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Impurity-Induced Infrared Absorption in a Monatomic fcc Lattice*
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The infrared absorption by a low concentration of defects in a monatomic fcc lattice has been calculated.
The host crystal was assumed to be composed of uncharged atoms interacting only with their nearest
neighbors by means of central harmonic forces. The substitutional-defect atom differed from the host atoms
in its mass, nearest-neighbor force constant, and eRective charge. Calculations were made using effective-
charge parameters based on a rigid, charged defect and uncharged host atoms and on an uncharged, de-
formable defect and deformable host atoms. Both the localized-mode frequencies and the band-mode ab-
sorption coeKcient were expressed in terms of the Green's functions of I.ifshitz. The real and imaginary
parts of the 12 necessary Green's functions of the perfect crystal were calculated assuming rigid atoms.
The vectorlike localized-mode frequencies were calculated for defects with various masses and force con-
stants. The coeKcient of absorption by band modes was calculated as a function of frequency for defects
with various masses, force constants, and effective charges. The model gives fair agreement with exploratory
absorption measurements on presumably applicable systems, i.e., Ar: Kr and Ar: Xe.

STATEMENT OF PROBLEM

HERE are two important selection rules govern-
ing the one-phonon absorption of light by a

perfect crystal. Only those normal modes with the fre-
quency and wavelength of the incident light can be
excited. This means that of the 3Ã modes of vibration,
only a long-wavelength mode of each transverse-optical
branch will absorb. A monatomic fcc crystal has no
optical branches and none of the modes in the acoustical
branches will satisfy these selection rules. Any departure
of the lattice from translational symmetry, though, will
result in the breakdown of the selection rule requiring
the phonon and photon to have the same wavelength,
and both localized modes and acoustical-band, modes of
the appropriate point symmetry will contribute to the
absorption. We have calculated. such absorption for the
following model using Green's-function techniques. The
host crystal is composed of uncharged atoms arranged in
a fcc lattice. These atoms interact with one another by
means of nearest-neighbor, central harmonic forces.
Charged and uncharged defects are included substitu-
tionally. These defects have a different mass than the
host atoms. The force constant describing the interaction
of the defect with its nearest neighbors is also different.
The concentration of impurities is assumed to be low.
Although a rigid-atom approximation is used to deter-
mine the dynamics of the imperfect crystal, the effective
charge of the normal modes is estimated using a shell
model of the atoms as well as using a charged, rigid-
defect model.

LOCALIZED MODES

In the harmonic approximation, the absorption coefII-
cient due to a localized mode is an isolated 6 function
of frequency. The formalism for determining these
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eigenfrequencies has been developed by Lifshiftz' and is
outlined. below in order to establish notation.

The Green's-function technique gives an exact solu-
tion to large, local changes of an otherwise solvable
problem. Suppose we know the solutions of the dynam-
ical equations of an unperturbed lattice. In the harmonic
approximation, for a Inonatomic lattice, these equations
can be written

1
C'~p Xpp —COg Xa i

3I ~, e

where M is the atomic mass and co, the frequency of
mode a. The matrix X defines the transformation from
atomic displacement coordinates to normal coordinates.
Speci6cally, X & relates the displacement of the /th
atom in the e direction to the amplitude of normal mode
a. We wish to find the motion of an imperfect lattice
whose dynamical equations can be written

—$P e.P"'YPi'+ P a.P"VP, 'j=~b'i'„, . (2)
M &', a &'. p

Using our knowledge of the solutions of the unperturbed
crystal, Eq. (1), it is possible to obtain a more con-
venient dynamical equation for the imperfect lattice,

Yb= G(rdb2)aYb, (3)
where

X$~ X)r O. r

G..(f,,P; cu') = [(3Ee~2I—e)—'].."'=Q
CO GO a

Equation (4) defines the Green's function of any har-
monic lattice. We will be particularly interested in the
Green s function of a perfect lattice, i.e., a lattice with
translational symmetry. For a perfect lattice it is well
known that'

Xi '"——(ME) '"Z (ir j)p'~ u&'

' I. M. Lifshitz, Nuovo Cimento Suppl. 3, 716 (1956).
~A. A. Maradudin, E. W. Montroll, and G. H. Weiss, Solid

State Phys. Suppl. 3, 30 {1963).
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where the eigenstates a are now conveniently labeled
by a wave vector k and a branch j. Z (k, j) is the o.

