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A realistic coupled-equation problem is solved using various E-matrix and level-matrix techniques.
Comparison with exact coupled-equation calculations shows that excellent numerical results are possible
with these methods, both in resonant and in nonresonant energy regions, The effects of varying the R-matrix
boundary conditions and the number of levels included in the calculation are considered. Various aspects
of R-matrix theory, such as the composition of R-matrix states, and the interference between neighboring
levels, are illustrated by the calculations.

I. INTRODUCTION

VARIETY of formal theories of nuclear reactions
have been proposed in the last 30 years. A dis-

cussion of these and a list of references may be found in
a recent paper by Lane and Robson, ' in which a compre-
hensive formalism covering many of the earlier theories
is suggested. Such formal theories have been of great
value in providing a theoretical understanding of
nuclear reactions, and in suggesting algebraic forms
which experimental data should follow and parameters
by which they may be characterized. Except for the
simple potential-scattering problem however, little work
of a numerical nature has been done in the way of
starting with a Hamiltonian and using it to calculate
resonance parameters and cross sections. Possible ex-
ceptions to this are the calculations based on Fesh-
bach's' channel-coupling theory by Lemmer and
Shakin, ' and more recently by Lovas. 4 Reaction calcu-
lations have also been attempted recently by Tobocman
et ul. ' starting with a shell-model Hamiltonian.
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Scientilc Research, Ofhce of Aerospace Research, U. S. Air Force,
under AFOSR Grant No. AFOSR-440-66 and the National
Science Foundation under Grant No. NSF-GP-5114.
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' A. M. Lane and D. Robson, Phys. Rev. 151, 774 (1966).' H. Feshbach, Ann. Phys. (N. Y.) 5, 357 (1958); 19, 287
(1962).' R. Lemmer and C. M. Shakin, Ann. Phys. (N. Y.) 27, 13
(1964).' I. Lovas, Nuci. Phys. 81, 353 (1966).' W. Tobocman and M. A. Nagarajan, Phys. Rev. 138, B1351
(1965); M. A. Nagarajan, S. K. Shah, and W. Tobocman, ibid.
140, B63 (1965).
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The coupled-equation theory suggested by the work
of Feshbach, and which is used by various authors' 7 in
the analysis of scattering from collective nuclei, pro-
vides a suitable problem which we may attempt to
solve in terms of the more formal theories. It is capable
of exact solution by numerical methods, ' and yet is
less trivial than the one-channel potential-scattering
problem, providing narrow resonances of the type
observed in nuclear reactions. The purpose of this paper
is to investigate the solution of this problem using
R-matrix theory, ' one of the better known of the formal
theories. Haglund and Robson' have done calculations
for a two-channel model using square-well potentials,
and the results of their work indicate that only a few
R-matrix levels need be included in the calculation. In
this paper we consider a more realistic problem, that of
a spin- —', projectile scattered by a 0+-2+ target, and com-
pare our results with exact solutions obtained from the
coupled-equation program written by Buck. ' In solving
the problem for a large number of incident energies, the
R-matrix technique may also turn out to be more ef-
ficient than the conventional solution.

A further reason for doing calculations on the lines
suggested by the formal reaction theories is that this
may lead to a better understanding of the structure of
resonances appearing in the scattering data. The work
of Tobocman et al. ,

' and of Lemmer and Shakin' i.s

' B.Buck, Phys. Rev. 130, 71.2 (1963).
' D. M. Chase, L. Wilets, and A. R. Edmonds, Phys, Rev. 110,

1080 (1958).
A. M. Lane and R. G. Thomas, Rev. Mod. Phys. 30, 257

(1958).
M. E. Haglund and D. Robson, Phys. Letters 14, 225 (1965).
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directed towards this end, and the calculations of Lovas4
are an interesting application to the levels produced in
the scattering of neutrons by C".

In Sec. II we indicate how the cross section may be
expressed in the R-matrix formalism, and briefly state
the coupled-equation problem which we are trying to
solve. In Sec.III we introduce three methods of solution,
the first two based on R-matrix theory and the third
on the formalism derived by Sano, Voshida, and
Teresawa. ' The results of calculations for both non-
resonant and resonant energy regions are presented in
Sec. IV, and the effect of varying the number of levels
and boundary conditions is discussed. The calculations
also demonstrate some of the eGects of interference be-
tween neighboring R-matrix levels.

II. A BRIEF DERIVATION OF R-MATRIX THEORY
AND STATEMENT OF THE COUPLED-

EQUATlON PROBLEM

R-matrix theory is adequately presented and discussed
in the review article by Lane and Thomas. ' For com-
pleteness, however, we will indicate how the cross sec-
tion may be written in terms of the R matrix, and will
use a slightly different viewpoint, starting with the
transition amplitude Tf; between an initial state i and
a final state f, which is more familiar to those working
in the Geld of direct reactions.

