The zero-range and 6nite-range results are shown
for a 2+ excitation of ~Ca at 150 MeV.

in fact, be used at low energy. This will be looked at in
the next section where we will be concerned with the
strength of the 4.43-MeV cross section as predicted by
the finite-range DWIA as compared to experiment.

The discussion of Sec. IIE dealt with the fact that
at sufficiently large momentum transfers the t matrix
is no longer defined so that the integral in Eq. (17) is
indeterminate without some assumption regarding the
behavior of t(q) for q larger than the physical cutoff.
In order to determine the importance of the large q part
of the t matrix, calculations were performed at the three
energies for "C (the calculations were done only for
P=1.2 at 150 MeV) with t(q)=0 for q)qphy8. These
results are shown in Figs. 5—7 by the curves with long
and short dashes. At 150 MeV the effects of the cutoff
can be seen to be negligible, with the same nearly true
at 100 MeV. However, at 50 MeV the cutoff introduces
a large amount of "noise" into the calculation so that
some procedure of extending the t matrix to nonphysical
q values is clearly necessary. (The zero-range curves
would simply stop at the scattering angle corresponding
to the maximum physical q transfer. ) This does not
necessarily mean that one could determine the par-
ticular form of the nonphysical part of t(q) at 50 MeV
from comparison with the data, but only that a sharp
cutoff is unacceptable.

C. 0+-0+ Transition
The fact that the difference between the zero-range

and Gnite-range calculations at 150 MeV is a strong



160 F I N I TE —RAN GE EF F ECTS 767

0 50

5
20

O

Cs

b'b 2
10

1s
LX

IL
Vs

Vi

~~
~ oi L

a
5

O

4l r
~g

2E

Cs
~b
'b

O=&50 Mev

0+ OF 12C(7,7 MeV)—FINITE-RANGE—ZERO-RANGE

0.5

0.2

ED~50 MeV

2+ OF C(4.43 MeV)
45.5 MeV

2O 30 40
SCATTERING ANGLE (deg)

50

FiG. 11.The zero-range and 6nite-range results are shown
for a 0+—0+ transition in "C at 150 MeV.

function of angle in the forward direction indicates that
the study of 0+ to 0 transitions will be of particular
interest. It has previously been found that the ex-
citation of the 7.7-MeV, 0+ level of "C is predicted to
have an angular distribution which peaks at 0', has a
minimum at about 10', and peaks again in the neighbor-
hood of 20' (Ref. 4), and this general shape has been
found by experiment. "With such a shape, the effects
of finite-range ought to be particularly striking. The
zero-range and finite-range cross sections were therefore
computed using a transition density corresponding to
a 1p-2p excitation and are displayed in Fig. 11. As

expected, the finite-range calculation is very different
quantitatively, and would most certainly be important
in an analysis of data on such levels.

D. Comparison to Data at 4S MeV

From the comparison of DWIA calculations to the
experimental data at 156 MeV, it is known that the
impulse approximation gives a good estimate of the
strength of the transitions studied as well as a reason-
ably good description of the angular distributions. It
is of interest, therefore, to make a comparison of the
results obtained in the previous section at 50 MeV to
experiment to determine how well the impulse approxi-
mation can be expected to do at these low energies.
Since the neglected spin-dependent terms in the t matrix
are expected to be weak in this energy range, a reason-

' D. Hasselgren, P. U. Renberg, 0. Sundberg, and G. Tibell,
Phys. Letters 9, 166 (1964).

0.&
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SCATTERING ANGLE (deg)

80 )00

FIG. 12. The cross section for the 4.43-MeV, 2+ level of 1'C is
shown compared to data taken at 45.5 MeV (Ref. 13).The dashed
curve was obtained for a Yukawa potential with a range param-
eter P=1.435 F ', and is absolutely normalized. The solid curve
was obtained with an enhancement of a factor of 3.4 in the cross
section or a factor of 1.8 in the strength of the approximate t
matrix.

ably good estimate of the situation should be provided
using the simple Yukawa form.

If the finite-range cross section is absolutely nor-
malized, the result given in Fig. 12 by the dashed curve
is obtained. Compared to the 45.5-MeV data, " it can
be seen that some enhancement is necessary. The solid
curve in Fig. 11 corresponds to an enhancement of 3.4
in the cross section of 1.8 in the strength of the t
matrix.

