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Electrostriction

J. GRIND LAY

Physics Departrrtertt, Vnfoerszty of Waterloo, Waterloo, Orttarso, Calada
(Received 20 March 1967)

The form of the lowest-order electrostrictive effect in crystals is investigated using a nonlinear theory of
the elastic dielectric, described in a previous publication. We find that the electrostrictive coeKcients in the
equation of state for the applied stress (a) has one form for a dielectric-vacuum interface and another for a
dielectric-conductor interface, and (b) is different from. the analogous coefficients in the equation of state
for the electric field. These differences are shown to be numerically significant in the case of barium titanate.

I. INTRODUCTIOÃ

~ I.ECTROSTRICTION is the nonlinear coupling of
- ~ the elastic and dielectric properties of an insulator.

The standard' development of the theory of this eHect
is obtained by adopting the field equations and bound-
ary conditions of the linear theory and adding nonlinear
terms to the equation of state. Recent work' 4 on the
nonlinear theory of the elastic dielectric shows that this
procedure is not generally valid. (The form of the non-
linear field equations and boundary conditions and the
arguments in the "nonlinear" energy density cannot be
obtained from an inspection or extrapolation of the re-
sults of the linear theory. ) In the present paper we
investigate the form of the lowest-order nonlinear equa-
tions of state ba,sed on the analysis of the elastic dielec-
tric presented in I. We find that the electrostrictive
coefficients in the equation of state for the applied stress
(a) have one form at a dielectric-vacuum boundary and
another at a dielectric-conductor boundary, and (b)
differ from the analogous coeKcients in the equation of
state for the electric field. In the second part of the
paper these results are applied to the case of barium
titanate. We find here that these differences are
important.

II. EQUATIONS OF STATE

A. Nonlinear Equation of State

The deformation and displacement of an elastic dielec-
tric is completely described by two fields: (a) the set of
position coordinates Xtr(lf. = 1, 2, 3) specifying the posi-
tions of the volume elements of the body in some initial
configuration, and (b) the analogous set of position co-
ordinates x,(i= 1, 2, 3) describing their positions in the
final configuration of interest. We shall suppose that
the components of each field are measured in the same
rectangular coordinate system. For a continuous body
there exists some functional relationship x,=x;(Xrc).
We denote differentiation with respect to the initial

'P. W. Forsburgh, Jr., in Handblch der Physik, edited by S.
Fliigge (SpriIIger-Verlag, Berlin, 1956},Vol. XXVI.' R. A. Toupin, J. Rat. Mech. Anal. 5, 849 (1956); Arch. Rat.
Mech. Anal. 5, 440 (1960).' A. C. Eringen, Int. J. Eng. Sci. 1, 127 {1965).

J. Grindlay, Phys. Rev. 149, 637 (1966), referred to in the text
as I.

position coordinates X~ in the following manner:
ctfjrlXrr= f, rr. ' The deformation gradients are x, ir.
The displacement suffered by the volume element ini-
tially at X; is x;—X;.=u,.; here ri; is the displacement
vector and N, .~ the displacement gradient. The strain
tensor rtrrr, is defined rtrrr, = ,'(x;, rrx;, r-, Ster, ), w—here in
this and all later expressions the repetition of a sub-
script denotes a summation over the values 1, 2, 3. 6~1.
is the Kronecker delta, 6~1,——1, E=L; 8~1,——0, E&L.
From the definition of pzl. , we can easily show that

t&r 2 (ttK; I+ttL; IC+ sec; Ktti; L) ~

In I we deduced the following relations:
(i) At the surface of the dielectric [see Eq. (33) in
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(ii) within the dielectric Lsee Eq. (25) in I]
8

E.-=—
8D;

(3)

where t, is the applied mechanical stress, lf = [p(x, , tr, D;)]
the dielectric energy density, m, the unit vector parallel
to the outward normal at the dielectric surface, E, and
D; the electric field and the electric displacement field,
and ep the permitivity of free space. The dielectric and
free-space values of the fields E;, D; are distinguished,
where necessary, by the superscripts V and A, respec-
tively. We shall refer to the quantity in the square
brackets in Eq. (2) as the Maxwell stress. Since x, , rc
=N,

