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The room-temperature Raman spectra of CsCl, CsBr, and CsI have been computed from a simple, com-
bined density-of-states approximation. Calculations have been made for four different model potential
functions and compared with experiment in the cases of CsBr and CsI. In this way it is found that one of the
variations, called the DD( —) model, is the most satisfactory. The agreement with the observed spectra
is surprisingly close when one considers that no allowance has been made for variations in the elements of the
Raman polarizability tensor.

I. INTRODUCTION

'HE advent of highly monochromatic laser sources
has led to a renewed interest in the study of

Raman scattering and, in particular, raises the pos-
sibility of de6nitive measurements of second-order
spectra. This is particularly desirable in the case of the
alkali halides, since, with the exception of the work of
Welsh, Crawford, and Staple' on NaCl, the measure-
ments made on these crystals using conventional
mercury arc sources leave much to be desired.

As an obvious stimulus to such de6nitive measure-
ments it is the purpose of this paper to present computed
theoretical second-order spectra. We have in fact
already done this in an earlier paper, ' but the results
given there were only appropriate to 0 K, and it is by
no means certain that these can be directly compared
with experimental spectra taken at room temperature
(300'K). Thus the object of this paper is to present
computed room-temperature spectra, and, in this, it is
complementary to our earlier paper. ' In addition, the
number of theoretical models considered for each salt is
greater, and another object is to decide which model is
most realistic. In this respect the present paper also
complements recent work' on the lattice dynamics and
speci6c heat data of these compounds. In this work
we find that it is not possible to decide unambiguously
on the basis of specific heat data between two of the
four theoretical models we use, and it is in the hope
of resolving this question that we turn to second-order
Ram' spectra.

The second-order Raman e8ect is the inelastic scatter-
ing of photons by a crystal with the creation or destruc-
tion of two phonons, or the destruction of one phonon
with the creation of a second. In all three cases the
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phonons involved are constrained by crystal mo-
mentum conservation to have equal and opposite wave
vectors q and —q. Moreover, the two processes involv-
ing phonon destruction can only take place at 6nite
temperatures.

In the case of the alkali halide crystals, where the
lattice sites are centers of inversion symmetry, second-
order scattering is the lowest-order allowed Raman
process.

II. METHOD OF CALCULATION

Strictly speaking, the Raman scattering cross sec-
tion is a product of polarizability tensors and a density
of 6nal states, but we shall make the same simplifying
assumption as we made in our earlier work. ,

' namely
that the polarizability tensors are constants. How
justi6able this is, is not known, and we hope in a later
paper to present the results of calculations made with
specific polarizabilities; but, for the present, we sha. l
continue to assume that the observed spectra are
determined by the densities of 6nal states.

Thus we compute a combined density of states p(co)
(omitting difference bands) given by

AM f1~2&2

dco(rt, &+1)(n,' &+1)

)(b(co—tots —co; s)+rtssrts' '8(co+cess+co,' &),

where the e's are phonon occupation numbers appro-
priate to 300 K and coP is the angular frequency pf
the phonon wave vector q belonging to the jth branch
(j= 1 to 6). In practice we can only deal with a discrete
sample of q vectors and the sample used is the same
as that employed in our other work" consisting of
64000 points in the 6rst zone. In each case, we 6rst
construct a histogram of p(co) with d&o deliberately
chosen to be too small, then to the irregular steps so
obtained we 6t a sequence of Gaussians, each having the
same height as a given step. By adjusting the common
half-width of the Gaussians, a continuous smooth
702
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FIG. i. Combined densities of
states for all four potential options
for CsC1.
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curve can be obtained. We have used this technique
elsewhere' and found that it reveals considerably more
detail than does simple histograrrUIiing.

III. MODELS USED

The models used in the present work. are described
in detail elsewhere' and we only summarize their
features here.

Four variations have been considered for each com-
pound. In all four cases it has been assumed that the
short-range repulsive interactions, which hold the ions
apart, are effective between nearest neighbors alone.
The differences lie in the way that the ionic polariza-
tion, and thus the dipole-dipole part of the dynamical
matrix the roots of whose eigenvalues give the phonon
frequencies, has been treated.

In the erst variation, the rigid-ion (RI) model, the
ions are assumed to displace as rigid point charges.

In the second variation, the polarization-dipole (PD)
model, the ions are allowed to polarize and are assumed
to acquire electronic dipole moments at their centers
which are given by the products of the e6ective fields
at these points and the self-consistent polarizabilities.

