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Unrestricted Hartree-Fock Treatment of Finite Nuclei*

W. H. BAssrcHIS, A. K. KERMAN, AND J. P. SvENNEt

Department of Physics and Laboratory for Nuclear Science, ilIassachusetts Institute of Technology,
Cambridge, 3Eassachusetts

(Received 10 April 1967)

A smooth, nonlocal interaction which fits two-body scattering data reasonably well is used in a Hartree-
Fock calculation of the binding energies and quadrupole moments of the even-even nuclei with A between
4 and 40. The calculation is unrestricted in that the orbitals of all the particles are determined self-con-
sistently with both radial and angular variations allowed. For the deformed nuclei, a naive rotational
correction is made to allow comparison with experiment. The second-order term is computed in a pertur-
bation expansion for which the Hartree-Fock result is the first-order term. The perturbation series ap-
parently converges, and the results to second order agree quite well with experiment. The single-particle
energies of the various nuclei are calculated in first and second order with polarization taken into account.
Finally, the symmetry energy is studied in the A =48 system.

I. INTRODUCTIO5'

EVERAL two-body interactions' have been pro-
posed that fit scattering data with reasonable

accuracy and have the advantage of being finite every-
where. Given such a two-body force without the usual
hard or infinitely repulsive core, there exists a well-
known procedure for obtaining the solution for the
many-particle system. The first step in this procedure
is a solution of the Hartree-Fock (HF) equations. The
application of this method to nuclear structure has
become increasingly popular, and complete descriptions
of the method have been given by various authors. ' A
brief outline of the general method and the charac-
teristics of the present calculation are given in Sec. II.
The Tabakin potential, ' utilized throughout these calcu-
lations, is brieQy described there. In Sec. III the results
of the HF calculation are compared with experimental
binding energies and quadrupole moments.

The perturbation series for which the HF solution
serves as the first-order term is described in Sec. IV. An
approximate evaluation of the second-order matrix
elements4 was used, and the binding energies calculated
to second order are compared with experiment.

In the following section, the meaning of experimental
single-particle energies in the HF framework is dis--

cussed, and the calculated single-particle energies are
presented along with some of the observed values. In
Sec. VI, the symmetry energy of the A=48 system is
considered. Finally, Sec. VII contains general conclu-

sions and an outline of extensions of these calculations
presently being performed.

II. THE HARTREE-FOCK PROCEDURE

The Hartree-Fock procedure' enables one to find the
best determinantal solution of the variational equation

b(Cl~le) =o.

This leads in a straightforward manner to the equation

& Ihl&) =&
I
tl&)+&&~) I

l'~l»&= e-b-s, (2)

which states that the single-particle orbitals, X, which
enter into the determinantal wave function f are those
that diagonalize the HF Hamiltonian h. Here t is the
kinetic energy; V& is the antisymmetrized two-body
interaction; a and P represent an arbitrary representa-
tion; and the summation on ) is restricted to occupied
orbitals. The unknown orbitals are expanded in some
representation, and the expansion coefficients are found
self-consistently via an iteration procedure. The dis-
tinguishing characteristics of the various HF calcula-
tions' being carried out are the choice of 8, the trunca-
tion of the space, the restriction placed on the expansion
of X, and the nuclei considered.

The force chosen here was the separable, nonlocal
force of Tabakin. ' This force has been used previously
in HF calculations with reasonable success. Explicitly,
the force is
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U. S. Atomic Energy Commission under Contract AT(30-1)-2098.

t Present address: Kobenhavns Universitet, Niels Bohr Insti-
tute, Copenhagen, Denmark.' C. Bressel, A. Kerman, and E. Lomon, Bull. Am. Phys. Soc.
10, 584 (1965).
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where p is the nucleon mass, I'z an isospin projection

' S. J. Krieger, M. Baranger, and K. T. R. Davies, Nucl. Phys.
84, 545 (1966).
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147, 710 (1966).
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m, and 7,. In these calculations, m and r, were con-
sidered 6xed so that
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Previous calculations~ have shown that the restriction
to good ns resulted, at most, in a Hartree-Fock energy
that was a few MeV above the minimum obtained by
varying also m. Since the concern here was mainly the
gross properties of nuclei, this extra re6nement was
sacrificed because of the computational simpliication
thereby aRorded. Preliminary investigations have indi-
cated that for even-even nuclei, there is no advantage to
mixing isospin. In fact, it has been shown that the
summation on all /, i.e., parity mixing, is not necessary
since at the minima the single-particle orbitals do have
good parity for the force being used. . The calculation is
unrestricted in the sense that angular and radial varia-
tions are allowed. This is of course a necessity since the
deformed even-even nuclei are considered as well as the
spherical with A between 4 and 40.

