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Previous successful finite-nucleus Hartree-Fock calculations, such as those of the Baranger group, have
required of the effective two-nucleon interaction simply that it correctly saturate nuclear matter in first-
order perturbation theory, with the second-order correction being small. In an attempt to relate the effective
central interaction to the real nucleon-nucleon force, we follow the spirit of the separation method and
insist that the two be identical in the long-range region. As for the short-range region, we argue that the
considerable uncertainty in this part of the real force does not justify the application of a reaction-matrix
theory which itself is not completely unequivocal in this region. Instead, the short-range part of our inter-
action is purelyphenomenological, determined bystill requiring that the total interaction satisfy the nuclear-
matter condition, a condition which in any case appears from the work of Bhaduri and Tomusiak to be
necessary for correct results in finite nuclei. The role in finite-nucleus Hartree-Fock calculations of different
effective interactions is then investigated by calculating the binding energy and rms radius of 0' and Ca~
in the well-tested approximation of their wave functions being pure oscillator in form. It is found that
interactions that give identical saturation of nuclear matter are not necessarily completely equivalent in
finite nuclei. However, requiring that the effective interaction conform in the long-range region to the real
force leads to finite-nucleus results that are just as acceptable as those given by phenomenological inter-
actions fitted to the same nuclear-matter saturation point but bearing no apparent relation to the real force.

I. INTRODUCTION

~ 'UCLKAR Hartree-Fock calculations have become
a practical proposition with the advent of the

method of reiterative diagonalization of the energy
matrix in an oscillator basis. ' One such successful calcu-
lation is that of the Baranger group, ' who took a highly
simplified two-body interaction adjusted to give satis-
factory results in a Hartree-Fock calculation of nuclear
matter. That is to say, the interaction was chosen to
give the correct nuclear-matter saturation properties in
the first order of perturbation theory and small second-
order correction terms. Without any further adjustment,
this same interaction was then found to give reasonable
results in Hartree-Fock calculations on several 6nite
nuclei.

Actually, the nuclear-rnatter condition is a natural
criterion to impose on the effective interaction for Har-
tree-Fock calculations, since it follows by definition that
any eGective interaction which pretends to be the
correct one, insofar as it is meaningful to speak of such,
must not only be equally applicable to all finite nuclei
without. t ad hoc adjustment of parameters but must
remain valid as one passes to the limiting case of nuclear
matter. Indeed, it has been shown explicitly' that an
effective interaction that does not saturate nuclear
matter correctly gives rise to serious difhculties in
nuclei with A&40.

Passing from the question of necessity to that of
suQiciency, it is noted that the Hartree-Fock calcula-

*Work supported by the National Research Council of Canada.
M. Baranger, in Cargese Lectures in Theoretica/ Physics,

edited by M. L6vy (W. A. Benjamin, Inc. , New York, 1963),
Chap. 5, p. 29.' K. T. R. Davies, S. J. Krieger, and M. Baranger, Nucl. Phys.
84, 545 (1966).Referred to hereafter as DEB.

'R. K. Bhaduri and E. L. Tomusiak, Nucl. Phys. 88, 353
(&966).

tion on nuclear matter will not define a Neiqle effective
interaction, so that it is conceivable that there exist
other interactions giving similar results for nuclear
matter but di6ering in finite nuclei. To resolve such
questions and to increase one's general confidence in the
physical significance of the Hartree-Fock method, it is
clearly desirable that one be able to derive the smooth
effective interaction in a unique way from the real
nucleon-nucleon interaction, which is singular enough to
induce short-range correlations in the real wave
function. 4

One prescription for extracting an effective interaction
from the real one is provided by the canonical trans-
formation of Villars, s which has in fact already served
as the basis for a Hartree-Fock calculation. ' Another
approach is via reaction-matrix theory. ~ It is, in fact,

4 We are adopting here the point of view that the real nucleon-
nucleon force does indeed induce correlations and hence cannot
be identical to the effective Hartree-Fock interaction. However,
it has recently been shown PF. Tabakin and K. T. R. Davies,
Phys. Rev. 150, 793 (1966)j that an interaction with a Gaussian
velocity dependence can be fitted to the nucleon-nucleon data
and at the same time give the correct saturation properties for
nuclear matter in Hartree-Fock approximation, the second-order
terms being small. The question as to whether or not such a
smooth interaction may be regarded as the "real" one can only be
decided by assessing the experimental evidence for the existence
of correlations: The historical argument that the nucleon-nucleon
data alone imply a correlation-producing singularity is no longer
valid. Should the evidence for correlations be accepted as con-
clusive then the potential of Tabakin and Davies would have to
be regarded simply as an effective and not as the real interaction.
But in this event the imposition of the phase parameter criterion
would be diKcult to justify: While the smooth effective interaction
should certainly be related to the real singular one it is by no
means obvious that they should yield the same free nucleon-
nucleon scattering, except perhaps at low energies.