component of the polarization vector for mode k,j.
UP is the equilibrium position vector of the lth atom.
Substitution into Eq. (4) gives the Green's function of
a perfect crystal,

G s(L„L„,L„cv')= (M1V) '

E-(k,j)Es(k,j) .
haik U(Lg, Lp, Lz) (6)

M —
CO

Here we have used the notation

U(L„I.„,I.,) = UP —U( '. (7)

Equation (3) may be considered an eigenvalue problem
with eigenvalues equal to 1. If the Green's function is
assumed a function of &o, that ce which satisfies Eq. (3)
will be ~ b, the eigenvalue of Eq. (2). The additional work

of finding the Green's functions is more than offset by
a convenient reduction in the number of dimensions of
the new eigenvalue problem. The secular determinant
implied by Eq. (3) has the dimensions (in our model
39X39) of the nonzero submatrix of 4 which we will
call S. If g represents the corresponding submatrix of
G, then the secular equation can be written'

A further reduction in the number of dimensions is
obtained by a transformation R to the symmetry coor-
dinates of the defect and its nearest neighbors. Under
such a transformation, Eq. (8) factors in exactly the
same way as the secular equation of a molecule. Since
we are interested in only the optically active localized
modes, we shall solve only the 4&&4 vectorlike factor,
Eq. (9) below. This factor is obtained by a transforma-
tion to the symmetry coordinates shown in Fig. 1.

—A g„(000)+SBg.,(110)
+88g,„(110)+1

+SBDg (000)
—SBDg„(110)—SBDg,„(110)

—SBDg..(000)
+SBDg,„(110)
+SBDg„(110)

[I—gaf =0=

—8A Dg, (110)
+SBDJ+SBDL

—2A g„(011)+8BF
+SBg,„(211)

+SBg,(110)—BJ+1
—BI.

+16BDg, (011)—SBDF
—SBDg,„(211)

—SBg„(110)+BL
+BJ

—16BDg„(011)
+SBDg,„(211)
+8BDF

+SADg, „(110)
—SBDL+SBDK

SBg,„(110)—+BL BK— +SBg,„(110)
+BK+1 BL—

determinant was found either never to pass through zero
or to pass through zero only once. These roots, which
correspond to localized-mode frequencies, are plotted
above the abscissa in Fig. 2. The maximum frequency of
a perfect-lattice mode has been denoted by co&, which
in our model is equal to (Sy/M)'". The localized-mode
frequencies for the mass defect (necessarily vectorlike)
have been calculated by Maradudin. ' These frequencies
agree with the d,y/y=0 curve in Fig. 2.

Once we have obtained the localized-mode frequencies,
Eq. (3) allows us to determine the relative motion of
the atoms within the defect space. Table I shows the
amount of each of the symmetry coordinates in the
eigenvector for several choices of defect parameters.
Of course, the atoms outside the defect space will also
participate in the localized mode. Since the motion of
these atoms has been lef t undetermined, a normalization
condition cannot be set up to establish the absolute
magnitudes of the displacements. The projected. eigen-
vectors defined in Table I have been arbitrarily nor-
malized to 1. An examination of Table I reveals a few

Here we have used the following notation. The mass and
nearest-neighbor force constant of a host atom are M
and p, respectively, of the defect atom, 3f' and p'.
Moreover,

D=1/+8, AM=M —M',
(10)

A = AMco' 4Ay, B= Ay/2, — —
and

J=g„(000)+g„(200)+g„(020)+g„(220)
+2g„(011)+2g„(211),

L= 2g,„(211)+g,„(220),
11

K= —g„(000)—g„(220)+g„(200)+g„(02())
+2 y(110) 2g s(112)

F=g, (110)+g, (121).