FzG. 1. The Hartree-Fock energy of C" as a function of the
deformation. This curve was obtained by adding pQ, p to the
Hamiltonian and varying p, . A similar behavior appears for all the
closed-subshell nuclei.

operator, and l, l' take on the values 0, 1, and 2. The g's
and h's have essentially Yukawa shapes, modified by
sines and cosines and were adjusted to fit two-body
scattering data and

'ljtsq~(r)= p (lsmtnzsi XIV)I'i '(r)&s s. (4)

The Hamiltonian then consisted of the kinetic energy,
the Tabakin potential and a center-of-mass correction:

B=T+V P'/2Ap, . —

No Coulomb interaction was included so that experi-
mentally observed quantities had to be suitably modi-
6ed before comparisons were made.

In principle, the Hartree-Pock matrix is infinitely
dimensional. Here rr and P were taken to be harmonic-
oscillator states (h/go~ = 2.6), and the space consisted of
the 1s, 1p, 2s-1d, and 2p-1f shells. The occupied orbitals
were also expanded in harmonic oscillators in this space:

The eGect of this truncation has been investigated in
previous calculations'' for the spherical nuclei. The
rapid convergence of the C's is explicitly demonstrated
by Krieger et u/. ' where, for example, in the lowest state
in 0" the first two terms account for 99.7%%uj of the
solution. This convergence may not be as good for the
deformed nuclei, but computer limitations imposed
this restriction in all cases.

In order to expand X in a complete set of states in this
truncated space, the summation should include n, 1, j,

IIE. HARTREE-FOCK RESULTS

TABLE I. The nuclear binding energies as calculated in the
Hartree-Pock approximation. EHF represents the Hartree-Pock
result, which for a deformed nucleus corresponds to an intrinsic
state without good angular momentum. Thus, a moment-of-
inertia parameter, As/2I, taken from experiment, and (Js) are
used to obtain the J=O ground state. The Coulomb-corrected
observed energies E,b, (MeV) and the calculated quadrupole
moments Q (barns) are also listed.

EHF
Nucleus (MeV)

Ii'/2I
(MeV)

ob
(I') (MeV) (MeV) (b)

Q

He4
Se'
C12
016
Ne"
Mg24
Si"
S82

Ar"
Ca4o

—12.78—12.34—23.17—46.99—51.78—64.72—86.16—105.38—129.82—154.73

0
0.52
0.74
0
0.23
0.21
0.25
0.27
0.33
0

0 —12.78
10.50 —17.57
8.82 —29.70
0 —46.99

18.57 —56.05
17.10 —68.31
20.30 —91.23
14.25 —109.27
6.37 —131.92
0 —154.70

—28.5—59.0—98.6—139.5—179.2—224.7—272.0—317.3—363.4—410.8

0
+0.443—0.325

0
+0.524
+0.640—O.e83
+0.402
+0.212

0

' J. Bar-Touv and I. Kelson, Phys. Rev. 158, B1035 (1965).' A. D. MacKellar and W. H. Bassichis (unpublished).' W. H. Bassichis and J. P. Svenne, Phys. Rev, Letters 18, 80
(1967).

A solution of the Hartree-Fock equations corresponds
to a stationary value of the energy. This value may
correspond to the absolute minimum, a local minimum,
or a maximum. This question can be solved by trying
diferent sets of initial C's or, as was done here, through
the use of a Lagrange multiplier. A term pQ was added
to the Hamiltonian, where Q is the quadrupole moment
operator. Then by letting p, take on a range of values,
the energy may be determined as a function of de-
formation. For example, consider the dosed subshell
nucleus, C". If the C's are initially chosen such that the
1stis and 1psis orbits are filled (and p, =0) then the re-
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Tmx,z II. The coefBcients of the expansion of the occupied orbitals in the harmonic-oscillator basis. Only the +m, v, =+-2 orbitals
arelisted. Ther, = —xs C'sareidenticalwiththoselisted. The C'sfor —mcanbeobtainedby using C„~; ~"=(—1)& ~C &,

+ ".