, re+6;rc, we have from Eq. (2)
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' In I we used the semicolon notation for differentiation with re-
spect to both X~ and x, .
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We set nomial representation for f:7

(
~
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sHKLMN rfKLrrMN+HKLM rfKLIIM

+ HKL IIKIIL+H rr'+HKL 'gKLII

+HKL rrKLa+ g(IIK,a), (6)

X(D,v D,")—S,,=T;;. (5)

The 6eld T,; is defined only on the surface of the dielec-
tric and has the following properties: (a) T,;n, =t;;
(b) at any point on the surface at which the normal is
parallel to one of the coordinate axes, xI, say, e,= bj„and
hence Tr„=t;, i.e., Tr,s is a normal stress and Tr, „(i&k)
a shear stress. Thus T,.; possesses some of the properties
of the stress-tensor field of the standard linear theory.
However, in general T,,/ T;,.

Equations (3) and (5) can be regarded as equations of
state, in the sense that they relate the applied stress and
the electric Geld to the displacement gradients and the
displacement field (D;). However, the latter relation,
Eq. (5), differs considerably in form from the usual
stress-strain relation characteristic of the linear theory.
It is the object of this paper to examine these diGer-

ences and to determine under what circumstances they
could be significant in the special case of the crystal
barium titanate. We shall base our analysis on an ap-
proximation scheme suggested by the nonlinear be-
havior of real crystals, principally barium titanate. It
appears that a good first-order nonlinear approximation
to the equations of state is one in which (a) the applied
stress components are represented by the sum of two
polynomials, one of order unity i.n the displacement
gradients N~. I, and the other of order two in the com-
ponents D, , and (b) the electric-field components are
represented by the sum of three polynomials one of order
unity in Nz, L,, one bilinear in Nz, I, and D; and one of
arbitrary order in D;. (See, for example, Jona and
Shirane ')

Ayyroximation

We assume that the energy density p(x, , K,D;) can be
represented by a polynomial in the arguments x;,~, D;.
Then the demands of invariance with respect to changes
of axes (see I) lead to the result that the polynomial
representation for f is reducible to a polynomial in the
ten arguments g~l, , IIIf-, = x;., ~D, , and a=D;D, .

From an inspection of Eqs. (3) and (5) and the defini-

tions of p&&, II+, and c we can verify that we get the
polynomial representation for T,; and E; described at
the end of the previous section from the following poly-

F. Jona and G. Shirane, Ferroelectric Crystals (Pergamon Press,
Inc. , Oxford, England, 1962).

where g is a polynomial containing terms of order two
and higher in u and of order three and higher in II~. The
H~l. ~... 's are tensors characteristic of the dielectric
of interest. Since they are coefhcients in a polynomial,
each one is invariant under certain interchanges of sub-
scripts; for example, H~l. '=H~~'. In addition, the
H~L, ~~... are invariant under the operations of the
material symmetry group of the dielectric. ' While the
tensor p~l. is symmetric, it is convenient in algebraic
manipulations to use the convention that g~L, and ql, ~
are treated as independent variables. In the first-order
nonlinear approximation described above we have from
Eqs. (3) and (6)

EM =H'KLMSKL+ (HMN'+2H'"oMN) DN

+2$HKLMN +HKL bMN+s(HML bNK

dgp
+HLN'&MK) )uKLDN+, (7)

dD3II

&L;r=HKLMN'SMN+HKLM'DM

+3HKLMN +HKL ~MN

s (HML'"oNK+HLN'oMK)]DMDN, (8)

where we have dropped the semicolon notation, i.e.,
SK L ~ SKL and g = g(IIK, G)

~

SKL=0.
Consider the Maxwell stress. From the boundary con-

ditions e,,r, (E;A—E )rsi ——0 and (D," D)n; =0—
(where e;,r, is the Levi-Civita density), the free-space
relationship D,"=esE,A, and (7), we can express the
nine components D,~, E;~, E;~ in terms of the cornpo-
nents D,~ and n~g. Thus the leading term in the
Maxwell stress is a quadratic function of I~I, and D;~.
However, within our approximation scheme we neglect
all but the quadratic terms in D,~ and hence we set

-D.AD.A

26p
/+ 1(E.v+E A)(D, v D A)

