
160 FOURIER EXPANSION FOR ELECTRONIC ENERGY BANDS 679

A (L1) 'Y0, 1 6 Y1,1 6 Y2,1 (CS)

B(L1)=7o,s—271,2
—471,8

—672,2
—472,s. (C9)

The reality requirement for (71,4+72 6) leads to the
restriction

[2E'(Lr) —A(L1)—B(L1)]'—I:A(L1)—B(L1)]'
=pr' —(581+3672,2) ')0. (C10)

The unknowns y2, 1 and y2, 3 are eliminated from these
equations by use of Eqs. (34), (40)—(42) to obtain

nt =7o, 1—(15/2)71, 1—(27/2)71, 2+671,8

+4[(71,8)'/71, 2]+3L(f'25 )+8~(f'25 )+2Q(f'25 )
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—4M(F25 )—4Q(I'25 ), (C12)

P,=2E+(L,)—[A(L1)+B(L1)]. (C13)

The range of allowed values of y2, 2 is established by
taking the most restrictive of the upper and lower
bounds imposed by Eqs. (C4) and (C10).

Kith an arbitrary value for p2, 2 but within the range
of allowed values, the other six band parameters are

of the E+(Lr) level. These equations can be rewritten as

4V3
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—
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in which

evaluated according to the relations
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Arbitrary allowed values of y2, 2 are scanned and from
the resulting energy bands, this parameter is evaluated
to obtain the experimental value for the longitudinal
cyclotron effective mass. '4 ' In general, several such
solutions are found and all mathematically valid
solutions are examined. Some of these solutions are,
in fact, equivalent and involve only the change in
sign of a few band parameters. The most convergent
solution also seems to yield the best dielectric constant,
and for these two reasons is considered to be the most
physical. This solution remains the most convergent
under small changes in the band ordering. If, however,
a major reordering of the energy bands is made, some
other solution might become the most convergent and,
therefore, provide the best description of the real solid.
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Space-charge-induced accumulation regions in semiconductors and semimetals can lead to localized,
discretely spaced two-dimensional energy bands for which the existence criteria and the eigenvalue spectrum
are derived. The contribution of these states to the conductance of a planar metal-oxide-semimetal (-semi-
conductor) tunnel junction exhibits structure associated with the critical points in the density of states for
motion parallel to the junction. As an example, numerical results are given for Al-oxide-Bi junctions.

I. INTRODUCTION

I
'HE existence of localized, quantized one-electron

eigenstates in narrow accumulation or inversion
layers at semiconductor surfaces has been conjectured
for at least ten years. ' ' However, only surface trans-

' J.R. Schrieffer, Semiconductor Surface Physics, edited by R. H.
Kingston (University of Pennsylvania Press, Philadelphia, Penn-
sylvania, 1957), p. 68.' J. F. Dewald, Ann. N. Y. Acad. Sci. 101, 872 (1963).' R. F. Greene, Surface Sci. 2. 101 (1964).

port measurements4 " have given evidence for the
existence of these states, and the interpretation of those
experiments is qualitative, owing to the lack of a micro-
scopic quantum theory of surface transport. ' Optical

4 P. Handler and S. Eisenhouer, Surface Sci. 2, 64 (1964).
~ N. St. J. Murphy, Surface Sci. 2, 86 (1964).

F. Proix and P. Handler, Surface Sci. 5, 81 (1966).
F. F. Fang and W. E. Howard, Phys. Rev. Letters 16, 797

(1966).
8 A. B.Fowler, F.F.Fang, W. E.Howard, and P. J.Stiles, Phys.