F. Villars, in Proceedings of the Enrico Fermi International
School of Physics, Course XXIII, l961 (Academic Press Inc. ,
New York, 1963).

6 C. M. Shakin, 3. Svenne, and Y. R. Waghmare, Phys. Letters
21, 209 (1966).' T. T. S. Kuo and G. K. Brown, Nucl. Phys. 85, 40 (1966).
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a highly simpli6ed form of this, namely, the separation
method of Moszkowski and Scott in 6rst order, that
serves as the basis of the present work.

To describe this method very roughly, the suppression
of the short-range correlations, which is implicitly made
in the Hartree-Fock method, can be compensated by
removing the highly singular short-range part of the
potential, which gives rise to the correlations. Then,
since the long-range part of the interaction remaining
after this separation is smooth, its contribution may be
calculated by ordinary 6rst-order perturbation theory.
Thus, according to the argument, this long-range part
of the real interaction should constitute a reliable
effective interaction for Hartree-Fock. calculations.

Unfortunately, this prescription for extracting an
effective interaction from the real interaction is in-

complete, as Bhaduri and Tomusiak' have emphasized.
In the 6rst place, the theory of Moszkowski and Scott
requires that the distance of separation vary slightly
with energy, with the result that the corresponding
long-range residue is non-Hermitian when taken by
itself. At the same time, the strongly singular short-
range part of the force gives rise to second-order correc-
tions to the Moszkowski-Scott theory which, although
small, do play an important role in determining the
correct saturation of nuclear matter, ' since there is a
considerable cancellation between the mean interaction
energy and the kinetic energy.

But just because these short-range effects are so
small in comparison with the rest of the interaction
energy, it should be possible to simulate them by re-
placing the singular short-range part of the real force
with a new short-range force that is smooth enough for
its effect to be calculated in ordinary perturbation
theory. At the same time this new short-range force
may perform the second function of simulating the
energy dependence of the separation distance. It is the
combination of this smooth short-range force and the
long-range part of the real interaction remaining after
separation that we propose as an effective interaction
for Hartree-Fock calculations.

In contrast to our treatment of the long-range part
of the interaction, we do not offer any prescription for
relating the short-range part to the free nucleon-
nucleon interaction. A priori, it is quite arbitrary and
we determine it in fact by returning once more to the
nuclear-matter criterion, i.e., we adjust the short-range
term such that the tote/ interaction saturates nuclear
matter correctly in Hartree-Fock approximation,
while keeping the second-order term of ordinary per-
turbation theory suQiciently small.

Thus we abandon the attempt to derive the entire
effective interaction from the real one: Only the long-
range part is so determined. On the other hand it is to

s S. A. Moszkowski and B. L. Scott, Ann. Phys. 11, 65 (1960).
' These corrections also restore the missing Hermiticity to the

theory.

be noted that reaction-matrix theory is not free from
uncertainty in the short-range region. Furthermore, the
short-range part of the real nucleon-nucleon interaction
itself is by no means uniquely determined. Hence, per-
haps it may be said of the present program that it
relates the effective interaction to the real one insofar
as it is possible to do this without ambiguity.

We describe the constructionof our effective inter-
action in Sec. II. Two consequences follow from our
being forced back on to the nuclear-matter criterion for
completing the de6nition of the eGective interaction.
Firstly, we shall only be able to establish an effective
central interaction, since the vector (i.e., two-body
spin-orbit) and tensor components make no contribu-
tion to nuclear matter in Hartree-Fock approximation.
Secondly, since the form of the short-range term that
we add is completely arbitrary, we shall still not arrive
at a unique eGective interaction, although the am-
biguity is much less than before imposing the long-
range condition on the interaction.