Using Green's functions calculated by Eagle and
Maradudin, ' the 4X4 determinant in Eq. (9) was
evaluated as a function of frequency for various defect
parameters. For each set of parameters the value of the

' A. A. Maradudin, Solid State Phys. 18, 278 (1966).
4 B.S.Eagle and A. A. Maradudin, Westinghouse Research Lab- 5 A. A. Maradudin, in Phonons and I'honon Interactions, edite~

oratories, Research Memo 64-929-442-M1, 1964 (unpublished). by T. A. Bak (W. A. Benjamin, Inc. , New York, 1964).
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TABLE I. Eigenvectors {S;)of vectorlike localized modes.

e y/q" aM/Mb
b loc

S2 S4

0.8
0.8
0.4
0.4—0.4—0.4—0.4—0,4—0.8—0.8

0.90
0.95
0.70
0.85—0.10
0.20
0.50
0.60—0.60
0.50

1,026 0.994 —0.068 0.023 0.082
1.427 0.999 —0.022 0.002 0.027
1.068 0.961 —0.177 0.049 0.206
1.448 0.995 —0.066 0.007 0.073
1.015 0.616 —0.485 0.174 0,596
1,090 0.809 —0.380 0.096 0.439
1.285 0.949 —0.227 0.034 0.217
1.408 0.970 —0.174 0.020 0.169
1.024 0.491 —0.542 0.184 0.657
1.446 0.953 —0.210 0.023 0.218

o.s L

I

I.O
AM

M

& y is the nearest-neighbor force constant of a host atom.
b M is the mass of a host atom.
& cur, is the maximum frequency of a perfect-lattice mode and 4)los is the

localized-mode frequency.

generalizations regarding the character of the localized
modes. As the localized-mode frequency increases, the
eigenvector becomes more localized. , i.e., the motion of
the impurity atom S& predominates. At lower fre-

quencies, approximately equal amounts of S2 and S4
also contribute to the eigenvector. The symmetry co-
ordinate 53 does not seem to play an important role
in de6ning the motion of the localized modes.

BAND-MODE ABSORPTION

Mathematical Formulation

A calculation of the infrared absorption due to the
band modes in an imperfect lattice is considerably more
difFicult than determining the localized-mode frequen-
cies. Many of the 3E band modes can absorb infrared
radiation (about 91V/16 of the modes are optically
active'). It would be possible to solve this problem using

many-body theory in the form of thermal double-time

FIG. 2. Resonance D and vectorlike localized-mode frequencies.

Green's functions and Kubo's theory of linear response.
In fact, such techniques have been used. in solving the
mass-defect. problem. '' However, we approach our
problem through the semiclassical theory of radiation
which, because of its long use, gives considerable
physical insight.

The interaction Hamiltonian used in the semiclassical
treatment of this problem may be written in a simplified
form if we assume that the wavelength of the radiation
is large compared to the electronic displacements from
a lattice site UP and to the nuclear displacements,

i elan &~l~
V&" f— V, f A,e"""-'- (12)

nc M)c

where r&,, is the position of the jth electron on the jtth

atom, U~ is the position of the /th nucleus, m is the mass
of the electron, M~ is the mass of the 1th nucleus, s~ is
the charge on the lth nucleus, and

A=HO(&u) f e* "'"'—"'&

is the vector potential of the electromagnetic field.
Vsing this interaction Hamiltonian, time-dependent
perturbation theory leads to an absorption coefIicient
given by'

s, S2

where D is the density of defects, e is the index of
refraction of the host, c is the speed of light, g(~~, u&) is
the shape function, and

St„= y, 'LQ er, (+zgUg je—"U&'ygxd U

Here, p, is the wave function of the ground. state of the

FIG. 1. Vectorlike symmetry coordinates.

R. S. Knox, Solid State Commun. 4, 453 (1966).

7 A. A. Maradudin, in Astrophysics and the Many Body Problem
(W. A. Benjamin, Inc. , New York, 1963).

W. M. Hartmann, Ph. D. thesis, Oxford University, 1966
(unpublished); W. M. Hartmann and R. J. Elliott (to be
published) ~' M. Lax and E.B.Burstein, Phys. Rev. 97, 39 (1955).
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Making a transformation R to symmetry coordinates
in the space of the defect, this becomes

(~.)*=
I 2 e-*2 (~-')-"I'.", (26)

2co~f m l p
(16) where9R„=Op*(U) M (U) O„(U)dU,

crystal and p~ the wave function of an excited state.
Using the Born-Oppenheimer wave functions for the
stationary states of the crystal, the dipole matrix
element, Eq. (15), becomes for a purely vibrational
transition

where (27)

M(U)= P s)U( — 8.*(r,U) is an effective charge parameter of the mth symmetry
coordinate. Substituting Eq. (26) into Eq. (22), we

XP er, ~8, (r,U) e~k' "dr (17a) obtain

y, (r, U) = O„(U)8p(r, U) .
2m'D t'e'+ 2

(17b) +(~)=
~

2 em*em'* 2 (& )m

3 m, m' L„v, p, p'

P e nPU elk ~ UtP

l, P

(19)

where the effective charge is

e) P=x)—e P 8.'P(r)r) .,8.'(r)dr

Physically, e& t' is the e component of the dipole
moment of the crystal induced by a unit displacement
of the 1th atom in the P direction. It is shown below
that in our model only the defect atom and its nearest
neighbors will have a nonzero effective charge. Since
the incident radiation has a wavelength on the order of
10' lattice sites, we can write Eq. (19) as

~.=2 «'Ui p.

