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Fine Structure in Nuclear Resonances*
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A &-matrix formulation is given for the shell-model approach to a unified reaction theory. This E matrix
dif'fers from the E matrix of Wigner and Eisenbud in using distorted waves of a diffuse potential. The
penetrabilities and channel phase shifts are therefore those for a diffuse potential rather than those for a
square well with hard-sphere boundary conditions at some radius. This K matrix is used to discuss the fine
structure produced by a doorway-hallway system, and a result obtained earlier by Ferrell and MacDonald
is rederived. A resonance expansion is then found which explicitly exhibits the widths and resonance energies
jn a multilevel formula. The distribution of the widths is found, a sum rule is derived, and the average cross
section is derived. A general resonance formula is then derived for the case of any number of hallway and
doorway states. This is used to generalize the previously obtained doorway-hallway results to the case of
hallways coupled to the continuum. In certain cases, a characteristic asymmetry is shown to result.

I. I5TRODUCTION

HE success of the shell model in predicting the
characteristic features of the ground state and

low-lying excited states of nuclei suggests extending the
shell model to include continuum states. This extension'
results in a unification of the shell model with nuclear
reaction theory which abandons the "black-box"
description of reaction amplitudes in terms of resonance
parameters. The reaction dynamics are described from
the point of view of the independent-particle picture
plus residual interactions.

One of the key conseque'nces of this new picture is
that narrow resonances can be described as arising
from the discrete states of an independent-particle
Hamiltonian in which all nucleons are in bound single-

particle states. The total energy for such a state can
be positive with respect to the threshold for nucleon
emission, but this energy is parceled out among two or
more excited nucleons so that none have sufhcient

energy to escape. These states will be imbedded in a
continuum of states which have at least one particle in
the continuum but with a lower excitation energy for

the other nucleons. The addition of a residual two-

particle interaction to the independent-particle Hamil-

tonian couples the discrete and continuum states. In
other words, the particle interaction provides a means

for one of the nucleons in the discrete state to exchange

energy with another and to acquire enough energy to
escape. Conversely, these intermediate discrete states
can be reached when an incident nucleon undergoes one

or more interactions with the target nucleus through a
two-nucleon force.

This picture leads to the concept of a doorway state
as a discrete state which can be reached by a single

collision with a target nucleon. Other discrete states can
be reached by subsequent collisions. This leads to the
concept of a hierarchy of states among the discrete

* Research supported in part under U. S. Atomic Energy Com-
mission Contract No. AT- (40-1)-3491.

' W. M. MacDonald7 Nucl Phys. 54, 393 (1964) ~ 567 636 (1966).
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states with the doorway states having a unique irnpor-
tance ie certain s~tlatioes as shown in Fig. 1.

In the case of only one open channel, for example, a
doorway state will determine the angular distribution
and polarization of the resonant elastic scattering. The
scattering cross section, however, may display a complex
resonance structure which contrasts strongly with the
energy independence of the angular distribution. This
structure is associated with the secondary excitation of
more complex states which do not couple directly to the
incident channel. In an earlier paper' the cross section
was derived for a simple Inodel of one doorway state
coupled to a number of "hallway" states. The hallway
states were defined as being the first hierarchy of states
beyond the doorway state. The secondary excitation of
the hallway states was shown to introduce fluctuations
in the cross section, and an exact expression was
derived for the resonant phase shift in a form somewhat
different from the resonance expansion familiar from
older reaction theories.

A more general discussion of fine structure generated
by a doorway-hallway system can be given' using the
unified reaction theory of one of the authors. The earlier
results are then obtained in a more general context
which provides explicit expressions for all interaction
matrix elements and leads to a simple calculation of the
average cross section. However, examination of the
results for the special case of a doorway-hallway
system reveals that a T-matrix formulation of the shell-
model approach to reaction theory is not well adapted
to describe fine structure associated with such systems.
This is particularly true for the case of "overlapping"
levels. The difficulties arise from the diagonalization of
a non-Hermitian Hamiltonian whose complex eigen-
values are the resonance energies aed the level widths. 4

In this paper we shall relate the S matrix to a E
2 R. A. Ferrell and W. MacDonald, Phys. Rev. Letters 16, 187

3 L. S. Rodberg, Symposium on Fine Structure, 1966 (University
of Kentucky Press, Lexington, Kentucky, to be published).

'This point has been explored in detail by C. Mahaux and
H. Weidenmuller (Nucl. Phys. A91, 241 i1967)g.
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Written in configuration space these are

A

(rt, rgla&= 8 Q u., (r~),

FIG. 1. The generation of the hierarchy of states through the
process of multiple scattering in a shell-model description of
nuclear reactions.