Suppose that the target and projectile are described
by spins I and s respectively, with 2, components E
and ~, and that there are two final particles with spins
I'K' and s'o'. Let k and k' be the initial and final
relative wave vectors. Other quantum numbers will
not be written down explicitly. The cross section for
this process may be written"

X +' can be made. For example,

X;(')=Q i'(2l+ 1)e+'~'(kr. ) 'F&(kr)
L

XP((cos8) iso)lIK), (2.3)

where ai is the Coulomb phase shift and F((kr) the
regular radial Coulomb wave function.

To evaluate the second term of Eq. (2.2), we divide
conGguration space into internal and external regions
as described by Lane and Thomas, 8 and define surface
functions at the various channel surfaces S,.

lc) = P (Dsalji)(jf. IKl JM)z'F'z(r, ) )so)lIK). (2.4)
aK)'g

These di6er slightly from the surface functions defined
in Ref. 8, first in the coupling scheme, and secondly in
the lack of a factor 1jr in conformity with the work of
Lane and Robson. '

We shall use the convention that a matrix element of
the form ( l l ) ™pliesintegration over all coordinates,
whereas elements of the form (cl l ) or (cl lc) imply
integration only over the surface variables for the two
separating nuclei, dS, =dQ, dg„where $, are the internal
variables and 0, the relative angular variables.

We make use of the surface operator' "
ks

~(f)=E
I
c) ~(r —a )I

— l(cl (2 3)
2m, (dr, n, )

and denote by Z the operator corresponding to the
particular case when b, is set equal to L„the logarithmic
derivative of an outgoing wave. If H is the full Hamil-
tonian, and Hf the Hamiltonian corresponding to the
Coulomb wave Xf& &, we may write

do- mm' k'

dQ (2m.h')' k
(2 1)

V,—U, = (H+ g E) (H,+g —E—). —(2.6)

The Hermiticity of (Hi+2 E) in the sense —explained
by Lane and Robson' and the relations

where ns, m' are the initial and final reduced masses, and

&r'= &xr' 'I ~r I&')+(xi' 'I (~r—~f) I+"+'). (2.2)

0';&+~ is the full solution corresponding to an incident
plane wave @;=e'"'iso)lIK), and xf( & is a final-state
distorted wave calculated for an approximate Anal
potential Uf. Vf is the actual Gnal interaction. It is
convenient to choose Uf to be the Coulomb potential
between the Gnal nuclei, in which case the Grst term of
Eq. (2.2) is the Coulomb amplitude —(2xhs/m) f,(8)8r,,
and Xf& & is a Coulomb wave function. A partial-wave
expansion of both Xf & ~ and the incident Coulomb wave

' M. Sano, S. Yoshida, and T. Teresawa, Nucl. Phys. 6, 20
(1958)."C. C. Grosjean, Institut Interuniversitaire des Sciences
Nucleaire, Monographic No. 7, Sruxelles (unpublished); A.
Messiah, Qnantnm Mechanics (John Wiley 8t Sons, Inc. , New
York, 1966), Vol. II.

g+,.(+) —gx, (+) +,(+)—ggx. (+)

may be used to obtain

(2.7)

1
w. (+)=2 le+'" F&(k,r,)lc).

kv,I r,
(2.9)

The expansion LEq. (2.3)$ of X;(+) and Xr(-) can be
written in terms of these partial waves. Substituting the
resulting expansions in Eq. (2.8), and choosing the

"C. Blocllp Nucl Ph&s 4p 503 (&954).

'I ~f Uf I+"+')
=(xr(—)

l
g+, (+)) (g'x~(—) l~.(+))

=(x&(—)lgx, (+)) (@+X (—)lglgx, (+)) (28)

where g=(H+2 E) ' is a well-d—efined Green's
operator.

We deGne the partial waves
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quantization axis along the beam direction, the ampli- and
tude Tf; becomes fh'u. '"

~,.=(c,l~)=I (cl~)„..
&2m,

(2.20)

(—C(8)8f;g2$c'0

(mm') "'
+i P P lY& z (k')(l0so Ij()(j/IKI JM)

&i'x'~p gg'zu

where

These last three equations, together with Eqs. (2.1)
and (2.10) constitute the basic E-matrix formalism
which we wish to use.

We turn now to the coupled-equation formalism.