The consequences for 6nite nuclei of the imposition
of this long-range condition on the effective interaction
and of the residual uncertainty are discussed in Sec. III,
where we consider the closed-shell cases of 0"and Ca".
Since all we are concerned with is a comparison of the
different effective interactions, we deemed it unneces-
sary to make complete Hartree-Fock calculations on
these nuclei. Rather, we have limited ourselves to pure
oscillator wave functions, treating the oscillator strength
as a variational parameter. "

& real

g
—1..95'

= —466

r&0.4 F

MeV+OPEP, r) 0.4 F. (1)

Since we do not take account of the tensor force in this
work, the simplest assumption for the triplet-even
states is to regard the potential (1) as spin-independent
(this is certainly better than having no triplet-even
interaction at all).

The separation distance was found to be d=1.00 F

~OA preliminary version of this work was presented at the
Annual Meeting of the American Physical Society, New York,
1967. See J. M. Pearson and Gerard Saunier, Bull. Am. Phys.
Soc. 12, 47 (1967)."J.M. Pearson, Can. J. Phys. 45, 1289 (1967).

'2 R. A. Amdt and M. H. MacGregor, Phys. Rev. 141, 873
(1966).

II. EFFECTIVE INTERACTION

For the real nucleon-nucleon interaction in singlet-
even states we take a potential containing a hard core
of radius 0.4 F, a one-pion exchange potential (OPEP)
tail (g '=14.8), and an intermediate-range Yukawa
term adjusted to 6t with precision" the 'S phase shifts
of the Livermore analysis" and the low-energy
parameters
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gABLE I. Interactions 1 to 5 represent the phenomenological components of effective interactions saturating nuclear matter according
to Eq. (3).The form of this phenomenological term, which is combined with the basic realistic interaction described in Sec. II, is given
by Eq. (2). The parameters A (F '), 0. (F '), 8, and P (F ') are listed in columns 2 to 9. (The even states are spin-independent, and
there is no velocity-dependent term for the odd states. ) The last column gives the second-order contribution {in MeV) to nuclear matter
at saturation. The last interaction, labeled "Test," also saturates nuclear matter according to Eq. (3), and has the form given by
Eq. (2), but acts alone, not being combined with the basic realistic interaction.

Inter-
action

Even states
n 8

Singlet-odd states
A A

Triplet-odd states
A 0!

1
2
3

5
Test

—0.866—1.45—3.04—2.85—8.24—2.3

0.63 0.56 0.60
0.77 0.56 0.60
1 0.76 0.67
1 0.57 0.59
1.41 0.91 0.69
0.77 0.49 0.55

0.077—0.016
0.722—0.365
0.52

0.71
0.71
0.77
0.77
0.77

0.0086—0.0018
0.080—0.041
0,06
0

0,71
0.71
0.77
0.77
0.77

—2.0—1.5—1.5—1.5
1 9—1.1

for the '5 state at low energies. This value was adopted
for all energies and in all even states, the short-range
part of the interaction defined in this way, containing
the hard core and the deepest part of the attractive
pocket that lies beyond, then being discarded.

The simplest assumption for the odd states is the
Serber one, but to increase the reality of our interaction
we took the OPEP for these states, this giving a very
rough fit to the scattering data. Being smooth, a
separation of this potential is unnecessary (indeed, it
is impossible, because the potential is monotonic).

The basic interaction consists, then, of the long-range
residue of potential (1) for the even states and pure
OPEP for the odd states. To this we add in all states"
a short-range phenomenological potential having quad-
ratic velocity dependence,

8
y g —~2@2+ (ps e2p2+ —e2p2ps)

3f iV
(2)

'3The short-range phenomenological terms in the odd states
will not have the same interpretation in terms of Moszkowski-
Scott theory as do the corresponding terms in the S state. It is
only in this latter state that there exists strong evidence for a
correlation-producing singularity. We have included such terms
in the odd states simply in order to widen the range of phenom-
enological possibilities while maintaining long-range conformity.

where 3f is the nucleon mass and the parameters 3, 8,
n, and P are adjusted such that the entire interaction
saturates nuclear matter at

e= —16.3 MeV) kg=1.35 F ' (3)

in first-order perturbation theory.
The results of perturbation theory for nuclear rnatter

are consigned to the Appendix. Construction of the
first-order saturation curve for a given interaction in-
volves simply the evaluation of the radial integral in
Kq. (A9). The second-order correction requires the
calculation of the quadruple integral in Kq. (A11).
Using Gauss quadrature, this could be obtained to about
5% precision within approximately one minute on the
CDC 3400 computer.