(rr, r~lp; jle&= 8 g u,.(r;)u;r, (rg),

(2 3)

matrix which is explicitly given in terms of shell-model
wave functions. This E-matrix representation is shown
to be especially suitable for discussing 6ne structure and
to lead to simple expressions for the reaction amplitude
and cross section which are valid for overlapping levels.
The E matrix will also be expressed in terms of res-
onance energies and level widths in a form suitable for
determining these from experimental data. The distribu-
tion of microscopic widths will be derived for a doorway-
hallway system, and an obvious sum rule will be proved.
The average cross section will be related to the strength
function for the widths.

II. DERIVATION OF THE SHELL-MODEL
K MATRIX

We shall derive the K matrix which results from the
shell-model approach to reaction theory following the
general lines of a development due to 3loch. ' The T
matrix can of course be derived in the same way. The
entire development uses antisymmetrized wave func-
tions and the resulting expressions for the 5 matrix
include both direct and exchange terms. The objections
raised by Lane and Robson' to a united reaction theory
of this form' will be seen to have been answered.

The total Hamiltonian for the A-particle system is
broken up into two parts, an independent-particle
Hamiltonian Hp, and, a residual interaction V.

z'+p U(i). (2.1)

Here p(i) is a Gnite central potential. The eigenstates
of Ho are antisymmetrized products of the bound and

(2' '"1
u;«(r)

I

—sin(kr+8;, —-', 4-)
4b'k r

X g (lm'-,' 'lcm&Y'„'(Q)x. ';

proton:

(231 '~'1
u;r, (r)-l —sin(kr+8;' —srhr —

g ln2kr)
k a'k

X p (lm' ', a.'l jm&Fr -(Q)x.. . (2.4)

where 5, ~ includes the pure Coulomb phase shift and.
g=3fZe'/k'k. The orthonormality condition is

(j lelj'l'e'&=~, ; ~t p~(e e'). —

The solution of the Schrodinger equation

(~o+~) I4&=~If&

(2.5)

(2.6)

is found by inserting the expansion given in Eq. (2.2)
and obtaining a set of coupled equations for the expan-
sion coeKcients. One set of coupling matrix elements
requiring special attention are

&p 'I l~lp' 'I"&=~( ')~'~ (pl~ l—p')

+(p; j«i~alp'; j'I &. e(2.7)

where antisymmetrized products are indicated, The
continuum functions are normalized to a delta function
in energy and, have the asymptotic forms:

neutron:

'C. Bloch, Lectures of the Varenua Summer School, 1965
(unpublished) . The first term arises from the interaction oi the jA —1

' A. M. Lane and D. Robson, phys. Rev. ].51, 774 (1966). target nucleons without any involvement, of the



732 W. MacDONALD AND A. MEKJIAN 160

continuum nucleon. The Schrodinger equation in this
basis yields the coupled linear equations,

(E-"—E)(~ lk&+2( I
v

I
~')(~'I 0)

a'

equation

(ec E)—(c,eel/)+P de, ' f(c~eclc'~ec')
c'

X(c',ec'
I P& =0, (2.13)

+p de(al Vlp; j4)&p; jlel4)=0, with
Pjl

f(c,e,
I
c', e,')=—(c,el Vel c', e,')

(E.' '+e E)—(P; jlelf)+K&PI V. IP')(P'; jlel4')

a'

(c,"IVl~&( I VI c',"')
(2.14)

a jV E
The solution of Eq. (2.13) is

+ 2 de(P'j Iel V&IP j'l' )e (c,eclat&=Acb(e e,)—+ P E,. (e.)A, , (2.15)
E—e, "

X(p j I e
I p) —0 (2 8) where

f(c e lc ~e

+Q de," E;...(e,"). (2.16)
gll

It cc' (ec) Ccec C qec
By choosing a superposition of target states that

diagonalizes the residual interaction, we can remove the
coupling matrix elements of V„:

I p; joe)=&l p;i«)(pl p&

The transformation matrix satis6es the equation

En" '(pIP)+Z(pl v.
l
p')&O'I p)=Ei' '(pl p) (29)

which is the Schrodinger equation for the target states
on the (limited) basis of discrete states.

Ke can also simplify the equations by diagonalizing
the residual interaction on the set of discrete states for
the A-nucleon system

I~)=2 l~)(~l~&

De6ne the surface function q,

p,=(r„,rg pip) p (&e'-,'(r'I jm)

X V,„(II)X., (A), (2.1&)

and let F, and 6, be the regular and irregular solutions
of the radial Schrodinger equation with the following
asymptotic forms:

neutrons:

/2M ''I'
F,

I I
sin(kr+8, 2hr)/r, —

kmk'k)

E-'(~ l~&+Z(~l vl~')(~'l~) =E-'(~ l~) (2 1o)
al

p2M)'"
G,

I

—

I
cos(kr+&, —-', hr)/r;

E~k'ki

(2.18)

This equation is that for the usual shell-model diagonal-
ization on the discrete states of a 6nite potential.