We have previously assumed that the electronic wave
function varies smoothly and slowly with the nuclear
displacements Hg.

(18)

Expanding 8,(r,U) in powers of H~, we have the result

X{+& "I'*"g(pp ~)}& p" ( )

It is mathematically convenient to represent the
line shape of a single vibrational mode by a 8 func-
tion. This is consistent with our harmonic model. A
further justification is that there are many normal
frequencies very close together, and we will be inter-
ested in the contribution of all modes in a finite fre-
quency interval to the absorption coefficient. Using the
well-known representation of the b function,

2M

g(~~,~)= 8(pp„,co) =—lim Im(pp' —co„'—ei) ', (29)
e—+0

we can write the expression in curly brackets in
Eq. (28) as

2a) F '&I' *'B'
{Q F„'PF„*'P'g((u„,(u)}=lim Im —Q . (30)

u 0 ~ ~ ~2 ~ 2

This expression contains a complex in-band Green's
function for an imperfect crystal,

The total absorption can now be obtained by summing
Kq. (14) over all modes of the perturbed crystal,

happ. (i,l'; &e, ie) =+-
CO

—
M&

—Z6

where

The submatrix @p corresponding to the space of the
defect can be written in terms of the submatrices of

nomic 3 ) matrices of 4 and. G:

(32)

Using Eqs. (30), (31), and (32) in Eq. (28), we obtain
'
(~X„) = Op(H) P eI,"PUtpO„(H)dH (23)

4'IIDM rl +2
E'(a&) = g e *e„.*

3 m, m'

H=&0,
the integral in Eq. (23) is easily evaluated, giving

(24)

(%„).=
26)g l. B

If we expand H in normal modes Q of the imperfect
crystal,

Xlim Im{LR '(I—PG)R) 'R 'QR} (33)
e—+0

The Green's-function matrix of an imperfect crystal
is factored in the defect space by a transformation R,
like the secular equation of the corresponding "defect
molecule. " Since only the effective-charge parameters
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Ir lair at'a' (34)

Using the closure relation

laIr 'eva'—
)

3f)
(35)

Eq. (34) simplifies to

D2zr' n'+2 ' 1
IC(oo)dto= 2 (« ')'

ec 3 &, Mi
(36)

Calculation

Using the expression for the Green's function of a
perfect lattice, Eq. (6), and the well-known formal
relation

lim(5 —ie)—'= 5'1/S —zzrb(S), (3&)

where 6' denotes a principal value, the imaginary and
real components of the perfect-crystal Green's function
can be written

lim Img p(l —i', eo' —ze)
e~0

P E (k, j)Ep(k, j) cos(k U) 5(to —to, (k)) (38)
MS2cv»

lim Re g p(l —i'; to' ie)—
e~0

2

gap�(/

1 i to ze)=—(p lim Im dco'. (39)
e—+0

These expressions were evaluated using the following
procedure. First, the eigenvalues and eigenvectors of
the perfect crystal were found. Then Eq. (38) was used
to find the imaginary part of the Green's function. The
summation in this equation is over all values of k in
the first Brillouin zone (BZ). Actually, only 1/48 of
the first BZ needs explicit consideration if one remem-

"E. Wigner, Nachr. Akad. Wiss, Gottingen, Math. -physik.
Kl. IIa.Math. physik. chem. Abt. 1930, 133 (1930)LEnglish transl. :
R. S. Knox and A. Gold, in Symmetry irt the Sotzd State (W. A.
Benjamin, Inc. , New York, 1964)j.

of those symmetry coordinates that transform like a
vector are nonzero, " the sum in Eq. (33) is over only
these symmetry coordinates.