C12

Q16

3
2
1
2

Nucleus (in
J)»Vs

—0.9633

+0.9848

+0.9983

1pl/2

+0.8463 —0.5046

+0.9936
—0.7142 —0.6922

2$1/2

—0.1987 —0.0177 +0.1795

—0.1231 +0.0544 +0.1097

0.0583

2pl/S

+0.1315 —0.0055 —0.1050 +0.0272

—0.0825 +0.0379 +0.0665
+0.0820 —0.0380 +0.0499 —0.0067

2
3
2
1

—0.9967
+0.9967

—0.9999

—0.0811
+0.0811

—0.0020

Ne" 1+
1
2
3

1
2

k+

—0.9948

+0.0250

+0.9390 —0.3076
—0.9916
+0.3155 +0.9436

—0.0480 —0.0768 +0.0462

—0.8614 +0.4010 +0.3106

+0.1099 +0.0464 —0.0937 +0.0268
—0.0318 —0.1227 +0.0260
—0.0262 +0.0526 +0.0705 +0.0399

suit will be spherical with E=—8.95 MeV. By varying
p, however, one finds that there exists prolate and
oblate solutions with lower energies, —13.80 and —23.17
MeV, respectively; i.e., the spherical solution corre-
sponds to a maximum. Figure 1 shows this behavior of
E in deformation space. An identical situation was
found in the other closed subshell nuclei in this region,
Si' and S".It is interesting to note that C"has excited
0+ states at 7.6 and 10.1 MeV, one of which might
correspond to the prot. ate minimum.

If the Hartree-Fock minimal energy is associated
with a deformed determinant then direct comparison
with experiment is not possible. In such a case, the
Hartree-Fock energy corresponds to an intrinsic state
which is not an eigenstate of the angular momentum.
Projection of eigenstates of J from the intrinsic state can
presently be carried out only if A is small" so instead a
naive rotational correction was made. It was assumed
that

+H F=+J'= + (lss/2I) (Js) (8)

so that the experimental binding energies could be ob-
tained if )ss/2I, the moment-of-inertia parameter, and
the mean value of J' were known. The latter quantity
is easily calculated from the Hartree-Fock wave func-
tion, but although various formulas exist for I, none is
considered reliable. Thus, Iwas taken from the observed
spacing in the ground-state rotational band. This is
admittedly quite a rough procedure, but the error in-
volved will not appreciably afI'ect the results. Table I
contains the Hartree-Fock energies, the mean value of
J', the approximate value of the moment of inertia
parameter, and the resulting calculated binding ener-
gies. The experimentally observed binding energies,

Iv. PERTURBATION EXPANSION AND
SECOND-ORDER RESULTS

The full Hamiltonian in second quantized notation is

H=P tampa~ ap+s P V p" a~ ap aoa&. (10)
ap apy8

The Hartree-Fock procedure has supplied a solution to
the Schrodinger equation for E particles:

BHs=g(t, p+g V.g )P.ata. p(11)
ap X

The Hartree-Fock results may therefore be considered
the first term in a perturbation expansion where the
perturbation is

Zt ———,
' P V p&'a„taptaoa, PV g

" .P—at.ap(12)
apy5 apX

The first-order correction to the Hartree-Fock energy,
(Ht), vanishes. The second-order contribution to the
energy is

I &s I et
I
HF) Isz=Q

'4 +HZ +i
(13)

after subtraction of Coulomb energy, " are also listed
and, as in Ref. 6, they do not agree with the Hartree-
Fock result. It was suggested' that the inclusion of
second-order eGects would oGer a solution. That this is,
indeed, the situation is shown in the following section.
The calculated values of the quadrupole moment,

Qo= (167r/5)'ls(r Vso),

are found in Table I.
Table II contains the expansion coefFicients of the

occupied orbitals.
l
See Eq. (7).g

"The Coulomb subtraction was accomplished by employing the
'o W. H. Bassichis, B. Giraud, and G. Ripka, Phys. Rev. Letters Coulomb energy expression of D. C. Peaslee D'hys. Rev. 95, 717

15, 980 (1965), (1954)j.
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Nu-
cleus gJ 0 Bob Fg,g/A Z,b, /A

TmLE III. The Hartree-Fock energy with second-order cor-
rections. 8 is the usual Hartree-Fock result, corrected for
rotational energy for the deformed nuclei. E~ot I is the result
including second-order contributions. That the second-order con-
tribution is large should not be taken as an indication that the
perturbation series does not converge. The second-order contri-
bution is in fact only about 17%%uz of the Hartree-Fock potential
energy, indicating convergence.