X (l lI,'s'o'lj'$')(j'$'I'K'I JM)T;.), (2.10) The full wave function is expanded in terms of the
surface functions in Eq. (2.4):

C(8) = g(4nr) 'i' csc'(28) exp( —ig inLsin'(o8))),

and
e;&+&=P —N, (r,) I c),

c fc
(2.21)

T"'=(~"' 'l~~ '+') —«'~"' 'IBI~~ '+') (211)

The fLrst term in Eq. (2.11)is the hard-sphere amplitude
and is easily evaluated as

c2irac (1 c 2i spa)
—8,

where q, is the hard-sphere phase shift. For the second
term we note that

(2.22)(IIr—& ) I c) =0 ~

where the sum includes only channels of a fixed partition
of the particles between target and projectile. Let B&
be the internal part of the Hamiltonian giving rise to
the diferent target and projectile states occurring in

Ic). Then

If T is the relative kinetic energy, the full Hamiltonian

I
Zn., '+&) = (2i)'i'P .'i'Q„l C,), (2.12)

where P, is the penetrability, Q,=exp(i(co, —y,)), and
II=IIr+ T+Vg jog+ Vcr~pl y

(2.23)

li2 q
1/2

~(» —~ ) I
c)

(2m a,'i
(2.13)

We introduce the set of R-matrix states
I X) which are

solutions of the equation

where the interaction has been split into a part which is

diagonal in channel space, and a part which is not.
Substitution of Eq. (2.21) into the Schrodinger equation
leads to the coupled equations

)Ti+ V, (r) (P o,—)$N, (r) = —P—V„(r)N, (r), (2.24)

('14) w~ere

where b is a set of real boundary conditions. The
Green's operator for these boundary conditions is

I x)(xI
g(b)=LII+z(b) —Ej-'=Q . (2.15)

g~—jv

—h' d' l (l+1)
~L

) 2mc df2

V.(r) = (cl V~ "lc)
V- (r)=(clV--.ilc'). (2.25)

The last expansion here is possible since II+X(b)
commutes' with the summation Pq The relation. be-
tween g (b) and g is

where
L1+S(b)&~js=s(b),

ax =z z(b) = Q—I e.)I..o(—e, I

(2.16)

and
I 0 (2.17)

(2.19)

Thus we find that in matrix notation the amplitude
T, , becomes

T=W—Q{l+2iP'"(1 RLo)—HARP I )~ (2 18)

where

Since the Hamiltonian is invariant under rotations
and inversions, total angular momentum J and parity
x are good quantum numbers and coupling occurs only
between channels with the same values of (Jp.). The
problem is therefore to be solved for each value of

(Jp) in turn.
We consider the case of nucleon scattering, and

following Buck' we limit the target states to a 0+

ground state and a 2+ 6rst excited state. For this case,
at the most, six channels can contribute to a given value
of (Jp).

For the diagonal part of the potential we use a real
Saxon-Woods potential plus a spin-orbit term of the
Thomas form:

V, (r) = Vo.„g(»)—V,f, (r)

f h)' Bf,.,
+2V ' I I

r ' 1's (2.26)
km ci 8»
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(r—R,)
f,(r)= 1+exp

where Uo,„~(r) is the Coulomb potential, (h/m c)' has We can define uncoupled reduced-width amplitudes
the value 2 F', fv. =(h'/2m. a,)'~'v„, (a,) and for a given state lp),

these are also zero in all but the one channel to which

I p) belongs.
The R-matrix states

where
V„.(r) = V».G...g(r), (2.27)

The sufBxi represents either s or s.o. and 2 is the num-
ber of nucleons in the target. The nondiagonal part
of the interaction is expressed in the form

1
IP,)=g —ug, (r,) Ic),

c

can be expressed in terms of this complete set

(3.5)

(3 6)

8
g(r) = a, f,—(r),—

Br

PR.V, p10q '~'
&os=—,&ss= —

I

—
I

l'os
(4v-)"'u, k 7 1

and similarly for the corresponding reduced width
amplitudes yq„= (hs/2m, a,)'~'Nq, (a,),

(3.7a)

~=M(. (3.7b)

(2.28) This last equation may be written in matrix notation

in the. rotational model. '
The purpose of the work reported here is to solve

these equations using R-matrix techniques, and to
compare the results with the exact solutions obtained
from the Buck coupled-equation program.

Substituting Eq. (3.6) into Eq. (2.14) we obtain the
matrix equation

M(s'+V) = aM, (3.8)

where 8' and 8 are diagonal matrices with elements E„'
and Ez, respectively, and V has matrix elements

III. R-MATRIX SOLUTION OF
COUPLED EQUATIONS Vv'y= (p I Vcoupt I p )= ..(r) I'- ( )v'"(r)«(3 9)

LHe+z(b) —Ev'jl p) =0. (3 1)

We take Bo in this case to be that part of H which is
diagonal in channel space:

&o=&r+ &+&a;.s, (3.2)

so that the radial parts of
I p) are eigenstates of the set

of uncoupled equations

I:2'i+ l'. (r) —(&.' —")3v"(r.) =0,

satisfying the boundary conditions

(33a)

In applying R-matrix theory to coupled equations,
we have to solve the coupled-equation eigenvalue
problem corresponding to some real boundary condi-
tions b at the surface separating internal and external
regions. To help us do this we work with a basic set of
states

I p) corresponding to a model Hamiltonian IIs.
The states

I p) are then eigenstates of the equation

Here c and c' denote the channels to which
I p) and

I
p')

belong.
The calculation to be performed then is first to solve

the eigenvalue problem in Eq. (3.1) or Eq. (3.3) for the
various levels in each channel, then form the matrix V
from the integral in Eq. (3.9). Next we diagonalize the
matrix (8'+V) according to Eq. (3.8) to obtain the
R-matrix levels E~ and the transformation matrix M.
Reduced widths px,' can then be found from Eq. (3.7)
and the R matrix formed. VVe then invert the 6X6
matrix (1—RL') and calculate the amplitudes in Eqs.
(2.18) and (2.10) and the cross section in Eq. (2.1).