Rev. Letters 16, 901 (1966).
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absorption and tunneling measurements in both semi-
metals and semiconductors offer the potentiality of a
more direct observation of localized-state effects. We
consider here tunneling eBects, primarily in semimetals.
Contributions of localized states to the absorption co-
efficient in semiconductors are considered by one of us
elsewhere. '

We outline in Sec. II the existence criteria for the
localized states in a metal-oxide-semimetal junction. In
Sec. III we calculate the details of their contribution to
the conductance. We illustrate, in Sec. IV, our calcula-
tions by the example of an aluminum-oxide-bismuth
junction. The results of our analysis indicate that con-
tributions from localized states lead to sharp edges and
logarithmic peaks in the tunnel conductance for each
band. These results are illustrated by sample numerical
calculations for (1) a single very narrow band for which
all the structure occurs in the neighborhood of zero bias,
and (2) a four-band model of bismuth, using perhaps
more realistic bandwidths, in which the structure near
zero bias is contributed by conduction band edges alone.
The structures predicted are qualitatively similar to the
data reported by Esaki and Stiles~io, ii especially in case
(1).On the other hand, the reproducibility of tunneling
data is sufficiently small" "that quantiative interpreta-
tions are unwarranted at the present time. In addition,
a more precise determination of the band structure of
bismuth and the space-charge potential near the junc-
tion are a,iso required before detailed comparison of the
predictions of the model with experimental data would
be meaningful.

II. LOCALIZED STATES

In Fig. 1 is shown a schematic illustration of the
space-charge potential V(r) in a narrow accumulation
range. Its depth U and range K~ ' must satisfy the
inequality

(2nzr U/h') "'En & (-,'rr) (2.1)

in which m& is the mass associated with motion normal
to the surface of a planar junction. We adopt models of
the semiconductor or semimetal in which motion normal
to the junction is separable from that parallel to the
junction. "Equation (2.1) leads to the prediction that
localized states are uncommon in tunnel junctions since
metal-semiconductor contacts result in depletion re-
gions" and metal-oxide-semiconductor junctions usually
require thick oxide layers, in order to obtain accumula-
tion regions due either to a positively biased field
plate' ' or immobile surface charge in the oxide. "Al-

' C. B. Duke (to be published)."L.Esaki and P. J. Stiles, Phys. Rev. Letters 14, 902 (1965).
» L. Kaski and P. J. Stiles, Phys. Rev. Letters 16, 574 (1966)."I. Giaever (unpublished).
'3 L. Esaki (unpublished).
t4 D. J.BenDaniel and C. B.Duke, Phys. Rev. 1S2, 683 (1966).
~' See, e.g., D. V. Geppart, A. M. Cowley, and B. V. Dore, $.

Appl. Phys. 37, 2458 (1966}.
"See, e.g. P. V. Gray, Phys. Rev. 140, A179 (1965).
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Fro. 1. Schematic illustration of the continuum, p(Z), and local-
ized-stated band, pb (E), densities of states in a narrow accumula-
tion region associated with a parabolic band.

though accumulation regions occur in metal-insulator-
metal junctions, they are commonly too narrow to
satisfy the inequality of Eq. (2.1) except in special
cases.

The satisfaction of Eq. (2.1), hence the occurrence of
a localized state, near zero-bias in a tunnel junction re-
quires both a large intrinsic voltage drop across the oxide
and a small carrier density on one side of the junction so
that a nontrivial portion of the total voltage drop across
the junction occurs in this "low-carrier-density" side of
the junction. For example, either Bi or Sb constitutes a
"low-carrier-density" junction material whose high
work function' can lead to large electric field in a thin
oxide with at least several percent of the total voltage
drop occurring in the semimetal. The details of the semi-
classical Fermi-Thomas model of the space-charge re-
gion have been given earlier. "The width of this region
is given approximately by

6rrnses 1 1 )JD=&D '= —+—
( (2.2)

"EIandbook of Thei mionic Properties: Electronic IVork F&Nnctions
and Richardson Constants of Elements, edited by V. S. Vomenko
(Plenum Press, New York, 1966). The several measurements of
the work functions do not agree among themselves. This reference
seems to be the most accurate and recent compilation of the diBer-
ing experimental results.