500

400—

I 1 I

+ EHF

EHF
—A& J

~ EHF-A&J & +E2
Ex pe rime nta I B.E.

He4
Re8
+12
O16
Ne'0
Mg24
Sj28
S82

Ar"
Ca"

—7.04—17.57—37.57—68.46—94.43—126.47—159.11—197.33—239.05—282.99

—12.78—17.57—29.70—46.99—56.05—68.31—91.23—109.27—131.92—154.70

—19.82—35.14—67.27—115.45—150.48—694.78—250.34—306.60—370.97—437.69

—28.5—59.0—98.6—139.5—179.2—224.7—272.0—317.3—363.4—410.8

—4.96—4.29—5.61—7.22—7.52—8.12—8.94—9.58—10.35—10.94

—7.13—7.38—8.21—8.72—8.96—9.36—9.71—9.92—10.10—10.27

0
0)

UJ

CO

300—

200—

where i indicates two-particle two-hole states in the
Hartree-Fock basis. An explicit expression for hE, using
Eq. (12) and the Hartree-Fock wave function, yields

where m and e represent occupied states and a and b

unoccupied states. Employing various approximations,
Pal et c/. ' reduced the expression above to a sum of
matrix elements, with known coefFicients, of the form

(Z,
~
V(()ys) V~Z,), (15)

when E~ and E2 are the relative wave functions of two
particles, Q is an operator that takes the Pauli principle
into account approximately. The propagator e is ob-
tained by assuming plane waves for a and b, with the
corresponding energies for e, and e~ and using a con-
stant that represents an average for the e and e .

These second-order matrix elements were used to
calculate the second-order contribution to the binding
energy of all the nuclei considered. Table III contains
these results, the sum of the Hartree-Fock energy and
the second-order term, this energy with the angular
momentum correction, and once again the experimental
values. (See also Fig. 2.) In the table the calculated and
observed energy per particle is also given. The agree-
ment is now seen to be quite striking. That the pertur-
bation series seems to converge is not obvious when
comparing the results in Table III with those in
Tables I and II. It is, however, the Hartree-Fock
potential energy, not the binding energy, that must'be
compared with the second-order correction. In 0", for
example, the kinetic energy is of the order of 300 MeV,
and the Hartree-Fock binding energy is of the order of
50 MeV. Thus, the ratio of the second-order term to the
zeroth-order term is about 17%. If this ratio persists in
higher order, the agreement would continue to be very
satisfactory.

IOO—

It should be noted that there is a systematic variation
of the calculated energies from those observed. This can
be directly attributed to the use of a constant-energy
denominator in Eq. (15), independent of A. The
average value was qualitatively determined from 0",
and it is seen to be too large for the lighter nuclei and
too small near A =40. The results for the single particle
energy levels e, in 0"and Ca" (see Ref. 6) show that,
in fact, the energy denominator would have the correct
dependence if the calculated e's were used instead of an
average. Hartree-Fock type calculations can be carried
out with effective forces derived from singular po-
tentials. " Recent calculations of this type yield re-
sults which are also in reasonable agreement with
experiment. "

V. SINGLE-PARTICLE ENERGIES

Formally, the definition of the single-particle energy
levels in a nucleus is unambiguous. For the occupied
levels of 0", for example, the energy of the ith level is
given by

e;=E(O")—E'(0") (16)

where the i indicates a hole in the ith level. The unoccu-

"K.A. Srueckner, A. M. Lockett, and M. Rotenberg, Phys.
Rev. 121, 255 (1961).