Of course there is an inhnite number of levels in each
channel, and in practice we include only the nearby
levels in our calculation, that is, those with energies
near to the bombarding energies we wish to consider.
The R matrix derived solely from these nearby levels"
will be designated R~:

v" (r.)
dr,

=b,v„.(a.) . (3.3b)
PXc'QXc

X(nearby) Q) —Q
(3.10)

and the method of calculation just described, where
distant levels are completely ignored, is referred toThe states

I p) clearly have zero components in all but
one channel, so that each is a single-particle state in one
or other of the channels,

I p&= (1/r. )vv. (r.) lc).

18 The level energies and widths derived by diagonalizing only a
limited number of states

~ p) are of course not exact either. Thus
(3.4) Ex and yz, used in Eq. (3.10) are approximate values.
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hereafter as method I. One of the attractive features of
this technique is that the levels E), and widths yq, ' are
energy-independent, so that once they have been
determined, the amplitudes and cross sections for a
6nite range of energies are easily found.

It is desirable to include the effects of distant levels
in some way, since it is known that they can combine
together coherently and are an important factor in
processes such as elastic scattering. The strength of
these distant levels, however, lies in their numbers,
more than anything else, so that it seems reasonable to
suppose that they could be adequately represented by
the uncoupled levels E~ and widths f~.2 W.e thus add
a term

T,=(~, (—)I vI+. (+)) (3.17)

where V is the total interaction with Coulomb part
subtracted out, and 0'.&+) is the solution of the full

Schrodinger equation with the same incoming wave as
~, +~. This can be expanded into a distorted wave form
similar to that used by Sano, Yoshida, and Teresawa, '
as described by Lane and Robson

obtain amplitudes and cross sections. This method of
including distant levels will be referred to as method II.

A third type of calculation has been tried which is
not an R-matrix method. We express the channel ampli-
tude T...in the form

n"fu.
Og, D—

p(distant) P„'—P
(3.11)

T, = (x,, (—) poo&I2r, (+)&+(x,( )
I
(V pm&&) Ix (+))

—(""' '
I (v—U"")B(v—~"')

I
x.'"'), (3»)

OR
r di, (Er)

2), (E,r) dr
b, . (3.12—)

The wave function e, (E,r) is the regular solution of the
equation

to the R matrix R~ as calculated in method I from
nearby levels. An alternative way of viewing this process
is to assume that there is zero coupling V„„to and be-
tween these distant levels, so that the niatrix (8'+V) in
Eq. (3.8) is already diagonal in the distant levels. It is
indeed reasonable that V„~ should be small for distant
levels which oscillate rapidly as a function of r. We
note that since t „, is zero in all but one channel for
fixed p, the distant-level contribution os to the E
matrix is diagonal in channel space. Despite this, the
addition of this term affects the nondiagonal elements of
the amplitude T, , through the matrix inversion
(I RLo)

In practice we cannot calculate R„by summing
over the infinite number of distant levels, but we make
use of the fact that the uncoupled R function in a given
channel and for a given energy can be calculated exactly
from the uncoupled wave function (I,(E,r):

where O'I" is some optical potential, and X,&+& and X,& &

are the corresponding distorted waves with incoming
and outgoing parts the same as m, &+& and m, & &, re-
spectively. To be more explicit, X,&+' for example may
be written

) 1/2

X (+)—2
I

r~(~c+oc)f (r) I
o)

hv, l
(3.19)

where f, (r) is the regular solution of the radial Schro-
dinger equation with the optical potential U I'", and 8,
is the complex nuclear phase shift.

The first term in Eq. (3.18) is simply the optical-
model elastic-scattering amplitude:

(3.20)

The second term is the distorted-wave Born-approxima-
tion (DWHA) transition amplitude T;,nw and can be
calculated in the usual way.

The third term carries all compound-nucleus effects.
To evaluate it we introduce the complete set of model
states

I p) as before to get

2(x"' 'I (V—U"") IP'&(P'I BIP&

X(pI (V—V"i) Ix.(+)&. (3.»)
[Ti+V, (r) (E—o,)ji),—(E,r) =0. (3.13)

The matrix elements
Thus if the contribution to 'R from nearby levels is

2

Og N

p(nearby) g& —g
(3.14)

which we can calculate in practice, then 'R,„ is easily
obtained from

'R„D='R„,—'R„~. (3.15)

According to this prescription therefore, the R matrix
is calculated according to the formula

and
(x,, (-'I (v—v"')

I
p')

(Pl (v—~'") Ix '+'&

can be evaluated by direct numerical integration. The
term (p'I BIp) is an element of the level matrix A„„
defined by

(A ')'.= (P'I (&+&—E) IP&
= (p'I IIoyz(b) E+h

I
p)—

=(Ep' E)bp p+Vnn kn p, (—322)—
R= R~+oRD, (3.16)

where
b= V„„,)+2—z(b). (3.23)

and is used in the channel inversion (I—RL') ' to E~ and V». have already been defined in Eqs. (3.3)
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A similar relation gives the total elastic cross section
for neutron scattering:

(3.27)

200.