In the third variation it is assumed that, as well as
exhibiting a field-induced polarization, the negative
ions are also deformed by the short-range repulsion
and thus acquire additional dipoles —the deformation
dipotes These dipo. les are assumed to experience the

6elds at the negative ion centers, and we refer to this as
the DD(—) variation.

The last variation is alniost the same as DD(—)
except that the deformation dipoles, although still
confined to the negative ions, are assumed to experience
the fields at the positive ion centers. This is the DD(+)
variation. It is these last two variations which are hard
to distinguish between on the basis of specific heat
data, ' even though they lead to very diferent frequency
spectra. Consequently one may also hope that they will

produce markedly different combined densities of states,
and if this is the case, to distinguish between them by
comparison with observed second-order Raman spectra.

The input parameters for the various calculations
have been listed elsewhere, ' the constants being those
appropriate to room temperature (RT).

IV. RESULTS

In Figs. 1—3 we show the resultant combined densities
of states for all four options, 6rst for CsCl, then for
CsSr, and 6nally for CsI. Then in Fig. 4 we show the
observed second-order Raman spectra of CsBr 4 and
CsI.' The corresponding spectrum of CsCl has recently

4A. I. Stekhanov, A. P. Korol'Kov, and M. B. Eliashberg,
Fiz. Tverd. Tela 4 1290 (1962) LEnglish transl. : Soviet Phys. —
Solid State 4, 945 (1962)j. See also P. S. Narayan, Proc. Indian
Acad. Sci. 42A, 303 (j.955).

N. Krishnamurthy and R. S. Krishnan, Indian J. Pure Appl.
Phys. I, 239 (1963).
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FIG. 4. Microphotometer records
of the second-order room-temperature
Raman spectra of CsBr (Ref. 4) and
CsI (Ref. 5). The various distinct
features of the combination bands are
labeled to correspond with those in
Figs. 2 and 3.

been measured, ' but is not reproduced in this reference,
and we shall therefore confine our discussion to CsBr
and CsI. For purposes of comparison we have labeled
the various observed features by a, b, etc., and their
positions are also shown on all the computed spectra
of Figs. 2 and 3. Any feature marked with a P is either
doubtful or a possible third-order line.

A. CSBr

The main features of the observed spectrum4 are
the peaks a, 6, t,", and e. Of the computed spectra only
:he PD curve shows a strong peak at a, but the re-
mainder of this spectrum shows little resemblance to
the observed curve; in particular the strong peak e is
missing. The RI spectrum obviously bears no re-
semblance to the observed spectrum, and one is left
to choose between DD(+) and DD(—). Of the two,
DD(—) seems to bear the closest resemblance to the
observed spectrum, reproducing the 6nal strong peak t,'

and the shoulder d on its low-frequency side remarkably
well. At the low-frequency end, both spectra have
weak peaks near the position of u and both have peaks
near the b, c doublet. (It should be said that the ob-
served doublet structure is questionable; all that can
really be said is that there is a single broad peak. )
However, both computed spectra show a strong peak
on the low-frequency side of the b, c doublet which is
unobserved. In the case of the DD(—) spectrum this is
a TO(X)+TA(X) combination. It is quite likely that
this occurs at too low a frequency because of our failure
to include second-neighbor short-range interactions in
the dynamical matrix, which would tend to raise the
TO frequency.

Thus, on balance, one can say that the observed
spectrum is best reproduced by the DD(—) model,

A. I. Stekhanov and A. P. Korol'Kov, Fiz. Tverd. Tela 8,
920 (1966) LEnglish transl. : Soviet Phys. —Solid State 8, 734
(1966)g.

and bearing in mind that no allowance has been made
for variations in the polarizability tensors, the agree-
ment with the observed spectrum is really quite close.
The probable reason for this has been discussed else-
where. ' In this reference a detailed critical point
assignment of the various computed features has been
made, and this reveals that the various peaks are
generally superpositions of critical points coming from
several symmetry points in the first zone. For this
reason one expects that variations in the polarizability
tensors will tend to be averaged out.