in which e is the (static) dielectric constant, ns is the
(compensa, ted) carrier concentration, and $„$bare the
electron, hole Fermi energies in the semimetal. The de-
tails of the potential are easily shown to be

(metal) n= —V+ $, (x(—xb)

&sM+ &M
(oxide) u= Vb ———xox+

2

—V/2 —U/2, (—xb(x(0) (2.3)
(semimetal) u= —Ue xD' (0&x)

where x~ is the oxide thickness, V is the bias applied to
the semimetal with respect to the metal, Xox is the
electron affinity of the oxide, &M and ~&M are the work
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functions of the metal and semimetal, respectively, U is
amount of band bending at the oxide-semimetal inter-
face, given by solution of the equation (valid at zero
temperature):

where

xsesM (16~x&pe' '~'

(q'sM q M) V
eox & 5esM

XD(U) sgn(V), (2.4)

Uy Uq'~'
D(U)= ~i 1+—i~. 1+—

i

Ui
— U- 1/2

—s+&(& ls—&
——

8(x)—= 1, x&0

=0, x(0

1/2

(2.5a)

(2.5b)

2msM, ,U) "'
(2.6b)

2mox
v'—= — (Vs+», ')

h'

—1/2

(2.6c)

2 (2msM, ~Es,,)"'
z 4 a

(2.6d)

in which mox is the mass of electrons in the oxide and
msM, ~ is the mass in the direction perpendicular to the
junction in the semimetal. YVe And that the lifetime ~i
for leakage through the oxide barrier of the ith localized
state is given by"

h (dF; exp(2y~xb)

4t dE s, , sin(2fr„)
mM+i

Pg.;——ta,n '—
moxkg, M„

(2.7b)

"E.C. Kemble, The Fundamental Principles of Quantum Me-
chanics (McGraw-Hill Rook Company, Inc. , New York, 1957),
pp. 192—195.

In deriving these equations, ' we assume complete de-

generacy, continuity of potential and electric displace-
ment, parabolic electron and hole bands, Fermi-Thomas
shielding, and the average, bias-dependent, square bar-
rier specifted by Eq. (2.3). The effective mass approxi-
mation and a generalized Bethe-Sommerfeld model of
the junction are employed throughout our analysis.

The use of (2.1) and (2.2) for the range of the space-
charge region, of contact potentials 0.5 eV,"and of
thin (xs 25 A) oxides, leads to an expectation of the
existence of one or more localized states in the semi-
metal. One can show that quasistationary states with
binding energies E~; occur at the roots of the equation

( moxQ
F;= J„(2Q/KD)—!

— J~'(2Q/&a)=1, (2 6a)
(Vi~ sM, J.

where

The subscript M refers to the metal, x~ is the width of
the junction, and k&,M,; is obtained by the appropriate
kinematics invoking conservation of energy and of the
component of momentum parallel to the junction. We
recallts that the resonance condition, Eq. (2.6a) corre-
sponds to a wave function which lies in the nondegener-
ate continuum below the bottom of the semimetal. con-
duction band and which is purely decaying in character
as one moves through the barrier from the semimetal to
the metal. In the limit of a high barrier, y; —+ ~ and Kq.
(2.6a) reduces to the eigenvalue condition for bound
states in a semi-inlnite exponential potential. The in-
equality of the electron masses and energies of the
bottom of conduction band in the metal and semimetal
de6ne a one-dimensional barrier-penetration problem
for which there is no direct analog in the theory of
three-dimensional potential scattering. "However, since
an appropriately normalized barrier-penetration am-
plitude is the relevant one-dimensional analog of the
collision matrix, it is interesting to observe that com-
plex poles of this amplitude on the second-sheet of the
complex energy plane characterize both the energy and
lifetime of the one-dimensional localized states in anal-

ogy with the conventional description" of resonance
states in three dimensions. These localized states corre-
spond to quantized bound-states for motion normal to
the junction in the potential hole near the junction. The
two-dimensional continuum associated with motion
parallel to the junction has the consequence that each
quantized state causes a two-dimensional energy band
of states localized near the junction. The space-charge
potential and associated density of states are illustrated
schematically in Fig. 1.In semimetals the Fermi energy
lies above the band edge in the bulk semimetal so that
the two-dimensional energy bands associated with the
lowest bulk "electron" band are always partially
occupied.