IOO

LIJ

00

I.O

&0~ 80' 904 l20' ISO~ I80'
C,M. ANGLE

where again c is the entrance channel. These total
cross sections can also be calculated by numerical
integration of the diGerential cross sections and this
provides a check that the differential cross sections
have been properly calculated.

The most convincing check of the program, however,
is the good agreement obtained with the Buck coupled-
equation program.

FIG. 1. Comparison of differential cross sections calculated by
the three diGerent methods for neutron scattering in a nonresonant
region with weak coupling. Three levels per channel are included
in the calculations, and the boundary conditions are a,=5.4 F,
b, =0. The elastic curve for method III is not shown since it almost
coincides with the curve for method II.

and (3.9), and from Eq. (2.17), we find

IV. CALCULATIONS

The calculations reported here were mainly done for
a nucleon incident on a C" target, which has a 2+ erst
excited state at 4.433 MeV. The potential parameters
used were as follows:

V, =52 MeV, ro' ——ro' .——1.267 F, (4 1)

V, ., =8 MeV, a,=u, ., =0.400 F.
The level matrix A may thus be evaluated by inversion
of (O' —E+Vr—() for nearby levels, '4 and the ampli-
tude 1, , is then obtained. This method will be referred
to as method III. The computation necessary for this
method is somewhat longer as the potential matrix
elements in Eq. (3.21) have to be calculated at every
energy. In the calculations described in the next section,
the real diagonal part of the potential in Eq. (2.26) was
used instead of an optical potential for simplicity of
programming, and the difference in potentials V—U'&'

occurring in Eq. (3.21) becomes merely the coupling
potential V„„pi.

A computer program was written to perform these
calculations. The uncoupled wave functions were
checked by comparison with other programs performing
similar calculations. The formation of the amplitude
T, , was checked from considerations of unitarity.
From Eq. (2.18) we can show that for a real R matrix,

C th, h) C

P sO,Q

—EXACT——METHOD I—-- METHOD II
———METHOD III
--—DWBA

The Coulomb potential was assumed to be that for a
uniform charge distribution over a sphere of radius E,.
Values of the deformation parameters used were P =0.1
for weak coupling or P =&0.4 for strong coupling. Since
these parameters were chosen somewhat arbitrarily, the
results are not expected to agree with experiment. In
fact these variables are not to be considered as param-
eters in this work. They represent a fixed potential for
which the exact elastic and inelastic scattering cross
sections can be calculated using Buck's program. The
aim of this work is to reproduce these cross sections us-

ing various E;matrix or level-matrix techniques, and
the parameters available to us in this attempt are the
E.-matrix radii a„ the boundary conditions b, in Eq.

Q I
T I'=1—

I
(e""'—T„)I'

c'Qc
(3.25)

300

This relation holds for the nearby level approximations
for methods I and II but not for method III. The quan-
tity (3.25) is called the transmission coefFicient T~ if c
is the entrance channel, " and by integration of the
differential cross sections one can show that the total
inelastic cross section is given by

Cl
E
200

I-

IOO

20
I-

2'.

IO

&t,oe. ' i.= 2 (2~+1)T
2k

(3.26) 0 30 60 9' 120 150 180
C.M. ANGLE

~ The matrix V is the transpose of V.
"There is only one entrance channel for a given (J,7I-) for a

spin-zero target and spin-~~ projectile.

FIG. 2. Differential cross sections for neutron scattering with
strong coupling. Three levels per channel are included in the calcu-
lations, and the boundary conditions are a,=5.4 F, b, =O.
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FIG. 5. Differential cross sections for proton scattering from a
medium-weight nucleus calculated by method II. Four levels per
channel were included in the diagonalization, and the boundary
conditions are a,=7.2 F, b, =0.

B. Resonant Region

Channel coupling can lead to resonance phenomena"
in the excitation function, and the potential parameters
given at the beginning of this section for protons provide
an example. Using the boundary conditions a,=5.4 F
and b, =0, an uncoupled d5~~ single-particle level arises
in the inelastic channels at 5.54 MeV. (This energy
includes the single-particle energy, plus 4.43-Me V
excitation of the target. ) This level can couple with the
2+ core to give levels with spins -,'+, —',+, ~+, —,'+, a d —',+ in
the compound system. With zero coupling, there is no
way these levels can be formed (nor can they decay),
so that they will not show up in elastic scattering, and
inelastic scattering will be zero anyway. As we turn on
channel coupling, the position of these compound levels
alters so that they are no longer degenerate, and they
show up as resonances in both the elastic and inelastic
scattering. The —,'+ and ~+ levels are still very weak due
to the very small /=4 penetrability, and we shall con-
sider only the -', +, —,'+, and ~+ resonances. An R-matrix
treatment must be able to give the positions and widths
of such resonances with reasonable accuracy.