(9)

where the J~~ are functions of the H~l. ~... 's. We shall

7 No terms linear in g~L, and II~ appear in this representation be-
cause we assume that in the initial configuration or state the
electric field, the displacement field (0), and the applied stress field
are identically zero. In the case of crystals in a ferroelectric phase
the state satisfying these conditions is unstable. LSee L. D. Landau
and E. M. Lifshitz, Electrodynamics of Continuous Media (Perga-
mon Press, Inc. , Oxford, England, 1960), Chap. 2.j However, we
know of no physical reasons against the use of such states as initial
states.
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Maxwe11 Stress

%e now determine expressions for the JMN in terms
of the coefficients F7~J„3 and II4. Consider a point on the
surface of the dielectric. For simplicity let the normal
to this point be parallel to the x1 axis. From the bound-

ary conditions for D;, E; we have D1 =D1, Ii 2 =E2,
and E =Esv. Since D = eoE " then El~ =D /eo,
D2 ——epE2", and D3 = epE3 . To calculate JMN we need
only consider EMr as a linear function of DM~ (see
above), that is IiMv=(HMN8+2H48MN)DN". See Eq.
(7). Setting (HMN3+2H4ft MN) =KMN and combining the
results listed above, we get

(Dl ) KMNDM DN
JMNDM DN

26p

and hence

~p

[K234K2N+K3MK8N]DM DN
2

+[K23ID2DM+K33ID3D M] i

Jl1 Kll eo(K12 +K13 )
2 6p

J12 2 so[K12K22+ K13K285 q (11)

J22= 2[K22—eo(K22 +K28 )]
J28= 2[K28 OOK23(K22+K82)] ~

J38, J18 can be generated from J22, J12 by replacing 2

with 3.

derive an explicit expression for JMN in the following
section.

Combining Eqs. (5), (8), and (9), we get

TKz, =HKLMN'NMN+HKLM'DM

+[HKI MN +HKL ftMN

+ 2 (HML ftNK+HLN ftMK)

JMNftKL]DM DN ~ (10)

From Eqs. (7) and (10) we identify the quantities
HKz, MN', HKz, M', and (HMN'+2H'8MN) as the elastic
compliance, the piezoelectric coeKcient, and the dielec-
tric permeability, respectively. The quantities in the
square brackets in these equations play the role of elec-
trostrictive coefficients. However, they differ in two re-
spects from their counterparts in the standard theory.
First of all, these quantities, by inspection, are not sym-
metric under an interchange of the subscripts E and L;
hence (i) TKLWTLK and (ii) the electric 6eld compo-
nents are functions of the displacement gradient tensor
NKL and not merely the symmetric tensor 2(NKL+uLK),
the so-called in6nitesimal strain. Secondly, the electro-
strictive coefficients appearing in the relation for T~l,
diGer from the electrostrictive coeS.cients in the relation
for EM. The difference is JMNS~L, .

III. BARIUM TITANATE

OI, Material Symmetry

When the material symmetry group of the dielectric
is the crystallographic point group OI„ the HzI, M. ..
appearing in Eq. (6) have the properties listed below. '
The axes used here are the standard cubic crystallo-
graphic axes:

(lg Hi]]11 = Pi. 2222 =LV3838 ) H1]22 = H2288 = && 3311

H2828 H3181 H1212 ~

The remaining H~L, MN"s are identically zero.

(ii) HKzM =0 all E I, M;
(iii) Hll H22 =H83 & H12 H28 H31 =0i

+11 H22 H83 ) +12 H23 H31 =0 )

(lv) Hllll H2222 H3838

» 1122 H1188 H2288 ~ 3822 && 8811 && 2211 )

H2328 H1818 H1212 ~
5 5 5

The remaining H~L, MN"s are identically zero.
Using these results we find that Eqs. (7) and (10)

take the form

+1 KD1+24flllllD1+2I412(2422+2483)D1

+g«[D.( -+ -)+D( -+")3, (»)
Tll Cll Qll+C12 (2422+ N83)+ttll(D1 )

+q», [(Dsv)'+ (D8')'j —J vNDMvDN~, (13)

T12 c44 (2412+121)+g44DI D2 etc.

where

C11 =H1111 ) C12 H1122 ) C44 H12]2

K= Hll'+2H4,

tIll (Hllll +Hll +Hll ) II12 (H1122 +Hll ),
tl44 (H1212 +Hll ) ~

Thus for 0& symmetry Tzl, ——Ti.z and the components
EM are functions only of the symmetric part of the
tensor N~~.