On this new basis Eq. (2.8) becomes

protons:

)2M'q '~'

Fc
I I

sin(kr+8, ', Em q ln2kr)—/r—, —
(E" E)(nIP)+P d—e.'(nl Vlc', e.'&(c', e,'IP)=0,

("—E)(c,"l4)+2

+Z(c "IVl~')(~'lk)=0 (211)

2Mq~l2
G,

I
cos (kr+8, ~ hr q ln2kr)/r, —

~keki

From the expansion of IP&

(2.19)

o'

Ic,e,)= Ip; ale, &, e,=Ep" '+e. —(2.12)

The two equations are simply reduced to the single

where we have de6ned the channel functions and
eigenvalues

14') =2 l~)(~ I&&+2 de.
I c,e.)(c,e,

I P& (2.20)

and from Eq. (2.15) we deduce the asymptotic form

("It) —2 ~.(A.F.—~ Z I~...A.,G.).
C
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We then write this in terms of ingoing and outgoing
spherical waves of the radial free Schrod, inger equation
which are related to Ii, and 6,:

Hp. The full equation for
~
K) is

K= V,+V,Pe(E H—p P—dV,Pd) 'Pev, .

e.= e "—(G,+iE.),
a.= e "—(G, iF—,),

1
(r~ ~P) ——P q, ((A,+i7r P IC„.A;)e

2Z c c'

(2.22)

The V, is seen here to play the role of an effective
interaction which differs from V, by the inclusion of the
effect of virtual transitions to continuum states.

In the resonance expansion of the matrix elements of
E which we shall give in the next section, the resonance
energies are found, from a diagonalization of the
Hamiltonian—(A.—im Q K..A. )e"8,). (2.23)

c' H, =Hp+Pev, Pe (3.5)

The S matrix is defined by

oc= g Sce' ~c' ~ (2.24)

S=p~ (1—imK) (1+in-K)—'pi, (2.25)

From Eq. (2.23) it then follows that the S matrix is
obtained from the Z matrix by the equation

on the discrete states of Hp. This is a shell-model calcula-
tion using a restricted basis formed by the conlgurations
for which all single-particle orbitals are bound in a
finite potential. The E-matrix elements needed to
calculate the S matrix of Eq. (2.25) are

Z., (p.)=(c,p,
i V, i

',c)p
+(c,p, i V,Pd(E H, )-'PeV—, I c', p,). (3.6)

This E matrix contains only matrix elements of the
effective interaction of Eq. (3.4). The most diflicult
chore in finding the E matrix is the evaluation of the
inverse of the finite matrix (E H,). This can—be done
directly, or by first diagonalizing (E—H.) with the
eigenvectors of H.. Both procedures will be used, in
discussing fine structure arising from a doorway-hallway
system of discrete states of H, .

where

(2.26)&cc' «cc' ~
s&c&

The S-matrix elements are quite explicitly obtained by
performing the matrix product indictated. In the next
section we derive an expression for the matrix E which
is more useful than Eq. (2.16).

III. SEPARATION OF X INTO RESONANT
AND NONRESONANT AMPLITUDES IV. FI5'E STRUCTURE FOR 05'E

DOORWAY-HALLWAY SYSTEMThe Ematrix given by Eq. (2.16) contains resonances
which arise from the discrete states of Hp for 2 nucleons.
We shall separate the E matrix into resonant and
nonresonant parts.

We 6rst recognize that the expansion given in Eq.
(2.20) uses eigenstates of the Hamiltonian

H p Hp+ V„+Pev——Pe,

We restrict ourselves in this paper to the case of a
single open channel. This approximation does appear
to be satisfied for the fine structure observed in Ar4'-

(p,p)Ar4', which will be discussed in detail in another
paper. But the principal reason for considering only one
open channel is merely to avoid introducing complica-
tions which obscure the main physical ideas. There is
no diKculty in extending the discussion to inelastic-
scattering and charge-exchange reactions.

We are considering the situation in which the discrete
states can be divided into two kinds of states, the
"doorway" states and the "hallway" states. The door-
way states are characterized by a strong coupling to the
continuum, and the hallway states by a very weak or
zero coupling to the continuum. This circumstance can
arise for a two-body nuclear force, which can only
couple to the continuum states which differ by no more
than a single particle-hole excitation of the target.
The hallway states will then differ from the continuum
by the excitation of two particles and two holes.

The existence of a doorway-hallway system does not,
however, follow e«cessarily from the two-body character
of the nuclear force. A large amount of core excitation
of the target or a strong mixing of doorway states will
destroy this u priori basis for the doorway-hallway fine

where I'& projects on the discrete states for A nucleons
of Hp. We shall denote by V, the part of the interaction
V which couples the continuum states to each other
and to the discrete states. We also de6ne the off-energy-
shell operator K by

E= K5(Z—Hp). (3 2)

The same reduction used in earlier papers by one of
the authors' yields a decomposition of ~K) into a
resonant and. a nonresonant part. The nonresonant
part V, is given by

v,= v.+v, (z—H,)- P,v. . (3.4)

The operator I', projects on the continuum states of

We can now show from Eq. (2.16) that this operator
satisfies the equation

K= V,+V,(E Hp) 'K. —-(3.3)
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structure. However, a doorway-hallway system may
originate in other ways.