FIG. 7. Inelastic excitation functions in a region of resonances
calculated by the three methods. Three levels per channel and
boundary conditions a,=5.4 F, b, =0.

C' (p p')C'

WEAK COUPLING

P *O.l

TRANSMISSION COEFFIClENTS

—EXACT —TWO Lev/CHAN
--- ONE Lev/CHAN —- THREE Lev/CHAN

In Figs. 6 and 7 examples of the elastic and inelastic
excitation functions are shown, and the three methods of
calculation are compared, each including three levels per
channel. In all cases good agreement is obtained for the
elastic case, method II being the best. For the inelastic
results, an interesting feature is the false peak at 6.25
MeV in the curve for method III.The DWBA excitation
function for this region shows a single large resonance
at 6.25 MeV, rising to over 100 mb/sr, representing a
one-step transition to the single-particle level which is
located at this energy. '~ The third term in Eq. (3.18) has
to remove this resonance as well as provide the correct.
resonances, and as we see from Fig. 7, it is only partially
successful in the attempt. Here again, method III would
be improved by using optical distorted waves, in which
case a far less pronounced DWBA resonance would
al ise.

For a more detailed investigation of these resonances
it is convenient to use the transmission coeKcients T~
defined by Eq. (3.25), which separate the different
resonances. In view of the difhculty of the false reso-
nance associated with method III we now conhne our
attention to methods I and II. Figure 8 shows the
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FIG. 6. Comparison of elastic excitation functions in a region of
resonances calculated by the three methods. Three levels per
channel are included and the boundary conditions are a, =5.4 F,
b, =0.

"S. Okai and T. Tamura, Nucl. Phys. 31, 185 (1962).

5.5 5.5 6.0 6.5 6.9

C.M. ENERGY (MeV)

. FIG. 8. Comparison of transmission coefficients calculated by
method II with varying numbers of levels per channel. Boundary
conditions a, =5.4 F, b, =0.

"The conversion to physical boundary conditions is responsible
for the shift from 5.54 MeV mentioned earlier.
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S P
level

2 1d5/2

2 2s1/2
0+ 1d5/2
0+ 2d5/2
2+ 3sq/2
2 1d y/2

2+ 2dg/2

2 1gg/2
2 1g7/2

2 2da/2

Energy

(MeV)

5.537
7.152
1.104

21.270
29.236
13.327
25.703
29.756
34.383
31.074

Reduced
widths

fgc

0.7672
—1.2496

0.7672
—1.6703

1.4744
1.2083

—1.6703
1.5573
1.8239

—1.4605

CoeKcient
M),„M),~'

0.9604 0.9224
—0.2296 0.0527

0.1552 0.0241
—0.0179 0.0003
—0.0151 0.0002

0.0127 0.0002
—0.0061 0.0000

0.0053 0.0000
—0.0029 0.0000

0.0026 0.0000

TmLE I. The composition of the —,'+ R-matrix level in the
two-level-per-channel approximation for the boundary conditions
a, =5.4 F, b, =0.
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FIG. 10. Transmission coeKcients calculated by method I
with three levels per channel and difFerent boundary conditions.
R-matrix radius a,=5.4 F, and the energy scale at the bottom is
in MeV.
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Fro. 9. Comparison of transmission coeKcients calculated by
method I with varying numbers of levels per channel. Boundary
conditions a, =5.4 F, 5,=0.

~+ level as an example. Table I lists the various single-
particle levels which contribute to the R-matrix level in
the two-level approximation with boundary condition
b, =o. As stated earlier, the one-level approximation
excludes coupling to the 2d5/2, 3s~/2, and 2da/2 levels over
20 MeV. The (0+,2d~~2) single-particle state at 21.27
MeV has a reduced-width amplitude I „about twice"
that of the (0+,1d»~) state at 1.104 MeV. Thus the small
2d5~2 mixture increases the reduced-width amplitude
pz, of the E matrix by about 25% in the entrance
channel, and the partial width F&„by about 50%%uz,

' hence
the much larger strength of the —', + resonance in the
two-level approximation.