%e show in Sec. III that the tunnel conductance con-
tains a contribution proportional to the density of states
p~~(E) of the two-dimensional localized-state bands.
Therefore, it is of interest to examine structure in p~~(E)
due to Van Hove singularities above the band minimum.
In order to make this examination as illuminating as
possible, we consider in detail the case of an s-wave,
tight-binding band in a simple tetragonal lattice. The
fourfold axis is taken along the s direction and twofold
axes along the x and y directions. The Brillouin zone and
tight-binding s-band. energies for this lattice are illus-
trated in Fig. 2. The continuum density of states p(E)
and the density of states p„,(E) associated. with a local-
ized-state band associated with a junction in the y-z

plane are shown in Fig. 3. From Fig. 3. we see that in
general the localized-state band is displaced by the bind-

ing energy E; of the quantized state below the local
minimum in the band structure out of a superposition of
whose continuum states the quantized-state wave func-

"See, e.g. R, G. Newton, I. Math. Phys. 1, 319 (1960).
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penetration factor, and k»(E) denotes the value of k„at
which the energy of motion parallel to the junction is
given by E. The local minimum of the electron bands
for a junction normal to the trigonal axis may not have
their minima at k&l

——0, but rather at the symmetry
points I. at the center of the pseudohexagonal faces of
the Brillouin zone. '0 This is the case in bismuth, for
example. Recall" that Z(E krr) is calculated keeping
E and k„erlual in the initial and final states of the
tunneling process. The total energy is related to k, r by

E=Ei+E„(krr). (3 2)

This fact is often used to convert the integration over
d'All into one over dE» to give

E, (k ) = E, [I - cos (k, ar ) ]+ E, [2- cos (k„o,) -cos (k& a, ) ]

2E,)E &E,

2eJ ——
h ke—eV

dE pr (E»)dErrZ(E, Err) . (3 1b)

FIG. 2. Brillouin zone and tight-binding s-band energies for a
simple tetragonal lattice. The a; are the nearest-neighbor spacings
and the energy inequalities have been given for a1(a&.

tion is constructed. For the tetragonal s-band, this
minimum occurs at the bottom of the band and at
k=0(I'). For a complex covalent material like semi-
metals local minima occur both above the lowest band
minima and at k&0."For example if for a (non-tight-
binding) band there is a local minimum at X in Fig. 2,
the two-dimensional density of states p„,(E) in Fig. 3
could extend from 282 to the top of the band. In Sec.
IV, we in fact construct a four-band model of bismuth
in which the "hole" band is described in this manner.
More generally, for a local minimum at a given point
P(k) in the Brillouin zone, the two-dimensional density
of states extends from Er, =E(P)—E; to Eo=Ez
+&E„(P)with AErr(P) being the bandwidth for mo-
tion in the reciprocal lattice plane, passing through P,
which is associated with the plane of the junction. As
these two-dimensional bandwidths EErr(P) depend on
both the location of the local minimum (P) and the plane
of the junction, they can be much smaller than the width
of the three-dimensional energy band.

e
~C

2m 2h

$e kii (E)
dE d'k„Z(E,kr r) (3.1a)

& (((0)

in which the subscript c denotes the continuum contri-
bution to the current, Z(E,k„)is an appropriate barrier