Without pursuing the question of the structure of
the doorway and hallway states, we simply postulate the
existence of a single doorway and E hallway states.
We shall then diagonalize the submatrix of H, referring
to the hallway states in order to remove the coupling
of these states among themselves:

(a, le, II,&=.,a;,

This subdiagonalization does not alter the character of
the hallway states and therefore we also have

(I, l v. lc,E&=o,

The doorway state will be coupled both to the con-
tinuum and to the hallways:

(D I
a, ID&=. ,

(h„lv. lD&=m „ i=1, ",zr,

&Dl v. l.,E&= (2~) lr. i (E-).

(4.1)

With these matrix elements the shell-model Hamil-
tonian matrix has a simple form:

6D MD1
~D1 &1

3fD2 0

3fD~

MD 2+ ' ' 3fDy+

0
62 (4.2)

~Z,P(E)=—rn(E)/2

E—eD —XII (4 3)

z —=PIm, l /(E —.;).

The E-matrix element must be computed from Eq.
(3.6). The first term is a nonresonant direct-interaction
term which we shall neglect. The resonant part given
by the second term is easily evaluated:

doorway. The maxima actually occur exactly where
they should be expected —at the shifted hallway-state
energies.

This can be seen in a diferent representation of the
resonant amplitude which exhibits the resonance
energies and the widths associated with each resonance.
This representation expresses the fact that each hallway
state is actually coupled indirectly to the continuum
through the doorway state. Each hallway state therefore
acquires a width which is borrowed from the doorway.
The system has the classical analog of a number of
oscillators coupled to a single central one which is being
driven. The driving of one produces oscillations in the
others, and the full range of normal modes of the system
is excited.

A representation of the K matrix which exhibits the
resonance energies and their widths can be found
simply by diagonalizing the matrix of H, . The states

I Pz& which do this will be a superposition of the doorway
and hallway states,

IA&= ID&(DIA)+Zlh'&(h'I~ti&,

satisfying the equations

X= 1, , E+1 (4.6)

Ep—~D=&ss(E,). (4.8)

These eigenvalues are inmiediately seen from Fq. (4.5)
to be the resonance energies.

A graphical solution for the resonance energies is
illustrated in Fig. 2, where the eigenvalues are obtained
as the intersection of the straight line (E eD) with the-
function ZH (E).

The E matrix assumes a simple form in terms of the
eigenstates

I It q):

Q. l
~.l~.&=E.~..

The eigenvalues E„are zeros of the determinant of this
set of equations:

The S matrix follows from Eq. (2.25):

: E 6D +H g&rD (—E)
S..=e"'

E eD zI,+,'irn—(E)—-(44)

%+1
~&..'(E)= lr (E)2 I(DIA&l'/(E —Ei) (4.9)

X I

This leads to the 5 matrix
From this equation a resonant phase shift can be defined

rg) (E)/2
tap5g =—

E—6D ~P
(4.5)

This is just the expression obtained in an earlier
paper. ' At each hallway energy the resonant amplitude
has a zero. At Grst sight it seems strange that the
minima and not the maxima of the resonant amplitude
should occur at the hallway energies. On closer inspec-
tion of the matrix of Eq. (4.2), however, one se'es

that the hallway states do not actually fall at the
energies e; but are shifted by their interaction with the

g2sbc
CC

1——',i p, r, (E)/(E —E,)
1+-,'i p, r, (E)/(E —E,)

(4.10)

r (E)=r (E) l(DI~.&l . (4.11)

~e should note that Eq. (4.10) for S is a multilevel
expression, valid for both the case of isolated resonances
and for the case of strongly overlapping levels. The
latter situation is likely to be the more common one for
Gne structure in medium, to heavy nuclei, In case of

The widths associated with the resonances Eq are given
by the expression

J
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I I

Although useful, the resonance expansion of E~ given
in Eq. (4.9) does not always exhibit explicitly the
energy dependence of E~. This is because the matrix
elements of the second term of V, given in Eq. (3.4) may
be energy-dependent. In particular it is important to
choose Ho so as to avoid having very narrow single-
particle resonances in the continuum states. The
problem has been discussed in detaiP for the d3~2

resonance of 0' and a method has been outlined for
obtaining a V, which is nearly energy-independent.