' lt is interesting to observe that single-particle widths, for
boundary conditions b, =0, are very small for negative energies,
slowly increase as energy rises and reach a maximum perhaps
exceeding the Wigner limit at 20 MeV or so, and then fall oG to
an average value for higher energies. This behavior can be under-
stood by considering the shapes of the normalized wave functions
at various energies.

transmission coeKcients calculated by method II for the
three resonances, with varying numbers of levels. The
result of including only two levels per channel seems in
this case to be as good as including three levels per
channel. A marked deterioration occurs however if only
one level per channel is included. I.et us consider the
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C.M. ENERGY tMeV)

6.5 6.9

FrG. 11. Transmission coefficients calculated by method II
with one level per channel and difFerent boundary conditions.
R-matrix radius u, =5.4, and energy scale in MeV.

In Fig. 9 we consider the same resonances calculated
by method I, using different numbers of levels per
channel. We note that the results have deteriorated
somewhat from those obtained by method II. The
distant levels approximately included in method II can
only affect the inelastic transmission coefficients through
the surface matrix L'. Comparison of Figs. 8 and 9 thus
indicates the effect of coupling to distant levels at the
surf. ace.

The obvious way to reduce this coupling is to mini-
mize the matrix Lo. The resonances we are considering
are about an MeV or so above the inelastic threshold at
4.43 MeV. At these energies, the real part S. of I., is
approximately given by S,= —/ in the inelastic channels,
while the imaginary part I'„ the penetrability, is
already small. The matrix can be roughly minimized,
therefore, by choosing the boundary conditions b, = —l,
sometimes referred to as "natural" boundary conditions.
This choice is perhaps not so good in the elastic channel.
Nevertheless, Fig. 10 shows that method I, using three
levels per channel, can be improved near these reso-
nances by using "natural" boundary conditions.

In method II a good fit is obtained anyway if we
include three levels per channel, and variation of the
boundary conditions has very little effect on the trans-
mission coeKcients. In fact the difference is so small
that it is not. worth including a diagram to show it. For
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only one level per channel however, as we saw earlier,
the fit is not as good because of coupling via the coupling
potential to single-particle levels just above 20 MeV.
Naturally, choice of boundary conditions cannot be
expected to compensate for this effect and as indicated
in Fig. 11, the choice b, = —I does not improve the fit
significantly.

I.et us consider now the underlying R-matrix levels.
In order that we may use R-matrix calculations in a
study of nuclear structure it is desirable that the R-
matrix levels should provide a reasonably accurate
description of the physical states. However, despite
being able to fit the ~+ transmission coefficients with
widely differing boundary conditions (b,=0 as in Fig. g,
or L = —l), the structure of the corresponding Z-matrix
states is significantly diferent in the two cases, the
2Si/2 contribution being about 5% in the first case, and
20% in the second. This is perhaps to be expected since
the boundary condition b, =0 is not very physical. For
an isolated resonance the R-matrix state probably does
give a reasonably accurate description of the physical
state, provided that the boundary conditions are chosen
such that b.=S.(E), where E is the energy of the
resonance. This choice ensures that the R-matrix level
energy Eq lies within the resonance peak. If two or more
resonances with the same spin and parity partially
overlap one another however, the structure of the R-
matrix states may change considerably even with small
changes in the boundary conditions. This is not neces-
sarily a criticism of R-matrix theory however, since the
physical states themselves probably vary considerably
with energy, and depend on the reaction used to form
them.

We would also like to be able to obtain resonance
parameters, for example the total widths, from the R—

matrix levels. In the R-matrix one-level approximation,
the total width is given by I'= 2 P, I',yi„2. Taking the
-,'+ resonance as an example again, this formula leads to
a value of about 0.75 MeV (using the boundary condi-
tion fi,= l), which is—about three times the resonance
width as measured from Fig. 8. A similar effect occurs
for the ~~+ level. This narrowing of the widths is caused

by interference with nearby levels of the same spin and

parity. In particular there are two broad levels with
spins —,'+ and &+ at about 7.5 MeV. These levels arise
mainly from the (2+,2s&~2) single-particle level and are
fairly weak in the entrance channel, so that they do not
show up in either the elastic or inelastic scattering or the
transmission coeScients. In order to explain this
narrowing of the levels, we split the R matrix into two

parts, s Ro and Ri, corresponding to two sets of levels.
Using the notation of a reduced-width matrix defined in
connection with Eq. (3.7) one derives the relation"

' The second term here corresponds to the expression

g (o.~Xe„)A J,„
Xp

in Ref. 8, where a direct product notation is used.

(1—RLo)—iR (1 R,Lo)—iR

+ai'(&i—E—4) '~i, (4 2)
where

ei ——yi (1—L'Ro)-'

0.1 is the transpose of 0.1, and

(i——yiL'(I —ROL') —'yi .

(43)

(4.4)

The situation is especially clear if we consider only two
levels, one at energy E0 leading to R0, and the other at
E1 leading to R1. It is also convenient to choose bound-
ary conditions b.=S.(E&), so that in the neighborhood
of Ei, the single-level shifts d,ii = —P, S.yi, ' are zero.
Then the first term of Eq. (4.2) is a background term,
while the second term determines the resonance parame-
ters for the level at E1, and becomes

where

C1 61

Ei E+—d, i ~~il'i

11 I 11 ~1
+0 +1

8'1,
I 00

(4.5)

F0 F1o
$1=

4(Eo—Ei)'+ I"oo'

ri„=2 Z p„J',p„,.