The integrated absorption coefficient including band-
mode and localized-mode absorption can be obtained
from Eq. (28). If the shape function g(&oo,&o) is replaced
by a it function 6(co„—co) and if X(to) is integrated
over all frequencies including any localized modes, we
obtain in atomic-displacement coordinates

D2zr' n'+2 '
E (eo)d&o = e~ e~

SC 3 l ct

hers that the eigenvectors are changed in a trivial
manner by a symmetry operation of the point group.
It was decided that an examination of 1925 sample
points in 1/48 of the BZ gave a reasonable compromise
between numerical accuracy and computer time. The
real part of the Green's function was found from the
imaginary part using the dispersion integral, Eq. (39).
The inversion of the 4&&4 matrix R(1—gG)R ' in
Eq. (33) was performed numerically.

The determination of suitable eRective-charge param-
eters presents no difficulty for a charged defect. For
the case of a deformable defect the effective charge
could be found using Eq. (20), but we prefer to use a
simple shell model. " In this model a point mass with
charge f represents the nucleus and tightly bound
electrons. This core is connected to a spherical shell
with charge f by—a spring with force constant p, .
Adjacent shells are connected by springs with force
constant y. In order to determine the effective charge
of the symmetry coordinates of our defect molecule,
we first find the effective charge eg & corresponding to
a displacement of each of the 13 atoms in the defect
space. Since a displacement of a core will distort only
its nearest neighbors in our approximation, we will
have 78 simultaneous equations to solve for static
equilibrium. However, the problem is greatly simplified
by symmetry considerations and by the fact that y,
is much greater than y. Once the e~ &'s have been
determined, it is an easy matter to use the symmetry
coordinate transformation R to find the effective charge
of the symmetry coordinates e *. If f' and y„.

' are,
respectively, the core charge and core-shell spring con-
stant of the defect atom, it can be shown that

z W Ie~$4yy
I-pc Pc—

The effective charge of symmetry coordinate 1 is, of
course, the effective charge of the defect atom. If we
wish to find the effective charge of an atom which is
farther from the defect atom than the defect's nearest
neighbors, we would have the same problem to solve
with the expectation that the center atom would be a
host atom. In this case, of course, f' equals f and y, '

equals y, . From Eq. (40) we have the important result
that all atoms outside the space of the defect have zero
effective charge. The effective charge of the three
remaining symmetry coordinates are

e2 ————,'V2eg )

e3*——0
e4*——+-4r &2e,'.

Equation (33) will be put in a form more convenient
for a calculation of the absorption coe%cient of an
arbitrary system. The actual Green's functions calcu-

"S,Doniach and R, Hnggins, Phil. Mag. 12, 393 (1965).
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lated have the dimensionless form

g =mcus'g . (42)

P =—,'a.'DX 10', (43)

where a is the lattice constant. Finally, the effective-
charge parameters will be rewritten

It is also convenient to express D, the density of defects,
in the form of a percentage defect concentration P.
That is,

l2-
b7
7

lP — T-* I.

6-

6-3
X

(44)e;
I

pc
t.os 7

pc
0.80.60.40.20

4VIctlL

Fio. 4. Absorption coeKcient E(co) for a charged defect ny/7 =OS.
where

E,=4L1-~~/~ j,
E,=-a~P ~- /3,~/~ j,
E3=0,
E4——v2L 1—~~/~ j. Eg 1

Eg = .E3=E4——0 ~

(48)
Using these new definitions, Eq. (33) takes the form

(45) our calculation we can easily simulate this model by
setting

16m.Pe'y' ns+ 2) ' f'/e f/e

10'a'cour e 3
(4/)

Most of the calculations will be for the case T= 1. For
a specific host-defect system the calculated curves can
be scaled by the appropriate T.

Results

For a lattice composed of deformable atoms, the
dipole moment of a mode depends on the nuclear dis-
placements of all 13 atoms in the space of the defect.
This makes it difficult to interpret the absorption
curves in terms of atomic motion. In an e6ort to miti-
gate this difficulty, we will first consider the model of a
charged defect in a host of uncharged rigid atoms. In

E

—~ 0.0hy
y

2

0.2 0.4 0.8 0.8 I.O

FIG. 3. Absorption coefFicient IC(cu) for a charged defect ny/y =().

07

E(ce) = T PE E,—lim Im
ts, m

X (LR
—'(I—g'5/Ma r,') R$

—'R—'g'R}„„., (46)
where

The absorption coefficient in this case will depend on
the motion of only the defect atom and on the density
of states.