The distribution of the widths F), as a function of E~
is to be found from the matrix Eq. (4.7) by using the
normalization condition on the lf»:

(4.14)

I s

I I I
I I I

FIG. 2. The graphic solution for the energy eigenvalues of the
eRective Hamiltonian II, in the restricted space of bound states.
The ordinate represents the function 8—eD and Z~. The intersec-
tions between the two curves give the new energy eigenvalues.

"overlapping levels, " by which we mean that I'z(E)
is larger than the level spacing, the apparent resonance
widths are not given by Eq. (4.11). In the case of a
single open channel the resonance amplitude must go
to zero between every pair of "unperturbed" hallway
energies e;. (If more than one channel is open, this
need not be true. ) Therefore the widths will appear to
be less than the resonance'spacing. Nevertheless, a
detailed 6t of high-resolution data using the multilevel
formula will give the widths of Eq. (4.11).

A sum rule can be given for the widths dehned by
Eq. (4.11). It follows from the unitarity of the trans-
formation given by Eq. (4.6) and from the orthonormal-
ity of the discrete states:

(4.12)

If the energy dependence of the width I'~(E) across the
region of the 6ne structure can be neglected, this sum
rule can be read as

This expression cannot be evaluated analytically for the
general case. However, we can obtain a closed expression
for the special case of the "picket-fence model. "This is
a model of hallways with equal spacing D and the same
matrix element 3f to the doorway. In this model we
have

m M' vr (E ep)—
XII(E)= cot

D D

we find, for the distribution of widths

I'), I'g) I'./2~

D (Eg—eD) '+ (I',/2)'+ I',D/2pr
(4.15)

The result contained in Eq. (4.15) is quite surprising
at first sight. If F,))D, the width of the distribution is
not 2M, as one would expect from perturbation theory,
but F,. The point is that aO the widths decrease as F,
increases and the strength function (I'&,/D) becomes
very broad and the maximum less pronounced:

where the hallway energies occur at eD+ ep. Using the
equation

(4.13)
2prl'g/D =

(E~—en)'+ (-', I',) '
(4.16)

The usefulness of the E-matrix approach for the
discussion of Q.ne structure is most apparent in the
existence of this sum rule. Although a sum rule can be
given for the w'idths which appear in a resonance
expansion of the T matrix, ' this sum rule does not have
a form which lends itself to the obvious interpretation of
Eq. (4.13). It should be emphasized that the widths
which appear in a T matrix, or S matrix, resonance
expansion are not the same as those which appear in
the E matrix. .

The other limit of small spreading width is also given

by this equation. If F,))D, then one eigenvalue
approaches e~ while for the others E—eD remains finite.
Thus F),~ F~ at eD and. F), ~ 0 elsewhere.

Although these results have been derived only for a
particular model, we shall take it to be generally true if

we replace I'&,/D by the average value over intervals
larger than D but small compared to F,.

& L. Garside and W. MacDonald, Phys. Rev. 158, 3582 (1965).
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z Z~ F~/(E —K,)

1+-,'z P Fg/(E —Eg)
(4.17)

For the case of isolated levels Fq&D, the level spacing,
me have the approximate form

X

l1—S-I'= e-"& —1—z g E—Ey+ siFg

V. AVERAGE CROSS SECTION FOR 05'E
DOORWAY-HALLWAY SYSTEM

The average cross section is of considerable interest
because of the eGect of finite energy resolution in
determining the structure which is observed. The
average cross section is obtained by averaging

l
1—S„l'

over an energy interval I which is greater than the
hallway spacing but less than the width of the doorway
state. From the unitarity of S for one channel we have

(l 1—S„l')=2(1—Re(S„)). (5.1)

Since the poles of 5„ lie in the lower half of the
complex plane, an average of S., can be found by
evaluating it at an energy E+zI'.

(S,.(E))=S,.(E+zI) . (5.2)

We then evaluate the average from Eq. (4.4) using the
equation

Z~(E+iI) A iF,/—2, —
aE' lm(E') l

s

6= 6'
DII(E') (E—E')

(5 3)

The F, is the spreading width delned in Eq. (4.16).
The result for the averaged S matrix is

E—eg) —-,'z (Fg)—F,—2I)
(S ) esi bc

E eg&
—-', Z(F +F,+2I)—(5 4)

where we have included the shift 6 in t.~. The average

' J. M. Blatt and L. Biedenharn, Rev. Mod. Phys. 24, 258
(1965).

'A. M. Lane and R. G. Thomas, Rev. Mod. Phys. 30, 25&
(1958).