The range of possibilities for effective interactions
satisfying the nuclear-matter criterion (3) is consider-

ably limited by the convict between the requirement
that the second-order term be small and the condition
that Vp~,„be of short range: Our calculation would
lose its point if the phenomenological term were to
dominate the realistic long-range component. For-
tunately, these two conditions are not irreconcilable,
and the potentials presented in Table I are representa-
tive of what is possible. In particular, it seems that one
cannot reduce the ranges of the two terms of Vph, „
below the values of case No. 5 without raising the
second-order correction beyond 2.0 MeV, which we
regard as the maximum acceptable. "

E„((r)=
-

2 l—n+2 (2)+2n+ 1 ) t ln I g (s t+s) (s- l ts

n ( 2mrs) s

Xr' exp( —ar'/2) P , (4)
s=o (n —k)!k!(2t+ 2k+1)!!

where e and l are the radial and orbital angular-
momentum quantum numbers, respectively. The nor-

"Whatever the range of the static part of Vph, , the volocity-
dependent term seems to be essential to guarantee saturation with
small second-order corrections.

» See, for example, R. D. Lawson and M. Goeppert-Mayer,
Phys. Rev. 117, 1/4 (1960l.

III. RESULTS FOR FINITE NUCLEI

The binding energy and rms radius of the closed-shell
nuclei 0" and Ca' are now calculated for each of the
interactions listed in Table I. Instead of performing a
complete Hartree-Fock calculation, where the forms of
the radial parts R„~(r) of the single-particle wave func-
tions are varied in the search for the energy minimum,
we restrict ourselves to the oscillator form, varying
only the oscillator strength parameter a=(3fco/h)'t'.
This is equivalent to using the Baranger method' with
only one oscillator term in the expansion, so that no
reiteration will be required.

With the assumption of an oscillator form the radial
wave functions become"
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malization is de6ned according to

R„P(r)r' dr = 1.

TABLE III. Results for finite nuclei in the "oscillator" approxi-
mation. Shown are the equilibrium values for the energy e per
nucleon (MeV), the oscillator parameter o= (Mco/h)'~s (F) ', and
the equivalent rms radius R (F).Experimental data are presented
in the last line.

The general expression Interaction
number

Q16

a R
Ca40

a R

(6)

+ P P (2L+1)((nl, NA, LIrs;l, ,n, l;,L)}'
ni li, n)', lg nlNhL

X(nllI V,IInl). (l)

Here the summation of the quantum numbers n;, l;,
e, and I,. goes over all closed shells. In the second term,
which represents the potential energy, we have made the
usual Talmi transformation" of the two-particle states,

I
n, l, ,n, l, ,L)= P (rrl, Nlt, L

I
n, l, ,n, /, ,L)

I
Nl, NA, L), (g).

nLNh

where m and l are the quantum numbers of the relative
oscillator motion of the two nucleons, Ã and A. are the
corresponding quantities for the center-of-mass motion,
and I. is the total orbital-angular momentum of the
pair. The coefficients of the transformation are tabu-
lated. " The potentials Vl appearing in the radial
matrix elements (nlII V&IIrrl) are just the V~ of Eq. (A3),
according to whether l is even or odd, respectively. "

The rms radius of an oscillator nucleus is given
approximately by"

R~(0 93/a)A"'

To compare the oscillator approximation with a full-
scale Hartree-Fock calculation, we applied it first to

TABLE II. Comparison of the complete Hartree-Fock calcula-
tion of 0KB with the "oscillator" approximation for the same
interaction. Calculated are the energy e per nucleon {MeV) and
the rms radii R (F) for 0"and Can.

Calculation

Hartree-Pock
Oscillator

O16

—5.1 2.91—4.8 2.9

Ca40

—7.1—7.1
3.47
3.4

"I.Talmi, Helv. Phys. Acta 25, 185 (1952); M. Moshinsky,
Nucl, Phys. 13, 104 (1959}."T. A. Brody and M. Moshinsky, Table of Transformation
Brackets (Monografias del Instituto de Fisica, Mexico, 1960).