20 See, e.g. M. H. Cohen, I.. M. Falicov, and S. Golin, IBM J.
Res. Develop. 8, 215 (1964).

III. CALCULATION OF CONDUCTANCE

We now outline the calculation of the contribution to
the current of the localized-state bands in the space-
charge region. The general form of the tunnel current, at
zero temperature, associated with the continuous elec-
tron spectrum for the electron band and barrier illus-
trated schematically in Fig. 4 is given by

In the numerical evaluation of the barrier penetration
factor, however, specification of E and k„in the initial
and 6nal states is not sufficient. Strict application of the
effective-mass approximation wouM require conserva-
tion of total energy and parallel crystal momentum in
the oxide, as well. On the other hand, there is no knowl-

edge of the available eigenstates in the oxide or even its
composition. We rely therefore on experimental evi-
dence: If there were no suitable eigenstates in the oxide
centered around k„(0),the displacement of the electron
Fermi surfaces of the bismuth, the use of (3.2) in (3.1a)
leads to an anomalously small electron barrier penetra-
tion. This eRect is not observed in the continuum tun-
neling" ' which shows a roughly symmetric dish-

shaped conductance. Therefore either such oxide eigen-
states apparently exist or k„conservation must be
abandoned. On the other hand, electrons emerging from
bismuth into a vacuum, as for example, in field and
thermionic emission, also shouM exhibit this eRect. This
result would give a marked angular dependence of the
work functions. "Another possibility, which cannot be

p (E)

2E2 2EI 4E2 2EI+2E2 2 E I+4E&

P, (E)

I

I

I

I

I

)( I I Z
I

FIG. 3. Continuum density of states, p(E), and density of states,
p„,(E), associated with motion in the I ZEX plane for a tight-
binding s band in a tetragonal lattice. The critical points and en-
ergy parameters are defined in Fig. 2.

2' F. I. Itskovich, Zh. Eksperim. i Teor. Fiz. 50, 1425 (1966);
51, 301 (1966) )English transls. : Soviet Phys. —JETP 25r 945
(1966);24, 202 (1967)].
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ruled out, is the presence of initial-state triplet correla-
tions having the net effect of allowing k«(0) =0 elec-
tronic states.

The total current is given by adding to (3.1) the con-
tribution, J;, due to tunneling into and out of the local-
ized-state bands labeled by i:

J=J,+Q J;. (3.3)

Each band is characterized by a bound-state energy
E&= —E~„.as shown in Fig. 1 so that E and Eli are re-
lated by (3.2) and the dE„integration disappears in
(3.1). We write

METAL
y

«

SPACE CHARGE

REGION

SEMI- METAL

28J=-
h

pii(Ei)dEi
r(Es,;,V)

X8(E—E„+Es,;), (3.4)

Fn. 4. A schematic diagram illustrating an accumulation region
in a metal-oxide-semimetal junction due to the division of the total
contact-potential voltage drop between the (thin) oxide and the
bulk semimetal.

in which r;(Eb,„V)is the lifetime of the localized state,
calculated in Sec. II, for leakage through the oxide.
Therefore, if tunneling is the rate-limiting factor for the
junction current, the current density J; due to the ith
band state is given by

dE p„(E+Es;). (3.5)

In order to investigate the characteristic structure con-
tributed to the conductance by Eq. (3.5), we consider
a model of a two-dimensional band for which p„(E)can
be evaluated analytically. %e choose the simplest proto-
type of a band with four critical points, the two-
dimensional rectangular lattice in the tight-binding
approximation, for which p» is illustrated in Fig. 3 and
is given by"

p[[(E+EQ, ') —(BgsM, [~/2x h') X0 y&0
2

X-~(y) (0&y&1} (3.6a)

21 /1
X——E~ — (y) 1)

~y ky

(E+Es,;)(2'LEr+Esg E Es )-'~'——
(3.6b)

4E~E2

in which E is the complete elliptic integral and 2Ej and
2E2 are the bandwidths in two orthogonal directions
parallel to the junction, (see Fig. 2). Equation (3.6) is
normalized to give the effective-mass density of states"
at the lower band edge.