The above equations give the distribution of widths,
but the amplitude of the cross section oscillates between
the unitary maximum and zero. This follows from Eq.
(4.10), or from the trivial observation that we only have
one open channel. Only if the cross section is averaged,
or other channels open, do we see azrzpl@lde modulation
in the cross section. The cross section for one open
channel will be proportional to l1—Sl', with other
factors which are well known in the literature':

l1—s.,l'

cross section is proportional to

( l
1—S„

l
') =4 sin'6,

F (F,+F +2I)cos28,—2F (E—e )sin28,
(5.5)

(E—.n) +-,'(F,+Fn+2I) s

The erst term gives the potential-scattering cross
section, and the second term contains both the resonant
amplitude and an interference term. If there were no
coupling of the doorway to the hallway states, the cross
section would exhibit a resonance of width FD at an
energy e&, together with the usual interference with the
potential scattering. The eR'ect of the fine structure is
to give a broadening of the resonance amplitude, as
can be seen from the resonance denominator. However,
the resonance amplitude is no longer Lorentzian even
in the absence of potential scattering, for which

Fg) (F,+Fg)+ 2I)
&l1-s-l )= (5.6)

(E—en)'+ & (Fs+Fn+2I)'

The effect of the spreading width is to reduce the
maximum cross section at the resonance energy and to
increase the width. The effect of F, on the elastic
scattering is precisely the same as if another channel
had opened. This fact is apparently the origin of the
term "downward-going. ""This expression is somewhat
of a misnomer if only one channel is open because the
only decays which are possible for the discrete states are
those going through the doorway state. The width of
the doorway state is actually decreased by the mixing
to hallway states since some of the strength is removed
and distributed to form other separated resonances.
The I', is strictly a property of an average cross section
and not of some physical state. On the other hand, if
there are so many channels open that the hallways are
coupled to the continuum through many doorways, and
even directly, the spreading width for a particular
doorway does have a physical meaning. The lifetime
of the doorway will be h/F, in the "no-return" approx-
imation of Danos and Greiner. " In this the 6ne struc-
ture will also be absent and the cross section for elastic
scattering will be the same as the average cross section.

It is important to note that elastic-scattering exper-
iments having an energy resolution less than the fine-
structure spacing can not distinguish between the
situation in which a resonant cross section has been
averaged over one structure and the situation in which
reactions are contributing to the total width. However,
the two cases can be distinguished by measuring the
cross sections for other energetically possible reactions
and checking whether the total width is the sum of the
various partial widths.

' H. Feshbat:h, in Proceedings of the Internal'onal Conference on
the Study of Nuclear Structure with E'eutrons, Antwerp, 1965
(North-Holland Publishing Company, Amsterdam, 1966).

n M. Danos and W. Greiner, Phys. Rev. 158, B876 (1965).
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%e conclude this section by indicating the connection
between the strength function and the average cross
section. The strength function is dehned as the average
of Fq/D, the microscopic widths divided by the level
spacing. The explicit dependence of (F&,/D& on the
energy is given for the picket-fence model in Eq. (4.15).
A more general, but approximate, expression can be
derived by using the equation

I'n/2(E eg) —Z—ri)=g F)/(E —&),).

ing to Eqs. (4.4) and (4.10) for the S matrix in the
one doorway-hallway case.

The erst equation for the E matrix is simply obtained
by evaluating Eq. (3.6) explicitly. Let the doorway
states~be designated as ID;). Then arrange the matrix
elements of H, into blocks corresponding to the doorway
and hallway states:

We then evaluate both sides at E+iT and equate the
imaginary parts of both sides to obtain an equation for
the strength function:

(5.7)

These last two equations enable us to reconcile the
easily found result that

2vrs(1+ m.s/2)
(l1—s-I'&=

(1+m.s/2) s+Z'ss
(5.9)

with Eq. (5.6). For
I
8—so I))I'„ the term in Zs can be

neglected:

Equating the real parts of both sides gives

(8—sn) I'g)/2
Ep= (P (5.8)

Dg (Z—Z),) (Z—e~)sy(r, /2)'

The blocks designated by M&II will contain the coupling
matrix elements between the doorway and hallway
states. Then the E-matrix elements will be

(cl V, ID;&M;;(D;I V, lc')z.„=(.l V, I '&+g
' '

. (6.1)
det(Z —B,)

The M;; is the cofactor of (Z—H,);; in the matrix of
(Z H,). This —equation is exact and contains no
approximations with regard to the energy dependence
of the matrix elements of H, .

The disadvantage of Eq. (6.1) is that it contains no
explicit information on the energies at which resonances
occur or on their widths. As in Sec. 4, we can obtain
another representation of the K matrix which does
exhibit this information. This representation is obtained
by diagonalizing H, on the set of doorway and hallway
states. The eigenvectors will be

IA&=Z ID'&(D'IA&+r lh'&(I 'IA&

(I1—s,.I') =2&s(1+&s/2) '

This should be compared with

1—l(S„)le= 2ss(1+s.s/2) ',
which is used to define the transmission factor

5.10
satisfying

(5.11)
The E-matrix elements are then

(6.3)

T.= 1—I(s«& I'= 2ss(1+ss/2) '. (5.12)

The difference between the averages performed in
Eqs. (5.10) and (5.11) defines the "fluctuation cross
section, "

o ti ~ 2 (s.s)'(1+m s/2) —'.
The Quctuation cross section also satishes

(5.13)

r 2

0 piOC

(Z—eD)'y (rn+r, )'/4

for comparison.