"For the treatment of the handling of the velocity-dependent
component in the matrix element see, for example, B. H. J.
McKellar, Phys. Rev. 134, B1190 (1964)."S. A. Moszkowski, IIandblch der Ehysik, edited by S. Flugge
(Springer-Verlag, Berlin, 1957), Vol. 39, p. 469.

for the total nuclear energy, ti being the kinetic-energy
operator and v;; the two-body interaction, reduces for
closed-shell "oscillator" nuclei (with equal numbers of
neutrons and protons) to

E=2Aor P (2n;+l, +-', )(21~+1)
n', l '

1
2
3
4
5

Test
Experiment'

—6.2—7.0
7.1—7.1—7.2—6.8—7.98

0.54 2.7
0.57 2.6
0.57 2.6
0.60 2.5
0.60 2.5
0.59 2.5

2.64

—8.5
9 2—9.6—9.6—9.6—9.3—8.55

0.51 3.4
052 33
0.52 3.3
0.53 3.3
0.53 3.3
0.54 3.3

3.52

a The binding-energy data come from A. H. Wapstra, Physica 21, 367
(1955); 21, 385 (1955).The experimental radii are given by R. Hofstadter,
Ann. Rev. Nucl. Sci. I, 231 (1957).

IPote added en proof. Subsequent calculation LJ. M. Pearson
and G. Saunier (unpublished)g shows that this agreement is to
some extent fortuitous.

the interaction used by DEB.It will be seen from Table
II that there is excellent agreement. This is probably
fortuitous to some extent, and we find it dificult to
believe that such close agreement would be found for
all nuclei and aB acceptable effective interactions.
Nevertheless, there can be no doubt that the oscillator
approximation does permit a valid comparison of
different effective interactions and should indicate at
least qualitatively the eGect in a complete Hartree-
Fock calculation of a modification of the effective
interaction.

We show in Table III the results of oscillator calcula-
tions on 0" and Ca' with each of the interactions of
Table I. It is seen that while all these interactions give
identical saturation of nuclear matter, they are not
completely equivalent in finite nuclei. However, the
differences are quite small and tend to vanish altogether
as the range of the phenomenological term is shortened,
an observation which may be taken to indicate that it
is the long-range part of the interaction that is of
dominant importance in the Hartree-Fock method.

While the agreement of all these results with experi-
ment is seen to be good, it might be unwise to attach too
much importance to this in view of our incomplete
treatment of the tensor interaction. Of more signihcance
is a comparison of the results with an eGective inter-
action that has been fitted to exactly the same satura-
tion point of nuclear matter but without having long-
range conformity to the real interaction. For this we
take a spin-independent Serber potential having the
same form as the phenomenological components of our
other interactions, as given by Eq. (2).

We refer to this potential as "Test" in Tables I and
III. From the latter it is seen that the imposition of the
long-range condition on the interaction introduces no
signi6cant differences for finite nuclei. " Indeed, com-
parison with the results for the DEB interaction
(Table II), suggests that the form of the interaction is
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of less importance than the precise position of the
saturation point of nuclear matter to which the inter-
action is fitted, since in place of Kq. (3) DEB took
e= —15.5 MeV, kg=1.42 F.

IV. CONCLUDING REMARKS

We have shown that it is possible to mak. e an effective
central two-nucleon interaction conform to the real
two-nucleon interaction in its long-range part while
continuing to saturate nuclear matter correctly in
first-order approximation with a small second-order
correction. Imposing this long-range conformity on the
effective interaction is probably as far as one can
reasonably go in relating it to the real nucleon-nucleon
interaction: the fact that the short-range part of this
is by no means well determined seems to mak. e it some-
what pointless to apply to it a complicated reaction-
matrix theory which is itself not completely unam-
biguous. Indeed, it is conceivable that an effective
interaction derived in a completely a priori way from
a supposedly real interaction would fail to saturate
nuclear matter correctly, an apparently necessary con-
dition for successful Hartree-Fock calculations in finite
nuclei.

The two criteria of long-range conformity and the
fit to nuclear matter do not, however, determine a
unique e8ective interaction, but we believe that the
five interactions, the short-range phenomenological
parts of which are displayed in Table I, span the full
range of possibilities for a quadratic velocity depen-
dence, both for the even and odd states. Using then the
well-tested oscillator approximation, we found that all
these interactions gave comparable and reasonable
results for the binding energies and sizes of 0" and
Ca' . It is therefore conceivable that further refinement
of reaction-matrix theory and of our knowledge of the
short-range part of the nucleon-nucleon interaction
would not lead to any significant changes in Hartree-
Fock calculations, at least as far as the central part of
the interaction is concerned.