The contributions to the conductance, G= (dJ/dV),
arise from: (a) the $,—eV limit in (3.5) giving a con-
tribution to the conductance proportional to pi I,.

X ($, eV Eb—,~), (b—) the dependence of E; on V due to
the change in the space-charge potential with bias, and
(c) the additional dependence of r on V because the
oxide barrier for E&= —E~,, changes with bias. "For a
fixed barrier, more tightly bound states are associated
with longer lifetimes so that part (b) gives rise to a small
negative contribution to the conductance which is neg-
ligible unless E, is nearly zero. Part (b) gives a positive
contribution for both signs of the bias because a tun-
neling electron out of (into) the quantized state sees a
generally lower barrier in both cases. This contribution
gives rise to a positive conductance even when eV) f,
+E~ in Fig. 4 because the electrons in the localized-
state band tunnel through a barrier which decreases
with increasing bias. This conductance due to the bias
dependence of the barrier is known to give rise to char-
acteristic effects in metal-semiconductor'4 and p-e junc-
tion" tunneling as well as in the continuum conductance
for metal-oxide-semimetal junctions. '

For small bias and deep localized states Eb„)$, the
major contribution to the conductance due to each
localized state G,=dJ;/dV is given by the contribution

(a), proportional to pt~($. eV Es,,). Henc—e the—con-
ductivity displays logarithmic Van Hove singularities
at V=Es„+$.—2Er and V=E~, ,+$, 2Es, and abrupt-
cutoffs at the band edges, V =Eh, ,+$, and V =Es,,+f,—2(Er+E ) "

By use of the WEBJ approximation for Z(E,E„),one
can show further that at zero bias

"L.Van Hove, Phys. Rev. 89, 1189 (1953);A. A. Maradudin,
E. W. Montroll, and G. H. Weiss, Solid State Phys. Suppl. 3, 1
(1963).

"For the semimetal Bi the mass and Fermi-energy constants
are taken from Y. Kao, Phys. Rev. 129, 1122 (1963);the dielectric
constant from C. Nanney, ibid. 129, 109 (1963); and the band
widths are estimated from M. H. Cohen, L. M. Falicov, and
S. Golin, IBM J.Res. Develop. 8, 215 (1964).The oxide dielectric

(3 &)

constant is an estimate and its surface state density is taken to be
zero. The free-electron model is used for the metal. The junction
thickness of 25 A is an estimate based on capacitance measure-
ments due to L. Esaki.

24 J. W. Conley, C. B. Duke, G. D. Mahan, and J. J. Tiemann,
Phys. Rev. 150, 466 (1966).
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so that the contribution to the conductance of a deeply
bound localized state is of the same order of magnitude
as that of the continuum in a semimetal. The physical in-
terpretation of this result is that a localized-state elec-
tron oscillates back and forth inside the space-charge
potential thereby having many opportunities to tunnel
through the barrier (in the sense of n decay"). The
continuum electrons, despite their larger number, each
get only one opportunity to tunnel. For deeply bound
localized states, the greater number of tunneling op-
portunities outweighs the smaller number of electrons
(relative to the continuum) to do the tunneling.

The above comments lead us to the fundamental re-
sult of this paper: That for Et, ,;&$, the tunnel conduct-
ance contains a contribution proportional to p»($,—e V
—Eb, ;) causing logarithmic peaks and sharp edges in
the conductance for each band which mirror those shown
for p„,(E) in Fig. 3, but are shifted from the associated
three-dimensional critical points by E&,;(V).