(5.14)

VI. GENERAL RESONANCE STRUCTURE

In this section we shall generalize the preceding case
of one doorway coupled to E hallways to the general
case of any number of doorway and hallway states
coupled in any manner. Two different expressions for
the E-matrix elements can usually be given, correspond-

I') "2I'x "'
K„=(cIV.lc'&+(2s) 'P, (6.4)

jv jv~

Since we are working with the K matrix, all matrix
elements can be taken as real.

Although Kq. (6.4) appears to exhibit explicitly the
energy dependence, this is not exactly true. The matrix
elements which appear in H, not only contain the direct
coupling of the discrete states to each other, but the
indirect coupling through intermediate continuum states.
This coupling is introduced through the second term
of Eq. (3.4) for V, . The energy dependence of such
terms has been studied" in 0" and found to be very

L. Garside and W. MacDonald, in Prooeedhrtgs of the Irtter
national Conference on the Study of Nuclear Structure zenith Neutrons,
Antwerp, 1965 (North-Holland Publishing Company, Amsterdam,
1966) l W. Heres, Phys. Rev. Letters 17, 1180 (1966).
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p r„,=p r, ,
X j

(6.6)

The partial widths on the right side of this equation are
those for decay of the doorway states in channel c.
It should be noted that unfortunately this obvious sum
rule is satisfied only approximately by the widths which
appear in the resonance expansion of the 5 matrix.
The reason is that these expansions involve the diag-
onalization of a non-Hermitian matrix with complex
eigenvalues. ' ' The diagonalization is usually done by
diagonalizing II, and assuming that the level matrix
is then also diagonal. This approximation is untenable
for doorway-hallway systems.

An interesting application of the general resonance-
structure formulas (6.1) is to the case in which we have
a single doorway strongly coupled to the continuum
and to a set of' hallways which are also directly coupled
to the continuum but with this coupling much weaker
than for the doorway. Because of this difference in

small when virtual single-particle resonances are
properly handled.

Within the approximation of energy-independent
matrix elements between the discrete states, the
resonance expansion for the K matrix exhibits clearly
that the calculation of the 6ne structure can be neatly
separated into two stages. The first step is the calcula-
tion of the eigenvalues and eigenvectors the shell-
model Hamiltonian. This calculation involves the
diagonalization of an Hermitian matrix with real
eigenvalues, even if the resonance widths are later
found to correspond to strongly overlapping levels.
The only refinement of the usual shell-model calculation
that is indicated is the inclusion of the coupling through
continuum states. The second step is the calculation of
the level widths by Eq. (6.5).This is the stage at which
the distinction between doorway and hallway states is
made. Only the doorway amplitudes in the resonance
states contribute to the widths.

The resonance expansion for the E matrix in Eq.
(6.4) resembles that for the R matrix of Wigner and
Eisenbud. There are, however, a number of important
differences. First, the widths I')„contain matrix
elements from discrete states to distorted-wave con-
tinuum states. Therefore the penetrability factors which
enter are those for a diffuse potential, and not those for
a square well. Second, this E Inatrix contains a direct
term which is entirely absent in E-matrix theory by a
large number of terms corresponding to contributions
from "distant levels. " Finally, the channel phase shifts
appearing in the matrix a& .of Eq. (2.26) are those
for a diffuse potential rather than for "hard-sphere"
scattering.

In the E-matrix resonance expansion the widths
satisfy a physically obvious sum rule. This sum rule
follows from the~orthonormality of the eigenvectors

and, separately, of the doorway and hallway
states:

- (Dl V. l~.&e. l V.I,"&
I'g.——2~ (D) V, )c, .)—P

X
I &D14~) I . (6.8)

The sum rule on the widths becomes

Q Ixc=Q Is(,a+ID p (6.9)

where the FI..., are the hallway widths in the absence
of coupling to a doorway:

~. .=2-IP. I V. l~,")I' (6.10)

Far from the doorway the widths I'), become equal to
I'I...,. The sum rule therefore can be expressed in a form
containing only the widths about the analog:

(6.11)

This expression is most convenient if the I's, , , (or the
matrix element) are slowly varying across the doorway
resonance energy.