» C. M. Shakin, M. Tomaselli, T. R. %'aghmare, and M. H.
Hull (to be published).

a 0
h
I ) I I I I I I

e Bee C ia Pi6 $ 820 Mg
R4 $i28 $32 Af3 Q04O

FIG. 2. The Hartree-Fock energy with the angular-momentum
correction and the second-order correction compared to the
observed binding energies (after Coulomb subtraction). The effect
of assuming a constant (independent of A) for Hartree-Fock hole
energies [Eq. (14)g could explain the systematic deviation of the
corrected results from experiment.
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TmLE IV. Single-particle energies. cQ represents the single-particle energy referred to in the text as the Hartree-Fock result: The A-
particle Hartree-Fock vrave functions are used to calculate the various A~1 system energies. h~ is the change in the e's if the A~1
energies are calculated self-consistently, allowing them to deform (i.e., be polarized by the additional particle or hole). 62 represents the
second-order correction to eQ for the spherical nuclei and to b,z for the deformed nuclei. &2 is just 6Q+Ap+A2. The single-particle states
are labeled by their only quantum numbers, m and m. . The quantum numbers of the "parent level, " i.e., the dominant term in the ex-
pansion of ), are also given for the spherical nuclei. In principle, the energies of the A~1 nuclei in the spherical cases and of all the
nuclei in the deformed cases should be the results of projecting, not the intrinsic energy as shown. This introduces an error into all the
single-particle results, which is probably small but could not be accurately estimated. Since the deformation is some measure of the size
of the correction, those systems with large deformation are starred.

occupied

unoccupied

1$l/2

1P8/2

188/2

1fY/2

6Q

—14.73

+8.98
+15.96
+28.22

He4
+1.17

—0.46
—0.01
—0.17

—3.46

—1.66
—1.71
—1.03

62

+6.96*
+14.24*
+26.16*

&obs

+1
+20

occupied

unoccupied

occupied

unoccupied

occupied

unoccupied

1$l/2

1P8/2

1Pl/2

1($5/2

2P3/2

1fz/2

1P8/2

1pl/2
1ds/2

1d3/2

3
2
1
2

L2+
I
2
7
2

3
2
1
2

3
2
1
2

5
2
7

—45.42
—19.73
—9.74

+2.93
+18.33
+18.25

—48.13
—34.92
—23.76
—6.41

—1.81

—21.60
—9.87

+3,95
+7.07

+10.68
+13.77
+18.09
+25.49
128.48

Cao

Be8

+3.73
+0.90
+0.23

—0.09
—0.09
—0.13

+0.04
+0.14
+0.11
+0.09

—0.02

+4.46
+0.63

—0.17
—0.29
—0.44
—0.24
—0.11
—0.30
—0.07

—10.31
—7.76
—8.39

—5.18
—5.31
—3.74

—15.01
—16.10
—11.50
—13.60

—9.10

—9.24
—4.69

—2.31
—2.18
—3.43
—2.49
—1.83
—1.02
—1.06

—52.00
—26.59*
—17.90

—2.34
+12.93
+14.38*

-62.74*
—50.88
—35.15*
—19.92*

—10.93*

—26.38
—13.93

+1.42
+4.60
+6.81

+11.04
+16.15
+24.17
+27.35

—44
—22
—15.7

—4.15

—45?
—33?
—22.8
—15.8

—8.37

—18.5

—1.7
+6.2?

0

occupied

unoccupied

3
2
1
2

7
2
3
2
5
2

—34.05
—13.74
—11.28

+1.38
+6.10
+9.58
+9.62

+19.67
+19.91
+12.88

+4.25
+0.58
+0.35

—0.75
—0.19
—0.45
—0.57
—0.16
—0.16
—0.06

—11.62
—6.21
—6.24

—3.68
—4.05
—4.06
—5.18
—3.11
—4.25
—2.91

—41.42
—19.37
—17.17

—3.05
+1.86
+5.07
+3.87

+16.40
+15.50
+18.91

34
—18.7
—14

49
—1.1

occupied

unoccupied

3
2
1
2

1
2
3
2
5

7
2

—22.68
—14.91
—6.69

—0.73
+1.55
+4.81

+12.47-
+13.89
+16.59
+17.83

+0.94
+0.92
+0.35

—0.26
—0.15
—0.27
—0.36
—0.28
—0.12
—0.10

—10.19
—10.80
—7.82

—6.09
—5.50
—7.36
—6.16
—4.85
—4.31
—3.87

—31.81
—24.74
—14.16

—7.08
—4.10
—2.82
+5.95
+8.76

+12.16
+13.86

—.16.9

—6.8
—6.5
—4.0
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pied levels are similarly given by

e .—Qi(O1'I) +(Ols) (17)

There are, however, two ways of calculating e, in the
Hartree-Fock framework. These two methods yield
different results and have different interpretations.