While it may be said that the ability to use realistic
interactions gives added physical significance to the
Hartree-Fock method, it is still a great convenience to
be able to use simple Gaussian-shaped interactions,
especially in calculations on deformed nuclei. Our having
shown that these give essentially the same results, at
least in spherical nuclei, as our own more realistic
interactions gives one increased confidence in their use,
although, of course, their validity should be check.ed in
deformed nuclei as well.

APPENDIX: PERTURBATION THEORY FOR
NUCLEAR MATTER

We first explain some points of notation. The central
two-nucleon interaction Va~ of the diGerent spin-isospin
states consists of static and dynamic terms, thus:

V»= V»'(r)+ Lf(p') V—»"(r)+V»"(r)f(p')l (A1)

Then the total direct and exchange interactions,

Vg;, = V~+V, V, ,= V~—V,
where

V+ 3 (V01+ V10) V— V00+9Vl1

can be decomposed likewise, e.g.,

(A3)

j.
Vq;, ——Vq;, '(r)+—(f(p )Vg;,"(r)+Vq;,~(r)f(p )], (A4)

A2

and similarly for V, „V+ and V .
The energy per nucleon in nuclear matter of density

corresponding to Fermi momentum k& may be written
as the sum of the unperturbed kinetic energy and the
mean interaction energy,

3 h'
e=——kr'+8(kg) . (A5)

103f
In first-order perturbation theory, 8(kr) is given simply
as the sum over all states below the Fermi surface of
diagonal plane-wave matrix elements of the total
interaction,

1
o(kr) =—P (V);;,;;,

2S ~, i&&J'
(A6)

where e is the number of nucleons per unit volume. Then
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where

2 "r 3k' 1k'q
8(kg) =— k' — + iI(k)dk,

7l p 2 kr 2 kr')

sin 2kr
Vexc

2kr )

(A7)

I(k) =
Sll12$f

v, ;. y v...'y2y(s')(v, ;,'y
2kr

(AS)
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For the case of quadratic momentum dependence, f(p') =p', the integration over k can be performed analytically
and we obtain

00

V(kp) =—
kporo kp'r2 3 j' 1 1 3 sin2kpr 3f 1 1

dr Vg;, '+ Vo;,"+ —
I + —— +-I — cos2kpr V. .'

12 20 8(kpr' kp'r 4 kp'r' 8(kpr kp'r

9 5 q 15 3 q (45 1 9 3 kpy
+ — 1+, I+— —1

I
sin2kpr+I — — + I

cos2kpr V...~, (A9)
4kpr' 2kp'r') 4r' kp'r' ) (8 kp'r' kpr' 4 r')

a result which is valid for arbitrary radial forms of the potentials.
For the second-order correction to this result we have

1
gp(&) = I (v)'."I'

(A10)
4N ij(kp, i',j')kp o + o —o, i —op

in which the plane-wave elements of the total interaction are summed over all particle states i, j below the Fermi
surface and over all particle states i', j' above the Fermi surface. The quantities ~;, etc., represent the unperturbed
single-particle energies: o;= k'k, o/2M.

The angular integrations over momentum space may be performed analytically. Limiting ourselves to central
forces, which we suppose to give negligible contribution for I& 1, we have

9~ 2k@

Zdz
m'kg' 0

(/: po-Eo /4) ~ /2

dk dk'xy(G~o+Gox+Goo+9&x)
k@2—K2/4) 1/&

Here we have dined

{IJ2—K~J4}1/2

+- dk
2 ky —K/2

dk'xy(1+x'y' —x'—y') (G&o+9G») . (A11)
k~2—K2/4) 1/2

2 k2 I+2
x= k& kp —-,'E

Also
k'k"

k"+-,'E' —k p'

k& k p ——,'E,
k') kp+-,'K

k'(kp+-,'E.

(A12a)

(A12b)

CBT=
k —k"i i ((kr)J i(k")(V»'+Lf(k')+ f(k")jV»")"«, (A13)

in which / is 0 or 1 according to whether S and T correspond to even or odd states, respectively.