BO

CON

G(V)

—I5 X IO
l9 em

IV. EXAMPLE: BISMUTH-OXIDE-ALUMINUM
JUNCTIONS

To provide a quantitative interpretation of experi-
mental conductance data we must know both (a) the
parameters of the space-charge region (which are the
same for all bands in the effective-mass approximation),
and (b) the location P(k), the energy E(P), and the
curvature normal to the junction (m, ) of all the local
minima in the energy-band structure which lie near the
Fermi energy. If we anticipate that some of the two-
dimensional bands are almost full (i.e., are hole bands)
we also must know the bandwidths hE„(P)of the two-
dimensional bands associated with a given orientation
of the plane of the junction relative to the crystallo-
graphic axis, as well as the parameters associated with
the locations P(k) of the bottom of such hole bands.
These requirements indicate that insufhcient experi-
mental data'~" exist for a quantiative analysis of the
data to be performed at the present time.

We illustrate the qualitative features of the conduct-
ance due to localized states, by considering a bismuth-
oxide-aluminum junction. As the tunneling experiments
in Bi have been made for tunneling normal to the tri-
gonal face," the relevant two-dimensional band struc-
ture has threefold rotational symmetry with at least
four critical points. Our analysis of Sec. III is thus di-
rectly applicable.

The properties of bulk bismuth and band-structure
parameters near the electron and hole Fermi surfaces are
given by" f.= 17 meV, $z

——12 meV, esM ——100, eo 3.5——
X10' cm ', ygM=4. 65 eV, m, =0.05m, andmI, ——0.15m
using the spherical-band density of states mass for each
electron and hole ellipsoid. The oxide parameters are
poorly known so we take, somewhat arbitrarily,
mox ——m, cox——5—10, Vt, ——2 eV, and xq ——25 A. The
free-electron model is used to describe the aluminum
with $,=11.17 eV, qM=4. 25 eV, and m, =m where m

.02 .04 .06,08—.08 —,06 -0.4 —.02 0

V(VOLTS)

Fzo. 5. The tunneling conductance for an aluminum-oxide-
bisrnuth junction obtained using Eqs. (3.5)—(3.7) and the param-
eters in the text. All the parameters of the bulk materials and
junction dimensions were taken from the literature (as specified
in Ref. 23) to be relevant to the experiments described in Ref. 10,

is the free-electron mass. In a previous paper, '4 we
examined in some detail the dependence of the barrier
potential on the oxide parameters and found that a
variety of combinations of oxide parameters, metal-
semimetal work function differences, and surface-state
densities led to the same potential. The best parametri-
zation of the barrier is in terms of the two parameters
u and (dg/d V) y—0 (see Fig. 4 of Ref. 14) and therefore
detailed specification of the oxide-parameters and work-
function differences is to a large extent superfluous.

Uncertainties in both the electrostatic potential and
the band structure of bismuth lead to an enormous
variety of possible structures in the conductance. Each
localized state solution to Eq. (2.6) for each band leads
to a contribution (3.5) to the current in bismuth. Thus
for only a single bound state associated with each band
La result which itself depends sensitively on the band
structure$ one obtains near zero bias, four contribu-
tions to the conductance from the four bands in bismuth
whose extrema lie close to the Fermi energy. ""

A prototype conductance due to a single, narrow elec--

tron band with Eq——7 meV and E2 13.5 meV (giving-—
a bandwidth of 82 meV in a plane normal to the F-T
line passing through the point I. in the Brillouin zone")
is shown in Fig. 5. For perspective, it is also shown super-
posed on the two-band model background due to con-
tinuum conductance. """The 6gure's similarity to

~' The use of Fig. 2 of a continuum conductance which rises less
rapidly away from zero bias would accentuate the effect of the
contribution from the localized state. In particular, use of a back-
ground conductance extrapolated from Fig. 1 of Ref. 10 would
lead to a zero bias conductance maximum of about the same mag-
nitude as shown in that figure.