In this case the observed spectrum' is somewhat
better, and the main features of the spectrum are a
peak a and two pairs of very close doublets b, c and d, e

of about equal intensity. The RI spectrum completely
fails to reproduce this doublet structure, with the 6rst
doublet only appearing as weak structure on the low-

frequency side of a strong single peak. The PD spectrum
is even worse with the doublet structure totally absent.
The DD(+) spectrum is a little better, giving some-
thing like b, c but failing to reproduce d, e. The DD(—)
spectrum, on the other hand, is very much better giving
both doublets reasonably well. Once again the first
strong peak of the computed spectrum, the TO(X)
+TA(X) combination, seems to occur at too low a
frequency, and again this is likely to be due to the
neglect of second-neighbor forces. Also, the peak a is
not well reproduced. However, on balance, one can say
that the best 6t to the observed spectrum is provided
by the DD(—) model.

V. CONCLUSION

Ke have presented calculations of the room-tempera-
ture second-order Raman spectra of CsCl, CsBr, and

7 J. R. Hardy, in Ehonons, edited by R. W. H. Stevenson
(Oliver and Boyd, Ltd. , London, 1966), p. 245.
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CsI. These calculations have been based on a simple,
combined density-of-states approximation. For CsBr
and CsI comparison with experiment leads to the con-
clusion that, of all four model potential functions we
have used, the DD(—) variation is the most satis-
factory. For this variation the densities of states re-
produce the observed spectra quite closely. This sug-
gests that the behavior of the Raman polarizability
tensor is of secondary importance in determining the
observed spectra, but we hope to test this in the future
by making calculations with explicit forms for the ele-
ments of this tensor included.

The computed spectra show considerable one detail,
and it would be highly desirable to have available for

comparison really de6nitive experimental spectra taken
with the highest possible resolution. It is also note-
worthy that the theory predicts a great deal of sharp
fine-structure in the low-frequency region, a region
which is obscured in the experimental spectra by the
tails on the exciting lines. One hopes that with laser
sources it should be possible to examine this region.
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Results of numerical calculations of energy transport in one- and two-dimensional lattice models are
reported. Nearest-neighbor harmonic or anharmonic forces were used in randomly disordered mixtures of
two different atomic masses. Opposite ends of the lattices were in contact with thermal reservoirs, which
transfer energy impulsively at random times to the end atoms. A computer was used to solve the equations
of motion of the lattice and to compute the heat current and thermal gradient. The thermal conductivity
obtained shows the expected dependence on alloy composition. Except for nearly monatomic lattices, the
calculations give larger heat conductivities for anharmonic lattices than for harmonic ones. A qualitative
interpretation of these results, dependent upon the nature of the normal modes of disordered crystals,
is given.

I. INTRODUCTION
' 'N this paper we report the results of some numerical

~ experiments which we have performed on certain
simple lattice models. Our aim has been to study the
effects of anharmonicity and of disorder on thermal re-
sistance, separately and in combination. Our principal
result is that an increase in anharmonicity usually
produces a decrease in thermal resistance.

According to existing theories of thermal conduc-
tivity, ' which stem from the ideas of Debye' and
Peierls, ' thermal resistance is caused by scattering of
phonons. Impurities and anharmonicities provide two
independent scattering mechanisms. One would there-
fore expect, and indeed existing theory' predicts, that
their contributions to the thermal resistance should be
more or less additive.

*Work performed under the auspices of the U. S. Atomic
Energy Commission.
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Kirtland Air Force Base, pew Mexico.' J. Callaway, Phys. Rev. 113, 1046 (1959);P. Carruthers, Rev.
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P. Debye, Vortrage Uber die Xinetische Theoric der Materie
Nnd der ElektrisiMt (Teubner, Berlin, 1914).' R. E. Peierls, Ann. Physik 5, 1055 (1929).

Our results are not consistent with this prediction,
except possibly in the limit of very small impurity con-
centration, where the impurities and the anharmonicity
may be considered to be perturbations on the ordered
harmonic lattice. In this limit the idea of a phonon gas
with weak impurity and phonon-phonon interactions is
valid, because the lifetimes of the phonons are long com-
pared to their periods.

A Boltzmann equation for the phonon distribution
function, with collision terms arising from anhar-
monicity and from impurities, leads to expressions for
the thermal resistance which increase with increasing
anharmonicity. We believe that the opposite behavior
of our numerical results indicate that the phonon gas
is a useful concept only for very low impurity
concentrations.

Our approach, which is purely classical, uses a specific
model for the lattice in interaction with thermal reser-
voirs at the two ends. The model and the method by
which we numerically solve the equations of motion for
the system until a steady state is reached are described
in Sec. II.

This numerical experiment yiekls much raw data,
namely, the position and velocity of each atom in the