The angular distribution as predicted bears a quali-
tative resemblance to the data. This is really not
surprising since it has been previously shown by
Satchler (Ref. 5) that a Yukawa interaction with a
range P 1 yields angular distributions in fair agree-
ment with experiment at low energies for excitations
in "Zr. It might be noted that use of a smaller value of
P (P = 1.435 in Fig. 12) would improve the shape of the
computed curve relative to the data.

It was previously remarked that a better procedure
to choose the effective t matrix in (33) would have been
to let t(rt) be complex with strengths and ranges chosen
to agree with the real and imaginary parts of A(q)
separately. This would have yielded a complex form
factor and perhaps a somewhat different estimate of
the enhancement factor required to fit the data. How-
ever, if one examines the form of ReA (q) and ImA(q)
"L Slaus (unpublished).
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at 40 MeV, it can be seen that the ranges required to
fit them separately with Vukawa potentials are not
very diBerent. In that case, the procedure we have used
here is quite adequate. The use of a complex interaction
is required only if the real and imaginary parts of the
t matrix have substantially diferent behavior as a
function of q.

IV. DISCUSSION

Corrections to the DWIA due to the averaging of
the t matrix over the range of momentum transfers
introduced by distortion sects have been studied for
quadrupole transitions in "C and ' Ca from 50—150
MeV. These studies have indicated that the so-called
finite-range sects are important over this whole energy
range, being essential at 50 MeV.

At 150 MeV where there is little doubt that the
DWIA is valid, one finds that the finite-range correc-
tions reduce the cross sections by a factor of two in the
forward direction for "C which is important for /=0
transitions and reduce the peak cross section for an
1=2 transition in 4sCa by 20%. Thus far, quantitative
fits to experimental data even at these high energies
one should probably allow for corrections to the zero-
range DWIA.

We have attempted to apply the impulse approxi-
rnation (in a simplified form) to the analysis of 50-MeV
proton scattering and find that for the 4.43-MeV level
of "C, one must increase the strength of the "real"
two-nucleon, t matrix by a factor of about 1.8. In
addition the predicted shape of the cross section does
not match the data. This seems to indicate a failure of
the impulse approximation at such a low energy which,
in fact, should be expected. We might emphasize here
that the actual two-nucleon amplitude was not used
for these studies, but rather a much simpliled form
which only approximately reproduced the behavior of
the central part of the real amplitude. Use of the full,
complex t matrix might change some of the results
obtained here quantitatively, but it is not likely that
the qualitative conclusions made here would be altered.

It might be observed that the finite-range eGects
which have proved to be important for forward angles
in the excitation of the 4.43-MeV level of "C could be
responsible for the conspicuous discrepancy between
the measured and computed inelastic polarization" for

"References 3 and 11. Also, see 3. Tatischeff, B. GeoGrion,
J. LeGuyader, N. Marty, C. Roland, and A. Willis, Phys. Letters
16, 282 (1965).

this level at 156 MeV in the forward direction. We are
not yet able to do the finite-range calculations where
the noncentral parts of the t matrix are included. As
indicated in the text, such calculations are much more
involved than what we have done here. However, we
can conjecture that due to the "wobbling" of the local
scattering normal e', one would only see an average
projection on the asymptotic normal e, resulting in a
reduced polarization, and such a reduction is necessary
to align theory and experiment.

It is important to note that we have not included the
sects of exchange scattering, that is the process
wherein the coordinates of the final nucleon are dif-
ferent from those of the incident nucleon due to the
antisyrnmetrization of the over-all projectile-target
wave function. In the zero-range calculation these
terins vanish (or more properly are taken into account
automatically by the use of an antisyrnmetrized two-
nucleon t matrix). In the finite-range case such terms
are present and have been included by several authors
who have demonstrated that they are not negligible. "
However, a study of the reaction "Si(e,p) indicated that
a Wigner interaction produced a sma11.er cross section
than did a Majorana force."Since for this reaction the
nonexchange force is analogous to the exchange term
in inelastic scattering, these results tend to support the
assumption that exchange contributions may be ne-

glected to a first approximation. ' It should be pointed
out that since we have neglected exchange, the estimate
of the transition strength at 45 MeV made in Sec.
IIID is probably too weak; that is, inclusion of exchange
would undoubtedly increase the magnitude of the cross
section predicted by the unenhanced t matrix. A dis-

cussion of exchange contributions in the DWIA will

be presented in a forthcoming paper.
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