The first method will be called the Hartree-Pock
method. Here the single-particle wave functions re-
sulting from the Hartree-Fock calculation for the A
system (0", for example) are used to calculate the
energy of the A —1 and A+1 system (i.e., 0", 0") as
follows:

&*(A~1)=Z()I i@~~'~xl)%)+-',Z(4 I
l'~, '"i4), (18)

TABLE V. The symmetry energy as calculated in Hartree-Fock
and by the empirical formula. pHF represents the Hartree-Fock
result for the binding energy and AHF the symmetry energy ob-
tained from these results. E1 is calculated, using in all cases the
Ca48 wave functions to calculate the energy of the other A =48
systems, and 6& represents the symmetry energy thus obtained.
81+2 is calculated in the same way, but the second order con-
tribution is added to the Hamiltonian of the A=48 system.
EHF+2 represents the Hartree-Fock results with the second-order
perturbation correction added. The empirical values were obtained
from formula (19).

where p and X represent the single-particle wave func-
tions of the A system, and the summations exclude the
ith state if it vere originally occupied and include it if
it were initially unoccupied. The potential can be either
just the Tabakin potential or it may include the second-
order matrix elements. The two single-particle energies
obtained using Eqs. (16), (17), and (18) will be referred
to as eo' and e2' for straight Hartree-Fock or second
order. If the Hamiltonian being considered were B=T
+V without the center-of-mass correction, the es's
would correspond to those in Eq. (2).

An alternative approach is to calculate the HF
energy of the A ~1 systems self-consistently and then to
add a second-order contribution. This contribution is
obtained as the difference of e~' and eo' above and is
called A~'. The single-particle energies calculated in this
way will be called the polarization results, eo' and ~2'.

The e's calculated by the erst approach are actually
the Hartree-Fock single-particle energies which enter
into certain procedures, such as the random-phase
approximation (RPA) or the BCS approximation. On
the other hand, the e's have a more physical interpreta-

tion. They include the effect on the single-particle state
of the polarization of the core. Since our Hartree-Fock
procedure allows any even-parity deformation, this
includes the effects of virtual emission and reabsorption
of any even-parity multipoles. Since the Hartree-Fock
solution for the 0'~ system is deformed, the intrinsic
state given by Hartree-Fock should be operated on by
projection operators to produce states with sharp angu-
lar momentum. The difference between the energies of
these projected states and E(O") would then be com-
pared with experiment. In the absence of a practical
method of projection for a number of particles as large
as 17, the polarization results derived from the intrinsic
states of 0"serve as an approximation to the projected
results. In a sense, the Hartree-Fock e's taken from 0"
can be considered a further approximation where the
polarization of the original particles due to the presence
of a particle or hole is neglected.

The results of the two methods are tabulated in
Table IV. The differences between the c's and c's are,
in most cases, small. For comparison, some experimental
values are also listed. Certain, perhaps interesting,
single-particle energies do not appear because technical
details of the computer programs made it impossible to
calculate them.

E,„=(C/A) (E—Z)'. (19)

The empirical value of C is 18.1 MeV. There is another
factor entering into the energy difference between
isobars if odd-odd conigurations are considered as well
as even-even. Therefore, to isolate the symmetry effect,
only even-even nuclei are considered.

The A=48 system was studied, and the Hartree-
Fock energy was calculated for Ca" Ti" and Cr". The
results are shown in Table V along with the values
computed from the above formula. The agreement is
very satisfying in view of the fact that for Ca" the even-
parity levels in the space are completely 6lled so that
only twelve of the twenty-eight orbitals can be varied.