Under certain conditions the distribution in widths
given by Eq. (6.8) will exhibit an asymmetry about the
doorway state. Robson" has drawn attention to this
feature of the fine-structure pattern associated with
analog resonances in certain nuclei. Such an asymmetry
and a suppression of the widths at some energy will

occur if the magnitude and the relative phase of Inatrix
elements (A

~
V, ~h;& and (h;( V, jc,e,&

remain the same
across the region of enhanced, fine structure. In this

"D. Robson, Phys. Rev. 157, B535 (1965l.

strength of the coupling to the continuum, we can still
speak of these latter states as hallways. We will assume
we have diagonalized H, on the hallway set, so that
couplings only exist between the doorway and hallway
states. The next step is to remove the couplings between
the doorway and hallway set to give a new set of states
(6.2) which satisfy the restricted Schrodinger equation
(6.3). Since H, is diagonal among the hallway states,
the transformation coeKcients (D~Pq& and (II;~fq& are
easily found, to be related by the equation

(Is;
~
lyy) =(I;[ V, [d&(D ~y) &/(s,—8) . (6.7)

The value of (D
~ Pq& can be found from the normaliza-

tion condition and is given by Eq. (4.14). The eigen-
values Ez still satisfy Eq. (4.8). The structure problem
represented by Eq. (4.7) is unaffected, in fact, by the
introduction of a coupling of the hallways to the
continuum, except for a slight change in V, which
results from second-order terms involving continuum
states.

The signi6cant change is in the equation for the
widths F)„which are now the result of the coherent
contribution of decay amplitudes:
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case the "picket-fence" model leads to the expression
for the widths

(hl v, lD)(Dl v. lc, c )
E8 6D+

q lv, l....) (6.13)

This formula is very reminiscent of one derived by
Robson, " but the parameters which appear in it are
quite different. This equation indicates an enhancement
of the hallway widths which extends over an energy
range of width (F,'+2F,D/~)"', which is therefore
determined by the analog hallway coupling. This con-
trasts with the modulation function derived by Robson,
which shows a width I'D (or F~, since the analog state is

1.0—

0.5

l

1.6
I I

1.8 8p

Ez(Niev) ~
2.0

FIG. 3. The distribution of widths as a function of energy for
the case in which an asymmetry exists.

Eg—6D

(EX 6D)
X (6.12)

(E ED) '+—(F,/2) '+F,D/2~

where lA) denotes the analog state.
This equation shows that the width is the coherent

contribution of decay amplitudes arising from the
direct coupling of the hallway to the continuum and of
the indirect coupling to the continuum through the
analog state. The two amplitudes interfere destructively
on one side of the doorway and constructively on the
other side if the phase of the matrix element (h

l
V, l c,e,)

remains the same relative to the phase of (hl V, lA)
&&(A l

V, l c,e,). In this case the equation for the widths
can be written in a form which displays the asymmetry
which is illustrated in Fig. 3:

(E~ E,)
(Ey 6 )D'+ (F,/2) '+F,D/2

the doorway in the situation being discussed). Further-
more, the energy at which the fine structure is sup-
pressed is not the energy eD (or Ez), but is the energy at
which the decay amplitude comtriblted by the doorway
(analog) is equal and opposite to the decay amplitude
of the hallway in the absence of the analog.

The above discussion is intended to be schematic and
we have not discussed a number of important points.
Questions on the strlctlre of the analog state, the effect
of isobaric spin selection rules upon various coupling
matrix elements, and other aspects of fine structure in
analog resonance will be discussed in a separate paper.

VII. SUMMARY

In this paper we have developed a E-matrix approach
to nuclear reactions which uses the independent-
particle wave functions of a finite potential. All wave
functions for the system are properly antisymrnetrized,
and both direct and exchange amplitudes for single-
nucleon reactions are included. The advantage of the E
matrix over the corresponding 1matrix (also easily
derived) is that overlapping levels which are strongly
coupled to the same channels are easily described in a
multilevel formula. The reason is that the resonance
expansion of the E matrix contains real resonance
energies and orthonormal intermediate states which are
obtained by diagonalizing a Hermitian matrix. Simple
sum rules result from the unitarity of the diagonalizing
transformation.

This is in marked contrast to the resonance expansion
for the 5 matrix or T matrix which contains complex
energies and involves nonunitary transformations. "
The pole expansion of the 5 matrix is inappropriate for
the discussion of doorway-hallway systems, as shown by
Weidenmuller and Mahaux. 4

We have discussed the fine structure associated with a
doorway-hallway system using the E matrix. An
exact expression for the 5 matrix has been obtained in
the form derived earlier' which displays the zeros of
the resonant amplitude. However, we have also given
the resonance expansion of the E matrix which exhibits
the resonance energies and level widths. The level
widths have been shown to follow a Lorentzian distribu-
tion and to sum to the doorway width. The resonance
energies are found by diagonalizing a shell-model
Hamiltonian. The average cross section is found and
relates to the strength function.

This model of one doorway coupled to the continuum
and of E hallways is easily generalized to the case in
which the hallways are also coupled to the continuum.
A characteristic asymmetry in the pattern of fine
structure is shown to result under certain circumstances.
The width distribution has a width approximately equal
to the spreading width, but with a zero on one side or
the other of the doorway. The distribution of widths
does not agree with that found by Robson. "