The observed width for this resonance is then F1 which
is less than the single-level width F», since 81is clearly
positive. If the level at energy Eo is fairly broad (say
of the same order as the spacing Eo—Ei) this reduction
can be quite large, and there is a shift 6 of the resonance
towards E0. An algebraically similar type of analysis to
the above has been used in the discussion of giant
resonance theory where a quantity similar to —8'1 is
referred to as the spreading width. "The narrowing of
resonances situated in the tails of neighboring levels has
also been noted by Robson and Toutenhoofd. "Their
treatment shows that the resonance width is reduced by
a factor cos'(8,+p,).

'0 D. Robson and A. M. Lane (to be published).
~' D. Robson and W. Toutenhoofd, Australian J. Phys. l6, 3'?0

(&963).

V. CONCLUSIONS

The calculations presented show that R-matrix
methods can provide a practical means of calculation for
the coupled-equation problem, and that adequate nu-
merical accuracy is possible if enough levels are included.

Three methods have been described. In method I a
set of uncoupled states is diagonalized to form the R-
matrix states and distant levels are ignored. Good
qualitative agreement with exact results is found.
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Setter results are obtained if distant levels are ap-
proximately allowed for as in method II. In method III
distant levels are accounted for by using distorted waves
in the entrance and exit channels, and dealing with the
compound system through a level matrix rather than an
R matrix. Good agreement is again obtained except that
false DWBA resonances tend to appear unless the
distorted waves are generated by an absorptive potential.

As far as time of computation is concerned, the search
for uncoupled eigenstates and diagonalization of the
levels in methods I and II is the most time consuming
part. This means that for calculation of angular distri-
butions at a single energy, the methods described here
take longer than a conventional coupled-equation calcu-
lation by about a factor of 5. However, it is normally
desirable to fit angular distributions at more than one
energy, and if several energies are needed, the two
methods become equivalent as far as computation time
is concerned, since the eigenvalue search and diago-
nalization need only be done once. For the calculation
of excitation functions where 20 or more energies are
needed, an R-matrix type of calculation becomes faster.
In method III, the level-matrix inversion and calcula-
tion of potential matrix elements must be done at every
energy, and method III is therefore usually somewhat
longer.

It is usually necessary when fitting experimental data
to do a parameter search, varying the potential parame-
ters. Since the division of the interaction in Eq. (2.23)
into a diagonal and a coupling part is to some extent
arbitrary, it is possible when varying the parameters to
keep the diagonal part fixed and vary only the coupling
part. This would mean that the uncoupled eigenvalue
search need only be done once, so that only the diago-
nalization would have to be repeated for different sets of
parameters.

It is worth mentioning that methods I and II may
also be done by a level-matrix technique. The Green's
operator in Eq. (2.11) is evaluated as in method III in
terms of the level matrix in Eq. (3.22). The numerical
results of such a calculation are identical with those
obtained by diagonalization and formation of the R
matrix. The level-matrix methods take longer, however,
if many energies are involved, and in addition, the
approximate inclusion of distant levels is more natural
and more convenient in the R-matrix approach. From a
calculational viewpoint therefore, the R matrix is pre-
ferred to the level matrix, although this is at variance

with the preference for the level matrix expressed re-
cently by Mahaux. "

We note also that the R-matrix technique provides us
with a set of concrete levels with definite energies and
widths which are useful in explaining the structure of the
compound system. For isolated resonances, the R-
matrix level gives a good description of the physical
state if boundary conditions are wisely chosen. When
levels of the same spin and parity interfere with one
another, the analysis of the situation is more difficult
and R-matrix single-level parameters do not agree with
the resonance parameters. Most theories of nuclear
reactions have some diQiculty in dealing with such a
situation. As we have seen from our calculation, this

difhculty in parametrizing the physical levels does not
prevent us from calculating the excitation functions
accurately over the corresponding resonances.

We have confined our attention solely to real po-
tentials. This has the advantage that the uncoupled
eigenvalues are real and makes the search for them
easier. If it is desired to use complex optical potentials
we must either search for complex eigenvalues, or
absorb all of the complex parts into the coupling po-
tential, so that V~;,g is still Hermitian. In either case,
we then have to diagonalize a non-Hermitian matrix
which will lead to complex R-matrix energies. In this
case, it may be preferable to revert to the level-matrix
formulation mentioned two paragraphs back, since
the level-matrix inversion is complex even for real
potentials.

An alternative calculational technique can also be
valuable in providing new theoretical modifications to
the calculation. For example, antisymmetrization can be
dealt with in the R-matrix approach by using antisym-
metric R-matrix states. It is also possible to use various
diGerent nuclear models to describe the target nucleus.
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