VX. SYMMETRY ENERGY

According to the semiempirical mass formula, "there
should be a variation in the binding energy of isobars
independent of Coulomb effects. This variation is called
the syrnrnetry energy and is given by'

Cr4'
Ti48
Ca48

Cr48
Ti48
Ca48

Binding energies (MeV)
E1

—188.66—183.79—175.45

—185.41—182.30—175.45

—549.35—544.62—534.62

AHF

0
+4.87

+13.21

Symmetry energies (MeV}
~IF+2

0 0 0
+3.11 +4.73 +7.71
+9.96 +14.89 +20.28

—554.74—547.03—534,46

~e mp ir ical

0
+6.03

+24.12

VG. CONCLUSIONS

The calculations reported here are preliminary. The
object was to test the validity of the Hartree-Fock
theory when applied to hnite nuclei, starting from a
force obtained from two-body scattering data and doing
as completely as possible a self-consistent calculation.

'4 C. F. vou Weizsacker, Z. Physik 96, 431 (1935)."See, for example, J.M. Blatt and V. F. Keisskopf, Theoretical
NNclear Physics (John Wiley k Sons, Inc. , New York, 1952),
p. 226.
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The conclusions are rather apparent. Though some
calculated quantities are not consistent with experi-
ment, the over-all agreement is quite reasonable when
second-order corrections are taken into account. Since
the onset of these calculations, there has been consider-
able improvement in the smooth, two-body potentials
available. It is hoped that these improved potentials
will lead to more accurate Hartree-Fock results, and
calculations with the newer potentials are beginning.
The results reported here are themselves considered
suKciently enlightening so that the Tabakin force is
being utilized in calculations in a greatly enlarged
space —from the 1s1~2 to the 1i13~2. This will permit
investigation of heavier nuclei, in fact, up to Pb"8 and
will test the crucial dependence of the present results on

the space truncation for deformed nuclei. A method for
extracting more accurate information from the intrinsic
state of a deformed nucleus, when the number of
particles involved renders present projection techniques
inapplicable, is being sought.

Work is also in progress to extract from the Hartree-
Fock results reported information about the effective
nuclear force and other nuclear properties, such as
compressibility.
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The reaction 3He+3He —+ 6Be*+y was observed at 90' for bombarding energies between 0.86 and 11.8
MeV. The total cross section for transitions to the erst excited state of Be varies smoothly from 0.4 to
9.3 ub (assuming isotropy). No y-ray transitions to the ground state of 'Be were observed with an upper
limit of approximately 10 pb at 1.4 MeV. Because of these low cross sections, this reaction is of negligible
astrophysical importance compared to the 'He(eHe, 2P)'He reaction.

INTRODUCTION

KLIUM-3 capture y-ray reactions have been ob-
& - ~ ~ served in several nuclei. ' ' The capture reaction
sHe+'He —+sBe+7 is a possible way of closing the
proton chain of stellar energy production since 'Be
breaks up into two protons and an n particle. ' We have
observed this reaction and report here measurements of
its yield.

LOW-EN ERGY MEASUREMEN'TS

For the measurements from 1.0- to 1.8-MeV incident
energy, a 'He+ beam from the 3-MV Kellogg Radiation
Laboratory electrostatic generator was used. The beam
entered the 25-cm gas scattering chamber (see Fig. 1)
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through a differentially pumped canal in which the 'He
gas pressure in the chamber could be dropped by more
than a factor of 100. The 'He ga, s in the system was
recirculated and passed through a liquid-nitrogen-
cooled molecular sieve trap for purification before again
entering the target chamber. ' Stable gas pressures from
13 to 16 Torr were used in the chamber. The beam cur-
rent, typically 1 to 2 pA, was collected in a thermally
insulated low-mass metal cup. Beam power was meas-
ured by balancing the collector-cup temperature with
a nearby dummy cup of the same geometry but heated
electrically. The beam particle Qux was then obtained
from the integrated electric power dissipated in the
duIrlrrzy cup, after correcting the beam energy for energy
loss in the target gas. 4

A 10-cm-diam by 10-cm-thick NaI(T1) crystal was
introduced into a well in the gas chamber so that its
front face was 4.1 cm from the beam line. The beam was
completely surrounded by a tantalum shield in order to
reduce the background of secondary neutrons produced
by the high-energy protons from the sHe(sHe, 2p)4He
reaction. The crystal was shielded with lead from both
the tantalum entrance canal and the collecting cup.
Additional shielding was used to reduce the neutron

e H. Winkler (to be published).