For this material group I~:„=~b... and hence

1
J11=- ——a )' J22= J33=-,' If:—~pif.

"
)

2 fp
J12=J28= J31=0

We recall that the expressions for JMN in Eq. (11)hold
for a surface point at which the normal lies parallel to
the x1 axis. Hence on substituting the above results into
Eq. (12), we find that at such a, point the normal stress

' Most of these results were obtained from tables; see, for ex-
ample, H. B. Huntington, in Solid State Physics, edited by F.
Seitz and D. Turnbull (Academic Press Inc. , New York, 1960),
Vol. 12. H~z, ~~' is not tabulated and we applied the "direct-
inspection method" PF. G. Fumi, Acta Cryst. 5, 44 (1952)g using
the generators of 08 t R. R. Birss, Reports on Progress en Physecs
(The Institute of Physics and The Physical Society, London,
1963},Vol. 24$ to obtain the results listed above.
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satisfies the relation Barium Titanate

Tll Cll Nll+C12 (2822+2888)+ 2gll+~ it ——
I

(Dl")
2 4 epf—

+2[2V»+(eo"—~)j[(D ')'+(D ')'j (15)

We have previously' considered the electrostrictive
properties of a thin dielectric slab with OA symmetry,
placed between tightly fitting plates of a condenser. "
In the present notation, the results obtained were

T11 C11 N11+C12 (N22+ @88)

+2[2q12—i~+ cps'j(Dsv)' (16)

at a dielectric-vacuum boundary with D» ——D2~=0,
and

Tll Cl1 ttll+ C12 (122+188)+ 2 [2gll+ &)(Di ) (17)

at a dielectric-conductor boundary with D»~=D2~=0.
Equation (16) is a special case of (15). From (15) and
(17), we conclude that the electrostrictive coefficients
appearing in the relation satisfied by the applied normal
stress vary, having one form for a dielectric-vacuum
boundary and another for a dielectric-conductor bound-
ary. It is clear that these conclusions also apply in the
general case in which the surface normal does not lie
parallel to the x» axis. The form of the coefficients in
the general case can be obtained using the standard
analysis associated with changes of coordinate axes.

J. Grindlay, in Proceeditsgs of the Iriterrtotiottal Meeting oti
Ferroelectricity (Institute of Physics of the Czechoslovak Academy
of Sciences, Prague, 1966), Vol. 1, p. 433.

'0 The analysis presented in I does not apply to the case in which
the dielectric is in contact with a conductor.

In the case of zero applied stress, " the equation of
state for the applied stress provides a relationship be-
tween the spontaneous strain and the spontaneous
polarization in terms of the linear and the electrostric-
tive coefficients. In Ref. 9 we used this fact to calculate
the electrostrictive coefficients for barium titanate at
room temperature. We found that q»»= —1.5X10"
mks and q»2=0. 15&(10"mlles. These results are in rea-
sonable agreement with the values obtained from other
data. ' For comparison we note that 1/ep ——11X10"mks
and s = 6.6X 10'(T—Tp) mks, where Tp= 110 C."
Hence we may conclude that for barium titanate at
room temperatures the Maxwell stress is significant at
a dielectric-vacuum interface and not at a dielectric-
conductor interface.

Since 1/ep plays a numerically significant role in the
electrostrictive properties at a dielectric-vacuum inter-
face and does not appear in the case of a dielectric-
conductor interface, the form of the relationship be-
tween the spontaneous strain and the spontaneous
polarization depends critically on the nature of the
boundaries of the dielectric specimen of interest. Be-
cause of this and because Kay and Vousden" do not de-
scribe the nature of the boundaries of the specimen used
in their experimental determination of the spontaneous
strains, we must regard the values for q»», q»2, deduced
in Ref. 9 from these strain values, as merely an order of
magnitude estimate.

"M. E.Drougard and D. R. Young, Phys. Rev. 94, 1561 (1954)."H. F. Kay and P. Vousden, Phil. Mag. 40, 1019 (1949).