16Q C 0 N 0 U C T A N C E A N O M A L I I=8

6 (vj

--10 x IO
-19 em

leading to greater band-bending, more than one trapped
state for each band can occur. As a rule of thumb, the
number of discretely spaced bands is given by

n =2Q/Kg)7r+-,'.
This estimate follows directly from Eqs. (2.6) and

therefore is applicable to any exponentially-varying ac-
cumulation region.
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FIG. 6. An illustrative example of the tunneling conductance for
an aluminum-oxide-bismuth junction from a four-band model
using wider bands with spacings as reported in Ref. 10.A small well
depth ( 30 MeV) gives rise to a single localized state in each
band. The parameters used were the same as those given in the
text except that L&i =0.10 eV and E2 =0.11 eV for all bands, giving
band v idths of 0.84 eV, and the masses associated with the valence
bands were taken as 0.15m and 0.5m, and of the higher lying
conduction band as 0.5m. The contribution of the two valence
bands is much smaller than those due to the electron (conduction)
bands. The Van Hove singularities due to these bands are well
away from zero bias, and only the e8ect of the band edges is shown.

the data of Esaki and Stiles ' "illustrates the possible
role of higher-energy logarithmic similarities in contrib-
uting structure to the conductance (although the
width of two-dimensional cross section of the band struc-
ture used in the calculation giving rise to Fig. 5 appears
excessively small and was chosen to display all the
structure in the neighborhood of zero bias). For the
large localized state, binding energy of 25 meV obtained
for Fig. 5 some structure from a higher-lying conduction
band will also occur for biases V&10 meV and V&55
meV.

In general, there exist contributions to the conduct-
ance from all the bands of the semimetal. For bismuth,
four band edges lie within +50 meV of the Fermi en-

ergy. Taking realistic bandwidths of 840 meV for each
band, the contribution of the localized states associated
with these bands to the conductance is shown in Fig. 6.
Only the conduction bands make observable contribu-
tions to this structure, since the tunneling barrier,
which is measured from the bottom of the bands, is ap-
preciably higher from the two valence bands, for ex-
ample, 2 V plus 840 meV for the higher lying valence
band.

For thinner junctions, large biases or surface states

V. SUMMARY AND CO5CLUSlONS

The have shown elsewhere'4 that near a band-edge
at Eo the continuum conductance G, is proportional
to (eV—Es) in the WEBJ approximation and to
(eV—1".s)'~' for a sharp, square-barrier junction. An
accumulation region as shown in Fig. 1 alters these re-
sults only in the case of a zero-energy resonance for
which G, ~ (eV—Es)' '. Therefore, in Al-oxide-Bi junc-
tions the conductance due to continuum carriers alone
exhibits neither the observed" slowly varying zero-bias
peak nor the structure superposed on it. If pronounced
structure in the tunnel conductance is to be identified
with bulk band-structure effects, the mechanism of
tunneling via localized states is one eRect capable of
describing the observed structure. This mechanism also
leads to the observed insensitivity of the conductance to
the temperature. "The large contributions to the cur-
rent of the localized states is a consequence of specular
reliection at the semimetal-oxide interface. The eRect of
the vastly greater number of continuum electrons in the
direction normal to the junction is oRset by the fact
that each localized electron vibrates back and forth in
the accumulation region obtaining many opportunities
to tunnel through the barrier. Both the inevitable ir-
regularities in a junction and finite lifetime eRects lead
to a broadening of the predicted structure.

It is evident that in bismuth, for which four band
extrema are thought to lie within ~50 meV of the Fermi
energy, a quantitative interpretation of the conductance
data can be attempted profitably only when the location
and masses of these extrema have been ascertained in-
dependently. If structure occurs in the observed tunnel
conductance, it may be caused either by the "surface
effect" discussed here; by a junction final-state-interac-
tion (e.g., electron-hole "exciton" correlations across
the oxide) or by a variety of "short-circuit" effects in
thin oxides. "This structure cannot be attributed, in
the eRective-mass-approximation, to the onset of one-
electron tunneling into a new, three-dimensional
"continuum" band, however, and any identification of
the structure as due to a "bulk" eRect directly analo-
gous to those observed in optical absorption must
eliminate explicitly the possibility of surface eRects.
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