For Ay/y = 635/M'= 0 the lattice motion is, of course,
that of the perfect crystal and the defect displacements
are the same for every mode. The absorption coefficient
is, therefore, proportional to the density of states.
Figures 3—5 show the calculated absorption coefficient
for a charged defect using this and other choices of
defect parameters. The parameters have been chosen
in these figures so that no localized. mode exists. How-
ever, the resonance in the vicinity of 0.9 is closely
related to the localized mode. Notice that this resonance
slowly shif ts to higher frequency and quickly increases
in amplitude as the mass of the defect is decreased.
Apparently there is a smooth transition from resonance
to localized mode at co =co~. Figure 2 shows the con-
tinuity of the movement of this peak during its transi-
tion from resonance to localized mode. In the har mo»c
approximation the localized mode-absorption coeK-
cient is a 8 function of frequency. It would be surprising
if the shape of the resonance did not asymptotically
approach a 8 function as ce/~r, approached 1.

There is another important peak that moves con-
tinuously from co/~r, = 0 to co/err, =0.55 as the defect
mass is decreased. Ke will call this resonance A . At the
frequency co/a&r, =0.55, resonance A disappears and
another resonance, 8, emerges at a slightly higher fre-
quency, ai/cor, ——0.65. Continuing to decrease the defect
mass shifts resonance 8 to oi/oir, ——0.7. There appears to
be a weak stationary resonance C at co/cer, = 0.8. For
completeness, we will call the high-frequency resonance
D mentioned earlier. Figure 6 shows the shift of these
resonances with changing defect-force constants.

Roughly, resonance D must correspond to modes in
which the impurity vibrates against its neighbors, and
resonance 3 must involve an in-phase motion, This
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Fzo. 6. Absorption coefficient for a dedeformable defect Ay/y=0.

(52)
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FIG. 9. Comparison of the experimental and calculated
absorption coefficient X(~) of Ar:Xe.

1. There is no static deformation of the lattice near
the defect.

2. Terms in the electric moment quadratic in the
displacements are negligible.

3. Only nearest neighbors interact.
4. The absorption coefficient due to S defects is X

times the absorption coefricient due to one defect.
5. A rigid-atom model is used to evaluate the Green's

functions and a shell model is used to evaluate the
effective-charge parameters.

6. The interatomic potential is harmonic.
7 The effective-charge parameters can be estimated

using the shell model.

Assumptions 1—4 are probably reasonable for the
system considered. %e found it convenient to assume
rigid atoms in calculating the Green's functions of the
perfect crystal and then to use the apparently con-
tradictory shell model to estimate the effective charge
parameters. Fortunately, there is a convenient way of
checking the validity of this method. Hartmann has
made a calculation of the absorption coefFicient due to
a mass defect in a fcc lattice using the shell model in
obtaining the necessary Green's function as well as in
obtaining the electric moment. ' The good agreement
between his calculation and a calculation based on our
technique confirms our use of assumption 5.Presumably,
assumption 6 can be made more valid by doing the
experiment at low temperatures. This leaves assump-
tion 7 as a probable cause for the disagreement with
experiment.
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FIG. 8. Comparison of the experimental and calculated
absorption coefficient E (or) of Ar: Kr.

Figure 8 shows a comparison of the experimental
curve of Jones and Woodfine for the Ar: Kr system and
calculated curves using the indicated parameters. The
experimental absorption extends far beyond orL, , indi-

cating that anharmonic terms are very large. These
measurements were made at relatively high tempera-
tures, 80'K, which tends to enhance all anharmonic
effects. Since our model is for a harmonic lattice, little
can be said in comparing the curves. We would expect
better agreement with an experimental curve taken at
lower temperatures.

The experimental curve for the Ar: Xe system,
Fig. 9, was obtained at 55'K. The absorption accord-
ingly falls more rapidly for frequencies higher than col„

but obviously anharmonic terms are still important.
Crudely, one can approximate the effect of anharmonic
terms on the calculated curves merely by imagining
them to be damped in a uniform manner. Certainly,
including a change in the nearest-neighbor force con-
stant of the defect results in an improvement over the
mass-defect calculation. It is worth emphasizing that
the choice of the parameters in Fig. 9 were all physically
realistic and that Ay/y, AM/M, and a&1, were the only
parameters eftecting the shape of the curve.

Some of the more suspect assumptions which charac-
terize our model are as follows:


