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Using a Fourier expansion for the coupled valence and conduction bands in the diamond structure, an
effective-mass Hamiltonian valid throughout the Brillouin zone is developed in terms of certain Fourier-
expansion coefFicients or band parameters which are determined from experimental data. Explicit values
for the band parameters are obtained for silicon and germanium, and the resulting energy bands are used
to calculate the frequency dependence of the complex dielectric constant. Quantitative agreement is ob-

tained between the calculated and observed dielectric constants. Results are also given for the eRective
masses for all s and P bands in silicon and germanium at the I', l., and X points. The Fourier-expansion
technique is computationally simple and rapid, and provides an energy-band model in quantitative agree-
ment with a large number of experimental data.

I. INTRODUCTION

ECENT experimental advances in solid-state
spectroscopy' ' have made possible a very precise

determination of the energy bands in the neighborhood
of certain critical points in the joint density of states
in solids. Numerous theoretical studies' "of the band
structure of solids with the diamond lattice have been
carried out, and using these calculations, most of the
observed optical structures have been identified with

specific interband transitions. "In addition to the band-

gap determinations by the optical experiments, informa-
tion is also available on the curvature of some of these
bands about their respective critical points. For the
semiconductors Si and Ge, accurate cyclotron-resonance
measurements have been carried out yielding various
effective-mass parameters. " ' Experimental informa-
tion concerning the behavior of the energy bands over
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the entire Brillouin zone is also available. ReRectivity
measurements have been performed over a wide fre-
quency range and have been interpreted to yield the
frequency dependence of the complex dielectric con-
stant. " Photoemission" ' and soft x-ray emission" "
studies have also been reported. With the large variety
of accurate experimental information that is currently
available, it is of interest to determine energy bands
throughout the Brillouin zone that are implied by and
consistent with these data. Furthermore, it would be
valuable for experimentalists to have available to them
a theoretical framework, which they could use them-
selves to reine the energy bands as new optical struc-
tures are discovered and new phenomena are explored.
To accomplish these aims, a suitable re6nement of
conventional band calculations would seem appropriate.
However, such extensions would involve lengthy
numerical computations, and therefore would not
readily permit variation of band orderings and the
consequent reassignment of optical transitions.

In this paper, a simple effective-mass Hamiltonian is
developed for solids that crystallize in the diamond
lattice, and this Hamiltonian is valid throughout the
whole Brillouin zone. The formulation presented here is

sufficiently Qexible so that various band orderings can
be readily tested and the measured band gaps and
effective masses can be simply related to a few band

parameters that characterize the Hamiltonian. Using
this effective-mass Hamiltonian, the frequency depend-

ence of the dielectric constant is calculated. Detailed
applications are made to the two semiconductors silicon

and germanium.
Phenomenological band calculations from effective-
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mass Hamiltonians have been previously developed" "
and applied to correlate and interpret various experi-
mental data, but these have generally been limited to
fairly small volumes of the Brillouin zone. For example,
the k p expansion technique, which is an expansion of
the energy about one point, has been successfully
applied to various semiconductors. "Other interpolation
schemes, based on pseudopotential calculations, have
been developed to interpret detailed Fermi-surface meas-
urements"" in such metals as Al and Pb. Although
these schemes have proven valuable in the analysis of
experimental results, the theories are valid over only a
limited energy range close to the Fermi level.

The basic ideas underlying the Fourier-expansion
technique for electronic energy bands in solids have
been previously presented in various forms, but little
application of the method has been made to real solids.
The Fourier-expansion technique used here is related
to a tight-binding calculation for the energy bands, "
since the fuectioeal form of the wave vecto-r depen-dent
matrix elements is identical in the two treatments.
Furthermore, the Fourier-expansion coefficients can be
related to integrals involving atomic wave functions.
These overlap and transfer integrals are explicitly cal-
culated in the tight-binding treatment, whereas in the
Fourier-expansion approach, the expansion coefficients
which are related to these overlap and transfer integrals
are never calculated from first principles. These coef-
ficients are simply regarded as parameters to be deter-
mined from experimental data. Slater and Koster33
have presented an extension of the tight-binding cal-
culation which gives the most general form for the
energy bands, consistent with the lattice symmetry
for crystals with cubic symmetry. By actually evaluat-
ing the band parameters of these most general energy
bands, a rapid convergence of the Fourier expansion is
found, thereby indicating that a localized-orbital picture
for the electronic energy bands has some validity.

One outstanding application of the tight-binding
technique has been made to determine the energy bands
in graphite. '4 A Fourier expansion of the graphite energy
bands along the vertical edges of the Brillouin zone was
carried out by Slonczewski and Weiss, "and the expan-
sion coefficients were evaluated by using such detailed
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experiments as the de Haas —van Alphen effect, " the
diamagnetic susceptibility, ' cyclotron resonance, ' "
and the magnetoreflection. 4' The application of the
Fourier-expansion technique to graphite has shown
that a vast quantity of experimental data can be cor-
related and explained by this energy-band model.
Since only a few Fourier coefficients need be em-
ployed, the rapid convergence of the Fourier series is
demonstrated.

Since no such detailed determination of the energy
bands from experimental data has yet been successfully
attempted for any other solid, the convergence of the
Fourier series has never been demonstrated in materials
for which the overlap of atomic orbitals is more im-
portant. In fact, because of various unsuccessful
attempts, "4' it has been generally regarded4'44 that a
tight-binding treatment does not provide an adequate
representation for the electronic energy bands of such
solids. When the tight-binding formalism had been
applied previously to these materials, it had been done
as an interpolation scheme for energy bands calculated
at high-symmetry points. "4' In the present paper, it
is demonstrated how the Fourier-expansion technique
can be used to obtain the electronic energy bands in
silicon and germanium from experimental data. Meas-
urements of energy gaps and energy-band curvatures at
high-symmetry points in the Brillouin zone, as well as
the frequency-dependent dielectric constant, are uti-
lized. Because of its simplicity, this Fourier-expansion
method is an attractive computational tool, and has
particular merit for systematizing and correlating
experimental results.

The presentation of the Fourier-expansion technique
in this paper is intended as a working tool for experi-
mentalists in analyzing their data. The theoretical
background is presented in Sec. II. Section IIA is
devoted to a description of the effective-mass Hamil-
tonian for the diamond structure. Using this Hamil-
tonian, expressions for the energy bands and their
curvatures in certain high-symmetry directions are
given in Sec. IIB. The effect of the spin-orbit inter-
action in the diamond structure is discussed in Sec. IIC,
and, finally, in Sec. IID a calculation of the frequency
dependence of the complex dielectric constant is pre-
sented. Application of the theoretical background
material of Sec. II is made to obtain explicit results
for the energy bands and for the frequency-dependent
dielectric constant in silicon and germanium in Sec. III.
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Results are also given for the eRective masses for all s
and p bands in silicon and germanium at the F, L, and
X points. The extension of the Fourier expansion to
more distant neighbors is treated in Appendix A.

ikz

II. THEORETICAL DEVELOPMENT

A. Effective-Mass Hamiltonian for Diamond Lattice

The diamond structure consists of two interpenetrat-
ing fcc Bravais lattices which are displaced by —,a(1,1,1).
The Brillouin zone for this structure is the truncated
octahedron shown in Fig. 1. There are two atoms/unit
cell, and the structure factor vanishes for Bragg
rejections from the square face centered about X. This
crystal symmetry characterizes the periodic potential
seen by the valence and conduction electrons.

Whereas the crystalline potential is periodic in the
direct lattice, the electron energy bands E„(k) can be
treated as periodic functions of the reciprocal-lattice
vector in the extended-zone scheme. Since E„(k) is
periodic in k, a Fourier expansion

E„(k)=Q e (d)e'~ s

can be made in terms of the vectors d of the direct
lattice. The Fourier coe%cients e (d) constitute the
band parameters which characterize the energy bands.
The crystal symmetry of the diamond lattice greatly
restricts the number of independent band parameters,
and if the Fourier expansion is rapidly convergent, the
energy bands can be completely specified in terms of
only a few band parameters. In fact, rapid convergence
of the series is required for practical applications of
the Fourier-expansion technique.

The symmetry operations and associated character
tables for the diamond structure have been enumerated

by Herring. The symmetry operations include various
screw and glide operations which are point-group opera-
tions of the fcc lattice followed by translations by a non-
primitive lattice vector. The additional degeneracies
associated with the ttoo jnterpemetrgfirsg fcc lattices are
easily handled in terms of the symmetry of the elec-
tronic wave functions.

In order to demonstrate these symmetries, it is
convenient to choose tight-binding wave functions as
basis functions. However, it should be emphasized that
except for these symmetry considerations, no explicit
use is made of tight-binding functions in constructing
an effective-mass Hamiltonian for the diamond lattice.
The tight-binding bonding and antibonding wave func-
tions 4'+(k) and + (k) for the diamond structure are
written in terms of linear combinations of the atomic
orbitals lt(r, ) and lP(r~+~) centered about atoms of

Fro. 1. Brillouin zone for the diamond lattice in which some of the
high-symmetry points and axes are indicated.

each sublattice:

(2)

where ~=-',a(1,1,1) is the displacement of these two
sublattices and r; represents the direct fcc lattice
vectors: rs ——a(0,0,0), rt ——a(1,1,0), rs= a(2,0,0), etc. The
internal symmetries of this crystal structure yield
relationships between the wave functions at k and at
the displaced wave vectors k'=k+(s. /u)(2, 0,0) and
k"=k+(7r/a)(1, 1,1), given by

+~(k+ (rr/g) (2,0,0))=@~(k),

(1wi) (1+i) (3)
++(k+(s-/a)(1, 1,1))= ++(k)+ @ (k).

Using these crystal symmetries, an effective-mass
Hamiltonian for the diamond lattice has been developed
that is valid throughout the entire Brillouin zone."
Eight coupled energy bands are explicitly considered
which arise from states having symmetries I'~, F25,
1's., and 1'» at k=0 (the F point). These symmetry
types include all the symmetries encountered in cou-
pling s and p bonding and antibonding states. Although
this formulation does not explicitly include all the
symmetry types for other bands (such as d bands), the
effect of such bands is implicitly contained in the actual
evaluation of the band parameters that enter into the
effective-mass Hamiltonian. Since these band parame-
ters are evaluated directly from experimental observa-
tions, contributions to the actual magnitudes of the
parameters are included for all bands, regardless of
their symmetries. By carrying out a k p expansion of
the eQective-mass Hamiltonian about high-symmetry
points, the relative importance of the various bands,
which are not included explicitly, is found using the ex-
perimentally determined values of the band parameters.

The effective-mass Hamiltonian for e coupled bands

"C.Herring, J. Franklin Inst. 233, 525 (1942). The extension
to double group representations required in treating the spin-orbit
interaction is given by R. J. Elliott LPhys. Rev. 96, 280 (1954)$.

4' G. Dresselhaus (to be published): A preliminary account of
this work is given in G. Dresselhaus and M. S. Dresselhaus, The
Optica/ Properties of Solids, edited by J. Tauc (Academic Press
Inc., New York, 1966), p. 198.
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ho(k) representing the Hamiltonian for the related fcc
lattice is written as

is written" as an (eXe) matrix of the form

/x++(k) x+-(k))
x(k) =

ikx-+(k) x- (k))

where each of the square matrices K++, K+,K +, K
is of dimensionality r//2 Th. e symmetry relations giv
by Eq. (3) require that e be even; that is, the bands a
required to occur in pairs. For example, when the sym-
metry types I'& or I» are considered, the related
symmetry types F2 and F», respectively, must also
be included in order to satisfy Eq. (3). The symmetry
relations of Eq. (3), in fact, relate the matrices of
Eq. (4) in the following way:

In this equation, the Fourier-expansion coe%cients
p, p are the band parameters for the energy bands, the
index n denotes the nth nearest-neighbor distance d
of the direct lattice a=0, 1, 2, , and the index P
enumerates the band parameters that can occur for a
given value of n, namely P= 1, 2, . . . , P, .The Fourier
expansion in Eq. (9) is written explicitly up to and in-
cluding terms at the next-neighbor separation or o.= 2.
In order to compare the band parameters y p with
equivalent band parameters that have appeared in the
work of Slater and Koster33 and Dresselhaus, 4' Table I
is included. Because of time-reversal symmetry, the
Hamiltonian can always be written in a form such that
the band parameters y, p are real c numbers, independ-
ent of crystal momentum k. In this way, all the k
dependence in the effective-mass Hamiltonian is con-
tained in the symmetrized Fourier-functions C(n, k; rs),
where rp denotes one of the p symmetry types which
occurs for the nth nearest-neighbor distance. A listing

X++(k+ (~/a) (2,0,0))=X-—
(k)

X++(k+ (vr/a) (1,1,1))= —',LX++(k)+X——
(k)j (5)

+-', iLx+-(k)-x-+(k) j.
The matrices K++ and 3'. transform as F1, whereas
K+ and K + transform as F2 . In addition, invariance
under time-inversion symmetry requires that the matrix
elements of the (r/Xe) Hamiltonian are related by

x;,*(—k) =x;,(k) . (6)

Using these symmetry conditions, the Hamiltonian can
be written in terms of four Hermitian matrices ho(k),
h, (k), go(k), and g&(k) as

(4) h, (l,)= L~„—4~„y~, ,c(2,k; r,)js(s,r,)
yL~, ,—4~, ,,+q, ,,c(2,k; r,)js(p, r,)
y&, ,C*(2,k; r„) S(p,r„)

en +&, ,C(2,k; r».) S(p,r„.)
+p2, 4C(2,k; r») S(sP,r„)+ . (9)

(ho(k)+by(k) gp(k) igg(k)&
x(k) =

]

Eg (k)o+igy(k) hp(k) hy(k) /
(7) TABLE I. Notation for band parameters.

in which ho(k) is the Hamiltonian for the fcc lattice.
Application of the symmetry relations of Eqs. (5)
and (6) to Eq. (7) yields the symmetry properties

ho(k+ (m/a) (2,0,0))=ho(k),

ho(k+ (m/a) (1,1,1))=ho(k),

h,(k+ (x-/a) (2,0,0))= —h, (k),
hg(k+ (vr/a) (1,1,1))= gi(k) .

(8)

The off-diagonal matrices of Eq. (7), gq(k) and go(k), are,
respectively, antisymmetric and symmetric under time-
reversal symmetry. The symmetry relations of Eq. (8)
are generally valid and characterize the diamond lattice
whether a particular crystal is to be described by 2
coupled bands (e.g., only s bands), by 6 bands (only p
bands), by 8 bands (s-p bands), by 18 bands (s-p-d
bands), or by the spin-orbit split bands (Pg/2P3/2).
These symmetry relations guarantee that the energy
bands exhibit all the necessary band degeneracies at
symmetry points and along symmetry axes.

In the case of silicon and germanium, the eGective-
mass Hamiltonian is written as an (SXS) matrix, and
other bands that are of lesser importance near the
Fermi level are included implicitly in the evaluation of
the band parameters. With n=S, the (4X4) matrix

This
paper

~,, , 24~L(000),r, ; r, r, g

+24~/(2 —; -', ),r„r,~ r,g
+24~((110),r„r,~ r,g... 24 t(000),r„r„r„q
+24nL(-,' —', —,'),I'; r, 5 ~ r»g
+24nL(110),r&, r» &~ r»g

6uL(-,' —; -', ),r, ; r, ~ r,g
6 L(-,'-,'—,'),r„r„~r„g
6~L(-', —', -', ),r2«, r &~r g

Y1, 4 6Qt (2 g 1i) r16' rl ™r15]
4n((110),rg,.r, ~ rg)

"r2, 2 4AL(1 10),r„.r„~r,
4 L{110),r„.; r„r„g

Vg, 4 4a((110),r», rg ~ r»g
r2, 5 4nL(110),r„;r\5 ~ r 7

4~((110),r„,; r, ~ r„,g
4nt (110),r», r ++ rg«g

E...(000)+4E...(—,
'

—,
'

—,')
+12E, ,(110)

E*,*(000)+4E., *(k 2 2)
+8E...(110)+4E,, (011)

Es, s(k 2 k)
E*,*(2 2 2)
E*,w(2 k 2)
E *(k k., 2)
2E„,(110)
3LE*,*(o11)+2E*,*(I1o)j
2E, „(110)
2E...(110)
-',

t E,.(011}—E...(110)g
2E...(011)'
—2E, 1/(011)o

a See Ref. 46.
b The Slater-Koster Hamiltonian (Ref. 33) Xs.K. is related to the

Hamiltonian used in this paper by a unitary transformation.

h0+g0 hl+ig1S. K. =
hI —zgI ho —g0

o There is a misprint in Table V of Ref. 33.The correct entries are

(s ( x) II = -4E&,(011) sing sing+4iE. ,&(110) sing(cosg+cosf),
(x [y)11= —4E&,&(110) sing sing —4iEz,z/(011) sing (cos$ —cosy),

and (y)s)II is obtained from (x(y)II by a cyclic permutation of $, q, g plus
a complex conjugation.
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TABLE II. Symmetrized Fourier functions for a diamond lattice. '

8(000) C(ok;r)= 1

—',8(1,1,&)

8(1,1,0)

C(1,1;r,) =
C(1,1; r, .) =

C, (1,k; FI5) =
C.(1,l; r».) =

C(2,k; rI) =
C, (2,k; r„)=
C.(2,l; r„)=

C.(2,1;r,.) =
C.(2,k; r25) =

—4+cos-', a(k, +k„+k.)+cos-,'a(k —k„—k.)+cossu( —k, +k„—k.)+cos-', a(—k —ky+k. )
sin-,'a(k, +k„+k,)+sin-', a(k, —k„—k,)+sinsma( —k +k„—k,)+sin-,'u( —k, —k„+k,)
sin-', a(k +k„+k,)+sins4a(k, —k„—k,) —sin-', a(—k, +k„—k,) —sin-,'u( —k —k„+k,)
cos-,'a(k, +k,+k,)+cos-,'a(k —k„—k,)—cos-,'a( —k +k„—k.) cos ',—a( k-, —k„+—k.)
—5+cosa(k„+k,)+cosa(k„—k,)+cosu(k, +k )+cosa(k, —k, )+cosa(k~+k&)+cosa(4 —ks)
/cosa(k„+k, )+cosa(k„—k,)5+a&Lcosa(k. +k, )+cosa(k, —k,)7+~'Lcosa(4+k&)+cosa(4 —ks)7
sinu(k~+k„)+sinu(k k„)—+sinu(k, +k,)+sinu(k —k,)
cosa(k„+k,) —cosa(k„—k.)
sina(k +k„)+sinu(k, —k„)—sina(k +k,)—sinu(k —k,)

cyclic permutation of A, ~, A'„, Au gives the functions C„(n,k; r&) and Cu(n, k; rf) whereas Cs(n, k; »2) = LCI(e,k; r12)j;C(n, k; r1s) =(C1(m,k; r1g),
Cg(n; k, I'12) }and eo =exp(2~i/3).

of the symmetrized Fourier functions for the diamond
lattice (4s=0, 1,2) is given in Table II. The C(n, k; Fs)
functions are one-dimensional vectors for symmetries
I'& and 12, two-dimensional vectors for symmetry I"»,
and three-dimensional vectors for symmetries I'», I'2;,
and F» . Since no commutivity has been assumed for
the k vectors, the C(n, k; Fs) functions can be treated
as operators, as must be done in the presence of an ex-
ternal magnetic field.

The remaining factors that enter into Eq. (9) are
the (4X4) basis matrices S(4,Fs) The in. dexi is a band
label and the 1 p denote the symmetry types. A list
of the S(i,rs) matrices that occur in the effective-mass
Hamiltonian for silicon and germanium is given in
Table III. For symmetry I'&, only one basis matrix is
involved, while for F» symmetry, two (4X4) matrices
are required Li.e., S(p,r~s) is a two-dimensional vector
of (4X4) matrices). Similarly, for F&s, F&s, and rss
symmetries, three related basis Tnatrices occur so that,
for example, S(p,rss ) denotes three (4X4) matrices.
The dot-product notation, which occurs in Eq. (9)
and subsequently, represents a summation over ap-
propriate components of the syrnmetrized Fourier-
function vectors with the corresponding basis matrix.
For example, for the I'», I'», and I'» symmetries
C S=C,S +C„S„+C,S„while for Fqs symmetry
C* S=Cq*Sq+CqSs. See Tables II and III for explicit
expressions for C and S.

Whereas the (4X4) matrix hs(k) of Eq. (7) is even
under the translation k ~ k+(4r/u)(2, 0,0), the (4X4)
matrix h~(k) is odd under this translation, and

h, (k) =y [4+C(1,k; r&)]S(s,r&)+y&, sL4+C(1,k; r )]
XS(p,r,)+~,,,C(1,k; r„) S(p, r».)

+yq 4C(1,k; Fqs) S(sp, res)+, (10)

where the band parameters p, p, the symmetrized
Fourier functions C(n, k; rs), and the (4X4) basis
matrices S(i,rp) are listed respectively in Tables I—III.
Here again, the Fourier expansion is terminated at
next-nearest-neighbor terms n= 2.

The o8-diagonal matrices in the effective-mass
Hamiltonian of Eq. (7) are either symmetric or anti-

TABLE III. Basis matrices. '

S (sp,r 4)=

S„(sp,l' )=

p
Z

0
0

p
0

0

i 0 0

0 i 0

0
0s, (sp,r,) =

0 0 i

p
1S,(sp, r„)=
0

1 0 0

S~(sp rs4) =

s, (sp,r, )=

S(s,ri) =

s(p, r,) =

()
0
1
0

r 0
0
0
1

0
0
0

p
0
0
0

0 1 0

0 0 1

0 0 0-

0 0 0
1 0 0
0 1 0
0 0 1.

a The other pertinent basis matrices are related to those in the table by
the expressions:

S.(p, r25 ) =S,(sp, r15)$ (sp, I 15)+S (Sp,r15)S (sp, r15),
S~(p, r15 ) =ifS„(sp,r15)S,(sp, r15) —S (sp, r15)S&(sp, r15) },and

S„(p,r&) and S,(p, l';) are obtained by cyclic permutations of x, y, z. Further,
S,(p,r„)= I S.(sp,r„)f2+„(S„(sp,r15)j~+„~tS,(sp, r») $2,

S2(p, l 12) is the Hermitian conjugate of SI(p,r12), 6 is a (3 X3) null matrix,
and co =exp(2~i/3).

symmetric under time inversion. The symmetric matrix
gs(k) is written as

gs(k) =ys, sC(2, k; Fss ) S(sp, rss )
+~, ,,C(2,k; r„).S(p,r„.)+, (11)

and the antisymmetric matrix g&(k) is obtained from
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B. Energy Bands along High-Symmetry Directions

The (8X8) effective-mass Hamiltonian simplifies
considerably along high-symmetry axes and at high-
symmetry points in the Brillouin zone. Since experi-
mental information is used to determine the band

TABLE IV. Connectivity relations.

FI —+

F15~
F2. —+

F25 ~
S,(F) ~
n4(F) ~

6 axis

61,b, 5

ng(X) 52 (F) r4 (X) Ag(F)
n.(x) n, (F)

A axis
FI —+ AI

F15—+ h.I,h.3
F2. ~ A1

Fg5. ~ AI,A.3

Z axis

L12L2& + AI

L,L,.—+ A

Fl ~ ~1
F15~ ~12~32~4
F2. —+ g3

F25 ~ &1,&2,&3

hi(k) by a translation k~k+(7r/a)(1, 1,1) according
to Eq. (8):

g, (k) =~, ,,C(i,k; r,.)S(s,i,)+~,,,C(i,k; r, .)S(p,I,)
+pi, gC(1,k; I'„).S(p, rgp. )
—y1,4C(1,k; rgpl) S(sp, i'12)+ . . (12)

The effective-mass Hamiltonian presented in Eqs.
(7)—(12) and Tables I—III can be applied to write
dispersion relations E (k) for the energy bands for
materials which crystallize in the diamond structure. By
terminating the Fourier expansion with terms involving
next-nearest-neighbor interactions (n= 2), these energy
bands are described by 13 band parameters, where 2 are
associated with distance dp= u(0,0,0), 4 are associated
with 11———2' a(1,1,1), and 7 with dg = a(1,1,0) . In Appendix
A, thy terms in the effective-mass Hamiltonian arising
from interactions at third- and fourth-nearest-neighbor
distances are presented. Since, for example, the distance
~dg~ is not much larger than ~dg~, it would be expected
that some higher-order Fourier terms could provide
quantitative refinement of the energy bands discussed
in this paper.

The energy bands for the various materials which
crystallize in the diamond structure are described by
the same effective-mass Hamiltonian but differ in the
actual values of the band parameters and the relative
importance of the spin-orbit interaction discussed in
Sec.IIC.That is, the explicit values of the band parame-
ters determine whether the solid is a semiconductor, a
semimetal, or a metal. I urthermore, this Hamiltonian
can also be applied, with slight modification because of
the lack of inversion symmetry, to describe the energy
bands of various III-V compounds which crystallize in
the zinc-blende lattice, e.g., InSb. This application is
discussed in Ref. 46.

kii(K) = yp 1
—4'ri 1(1—cosg QK) 4'rg 1(1—cosaK),

hg, (K) = yp 2
—4+1 2(1—cosg aK)

—4(yg 2
—yg p)(1—cosaK),

kgg(K) = k44(K) = yp 2 4'ri 2(1 cosg GK)

—4(yg, g+ 2'r 2,4) (1—cosoK),

kig(K) = 4i (y1,4 sing 47K++24sinaK),

kgp(K) k47(K) = 4i'rig—sing GK, .

(13)

The remaining nonvanishing matrix elements are related
to those given in Eq. (13) by the symmetry conditions
derived from Eq. (8):

h;; (K) =h, ,(K+2~/a), (14)

fori'=i+4, j'= j+4, andi, j~(4, and by the Hermitian
character of the Hamiltonian h, ;(K) = h;;*(K). Under the
symmetry operation K ~ K+27r/u of Eq. (14), cos 21aK ~
—cos2a~, while cosm is invariant. In these equations,
the definition of the distance a in the direct lattice,
places atoms at tg(0, 0,0), ga(1, 1,1), u(1, 1,0), etc., where
g= 2.71 A in silicon and 2.83 A in germanium.

The dispersion relations along the 6 axis are found
by solution of the secular equation implied by the
Hamiltonian of Eq. (13).The nondegenerate roots are
easily found to be

E+(~1)—g[kll+kgg~((kll —kgg)'+4~klg~ ) ' j,
E+(ag, ) = —,'[hpp+hppa((hpp —hpp)'+4

~
hpp i')"'g,

while the doubly degenerate set is given by

E+(6,)= —,'[h„+h„a((h„—h„)'+4
i h„i ')' 'j. (15)

parameters, and, furthermore, since many experiments
are particularly sensitive to the energy bands at high-
symmetry points, explicit formulas are given in this
section for the energy bands at the high-symmetry
points I", X, E, and I. and along the axes 6, Z, and A.

(see Fig. 1).
I. 6 Axis

Along the I'-X or 6 axis, the crystal-momentum
vector is (k„k„,k,) = (K,O,O) and the effective-mass
Hamiltonian can be factored. That this factorization
occurs can be understood by elementary group-
theoretical considerations. '" By using the connectivity
relations given in Table IV it is seen that along I"-X the
one-dimensional representation A~ occurs twice, the
one-dimensional representation A2 occurs twice, and
the two-dimensional representation A5 also occurs
twice. The degree of the secular equation is governed by
the number of times an irreducible representation
occurs. Thus, the (8X8) Hamiltonian is expected to
break up into two (2 X2) blocks yielding nondegenerate
eigenvalues E+(61) and E+(62) and one (4X4) block
with two double degenerate eigenvalues E+(Dp).

By direct substitution of k= (K,0,0) into Eqs. (7)—(12)
and by Tables II and III, the nonvanishing matrix
elements h;, of the effective-mass Hamiltonian along 5
are found to be
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E(I15) Y0,2 y

E(1'25 ) = y0, 2
—8yi, 2=0, (16)

in which the zero of energy is fixed at E(1'25'), the top
of the valence band.

Likewise, at point X, where u~= x, four doubly
degenerate levels result,

In particular, at the I' point (0,0,0), the expressions for
the nondegenerate energy bands become

E(1'1)= Vo, 1,
E(1'2 )=V0, 1

—8V1,1~

and the triply degenerate levels are

0.5

~ -05—
R
LLJ

R
UJ L

—).0—

t

-5.0
C9
K
F1
R

-10.0

(+4) Y0, 2 4|1,2 8 Y2, 2 4 Y2, 5&4 Y1,3 y

(Xl) 2L~11+x22+((xll X22) +4
~
x12

~ ) j )

in which

(17)
I

X UK

(&) (X ) (X)

—-15.0

~11 +0,1 471,1 8+2,1 )

X22 Y0,2 4 Y1,2 8 Y2, 2+872, 5 y

~]2= 41+1,4 ~

FIG. 2. Energy versus dinmnsionless wave vector for a few

(18) high-symmetry directions in silicon. Spin-orbit interaction has
been neglected.

These band degeneracies at points I' and X along the 6
axis are seen in the energy bands for silicon shown in
Fig. 2. It should be emphasized that the ~1 and ~2
levels have no greater symmetry at the X point than at
an arbitrary point along the 6 axis. That is, in an
extended-zone scheme, points along the 6 axis obey the
connectivity relation I'~ X—+ F, shown in Table IV.
Therefore, the h1 and A2, levels interchange their
symmetry at X and become 62 and 61 levels, respec-
tively. Thus, since the 61 and 62, levels can have non-
zero slopes at the X point, the X point does not gener-
ally represent a critical point in the joint density of
states for interband transitions to the E+(Xl) bands.

On the other hand, the double degeneracy of the ~5
levels automatically guarantees that the E+(65) levels
approach X with zero slope. However, when the effect
of spin-orbit interaction is considered, the degeneracy
of the E+(65) levels is lifted and none of the energy
bands need approach X with zero slope. These sym-
metry considerations are treated in greater detail by
Herring. 4'

2. Z Axis

Along the Z axis, I' ~E —+ X, the substitution
k = (K,K,O) is made. In this ca,se, the nonvanishing matrix
elements h, ,(K) of the eifective-mass Hamiltonian are

hll(K) =go, i—2yl, l(1—cosaK)+y2, 1(—5+4 cosaK+cos2aK),

k22(K) k33(K) 70, 2 2'Y1,2(1—cosaK)+y2, 2(—5+4 cosaK+cos2aK)+72, 5(2 cosaK —1—cos2aK),

k44(K) =70,2
—2yi, s(1—cosaK)+y2, 2(—5+4 cosaK+cos2aK) —2ys 5(2 cosaK —1 cos2aK) )—

h12(K) =his(K) =i(2y14sinaK+, y2, 4(sin2aK+2 sinaK)),

h23(K) = —2yi, s(1—cosaK) —y2, 3(1—,cos2aK),

his(K) = 2y1, 4(1 —cosaK) —y2, 5(1—cos2aK),

hss(K) k33(K) =i( 2ylssi—naK+,y2, 7(sin2aK —2 sinaK)].

(19)

Using the symmetry relations of Eq. (8) and the Hermitian property of the matrices h0(k), kl(k), g0(k), and gl(k)
in Eq. (7), the other nonvanishing matrix elements of the effective-mass Hamiltonian are related to those of
Eq. (19) by

i = 2,3,4;j=i+4,
k55(K) —kll(K) O'Yl, l(1+cosaK)

h, ,(K) =h, ;(K)—4yl, s(1+cosaK)

h„(K)= h57(K) =kls(K) —4y1, 4 sinaK,

k57(K) =h23(K)+4yi 3(1—cosaK),

h45(K) = his(K) —4y1, 5(1 COSaK),

' k43(K) k47(K) k23(K) 2iy2, 7(sin2aK —2 sinaK),

h, ,(K) =h,7.*(K).

(20)



656 G. DRESSELHAUS AND M. S. DRESSELHAUS

By direct inspection, it is apparent that the (8X8) effective-mass Hamiltonian along the Z axis, given in Eqs. (19)
and (20), breaks up into two uncoupled (4)&4) blocks. However, from the connectivity relations of Table IV, it is
seen that the representations Z2 and Z4 each occur once, while Z~ and Z3 both occur three times. Therefore, there
must exist a unitary transformation which transforms each of the (4&&4) blocks into a (1&&1) and a (3&(3) block.
The unitary transformation that accomplishes this factorization is the one that transforms the basis vectors
(x,y,s) into (2 ' '(x+y), 2 '~'(x —y), s). The resulting Z2 and Z4 energy levels are related to the matrix elements of
Eqs. (19) and (20) by

E(Zp) = h66(~) —h6p(~),

E(Z4) =h" (~)—hgs(~),

while the dispersion relations for the E(Z&) and E(Z3) bands a.re found by solution of the secular equations

and

hgg(~) —E(Zg) v2hgg(1:) hg, (l )—&2kgg(K) k22(K)+&23(+) E(Z1) ~2~28(&)

h]8(K) —v2h28(K) h88(~) —E(Z&)

=0 ) (22)

h44(~) —E(Z3)
h4g(~)—VZh4, (~)

h45(~)

has(~) —E(Z g)—vs�„(K)

V2h4, (K)

v2h56(~)

h66(~)+h, p(K)
—E(Z,)

=0 (23)

The solutions to Eqs. (21)—(23) at the I' point (a=0) reduce properly to the dispersion relations given by Eq. (16)
and obey the connectivity relations of Table IV. Since the energy bands at the Epoint, ax= 3m/4, are not especially
simple, no explicit expressions need be written here. Furthermore, the K point has no higher symmetry than an
arbitrary point along the Z axis. Therefore, the K point need not be a critical point and the energy bands along the
Z axis will, in general, have nonzero slope at E.

On the other hand, the energy levels at point X are simpler and are given by the expressions of Eqs. (17) and (18),
which were derived by approaching the X point along the 6 axis. However, when the X point is approached along
the Z axis, substitution of ay=~ into Eq. (21) results in

for the E(Z2) level, and

(X4) E(Z2) g=r/a 270, 2 872, 2 4 r2, 5 471,3

E+(X ) =E(Z ) i.=.i.=E(Z2)
I
=.i.+»~, 3

(24)

(25)

for the E(Z4) level. The connectivity relations I'~~ ~ Z, —+ X4 and I'~5 ~ Z4 ~ X4 do, in fact, determine the sign
of y& 3. Since at the I' point, E(Z&) becomes one of the degenerate-valence bands E(I'» ), it is necessary that
E (X4)(0, if the crystal is to be an insulator or semiconductor. Similarly, since E(Z4) becomes one of the de-
generate-conduction bands E(1'&5), it is necessary that E+(X4))0. Thus, in order both to satisfy the connectivity
relations and require that the crystal be insulating or semiconducting, it follows from Eq. (25) that

vi, 3&0. (26)

By restricting y~ 3 to positive values, the actual determination of the band parameters in silicon and germanium
is greatly simpli6ed.

Whereas the energy bands of Fig. 2 along the Z axis exhibit various slopes at the E point, all of the energy levels
come into X with zero slope. This would make X appear to have especially high syDunetry, but in fact the energy
levels along directions parallel to the Z axis also come into the appropriate point on 6 axis with zero slope.

3. A Axis

Along the A. axis, the appropriate substitution is k= (z,~,~). The connectivity relations of Table IV show that the
two-dimensional representation A3 is contained twice and the one-dimensional representation A~ occurs four times.
Therefore, the (8X8) Hamiltonian must factor into two (4X4) blocks, one of which has two sets of doubly degener-
ate roots, while the other has, in general, four distinct roots. The unitary transformation, which decouples the
(8)&8) matrix into two (4)&4) blocks, is that transformation which sends the basis functions (x,y,s) into the linear
combinations 3 ' '(x+y+s, x+a&y+aPs, x+cu'y+&us) where cv=e'"'I'. After this unitary transformation has been
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performed, the nonvanishing matrix elements of the resulting Hamiltonian are

kll(K) Yp, 1+pl, l( 4+COSu'GK+3 COS-,'aK) —3ru, l(1—COS2GK),

huu(K) =yp, 2+pl, u(
—4+cosuaK+3 cosuaK)+ 2ylu(c, osuaK c—osuaK) (—3yu, 2+2yu, p) (1—cos2aK),

k55(K) = k44(K) = kuu(K) 3r1,u(cosuaK cosuaK)+3ruu(1 ,
—cos2GK),

hlu(K) = i&3L71,4(sinu'GK+ sin'2 GK)+ 2y2, 4 sin2aK],

h15(K) = —i/1, l(sinu aK—3 Siilu GK),

hup(K) = —iLy1, u(sinu GK —3 sinu GK)+ 2y1, u(sin 2aK+ sinu aK)],
hip(K) = V3—[y1,4(cosuaK co—suaK)+pu, p(1 co—s2aK)],

and the remaining nonvanishing matrix elements are related to these by

h55(K) = kll(K) 2+1,1(cosuaK+3 COS2GK) )

hpp(K) =huu(K) 2rl 2(cosu'GK+3 cosuaK) —4yl 5(cosuaK —cos-,'aK)
~

k77(K) = hpp(K) = hpu(K) —2yl, u(cos'2GK+3 cosu GK)+ 2 rlu(cosu , GK cosu GK),

hpp(K) =hlu(K) —2iV3yl 4(sin-,'aK+sinuaK),

h 37(K) = h 40 (K) =h 20 (K)+3 ' 1,5 (sinu GK+ sin 2 GK),

h25(K) =klp(K)+243r1, 4(cosuaK cosuaK),

h, ;(K) =h,,*(K) .

The doubly degenerate E+(Au) levels are given by

E+(Au) = -', Lhpu(K)+h;7(K) a {(huu(K) —h77(K))'+4
l h57(K)

l
2) "'],

while the E(A1) levels are found by solution of the secular equation

(27)

(29)

hll —E(A.1) hing

h„—E(A,)
h25*

h26

hg5

20

k55—E(A 1)
h56*

h26

56

hpp —E(A1)

=0 )

where the matrix elements are deined in Eqs. (27)
and (28). The eigenvalues of Eqs. (29) and (30) reduce
properly to the F-point energies in accordance with the
connectivity relations of Table IV.

The energy eigenvalues at the L point are obtained
by substitution of GK=127r into Eqs. (29) and (30).
Because of the additional symmetry at the L point, a
unitary transformation can be applied to transform the
(4X4) matrix at the L point into two (2 X2) blocks. The
resulting eigenvalues for the E"(Ll) and E+(Lu ) levels
are

E'(L~) = 2L~ (L')+B(L')
~ {L~(L') —B(L*)]'+4

I
C(L')

I
'&. '"] (31)

where

A (Ll) 70,1 6yl, l 6ru, l

Similarly, simple expressions are found for the two
doubly degenerate levels at the L point:

E+(Lu) =yp, u
—kyl, u

—6yu, u+2yu, u+2(yl, 2+pl, u) . (33)

In the literature, it has been customary to denote
E+(Lu) by E(I.u), and E (Lu) by E(L5 ); and this nota-
tion is also used in this paper.

These formulas for the energy levels at the L point are
particularly useful in the band-parameter determina-
tion because the formulas are reasonably simple and,
secondly, because considerable experimental informa-
tion is available with regard to these energy levels and
their curvatures. The L point is a critical point in
the joint density of states since all the energy levels
approach L with zero slope, regardless of the direction
of approach to L.

and

A(L2.) =A(L1)+4yl, l,
B(L,.) =B(L,) —4y, 2+Sy. 5.

C(L2.)=C(L,)+4V3y, 4.

(32b)

B(L1)= rp 2 2pl 2
—4'rl, p 6&2,2 4pu 5 &

(32a)

C(L,)= —2%3(y, 4+yu 5),

4. Energy-Band CNrvatlres at I'

Extensive experimental information is available not
only for energy band gaps at high-symmetry points in
t:he Brillouin zone, but also for band curvatures (or
effective masses) at these symmetry points. By carrying
out a Taylor-series expansion of the effective-mass
Hamiltonian of Eq. (7), expressions for the band
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curvatures are obtained. Although such an expansion
can be carried out about any point in the Brillouin
zone, only at very-high-symmetry points are the ex-
pressions simple enough to write down explicitly. ln
particular, the expressions about k=0 are both simple
and useful, because of the accurate eBective-mass
data available for the energy bands about the I' point.
In this section, expansion formulas for k=0 are pre-
sented. On the other hand, the expansion formulas
about the L point and about a point on the 6 axis are
su%ciently complicated so that, in practice, numerical
methods are found to be more convenient in calculating
band curvatures for these points.

A Taylor expansion for the effective-mass Hamil-
tonian of Eq. (7) is made to terms in k2 for the diagonal
entries and to terms linear in k for the off-diagonal
terms. Use of second-order perturbation theory for the
off-diagonal terms yields the expansions for the non-
degenerate energy bands:

E(ri' k) =78 1+(ak)2

(271,4+472, 4)'
X ——,'vi, i—2721+,(34a)

E(1'1)—E(I'„)

E(r,, ; k) =v„—gv„+(aq)

(-27, +47., )'
X -', vi, i—272,i+, (34b)

E(I si) E(I'25~)

in which E(1'~) is the energy eigenvalue at I', given by
Eq. (16). It is of interest to observe that the band
curvatures for these nondegenerate levels are more
sensitive to the high-Fourier coefficients than are the
energy levels themselves. FurtherInore, the same result
is also found for the energy-band. curvatures at the
other high-symmetry points in the Srillouin zone. For
this reason, by terminating the Fourier expansion with

terms for 0.&2, the energy levels are more accurately
represented than the corresponding band curvatures.
Therefore, greater weight is given to the position of the

energy levels than to the band curvatures in carrying
out the actual band-parameter evaluation.

The expansion for the threefold degenerate levels

E(I'15) and E(1'25 ) is carried out by solving a deter-

minantal equation for the three strongly coupled bands

which is of the form

LP+M(ri2+ f'2) —), N(rl NQ'

Lris+M(f 2+ $2) 'A — N81f' =0,
Ng Nrl'f L|'+M((2+ ri2) —).

(35a)

where

aIld

1 =E(r,"k) —E(r,),

($,ri,f') =a(k„k„,k,) .

(35b)

(35c)

The determinantal Eq. (35) is identical in form to the
well-known k p result, "except for a few small differ-
ences in notation. The quantities L, M, and E which

appear in Eq. (35) have the dimensions of energy and
are related to the L', 3f', and E' of the literature'4 by

4(v1.8)'
M(i 25') 271,2 272, 2 72,5+

E(1'„,)—E(r„)
'

Q(r„,)=L(r„.)+M(r„.)—N(r„)
71,2 472, 2+72, 5 71,8+272, 8 y

(41)

and for the E(1'25 ) levels by

(—271,4+472 4)'
L(I 25') 271,2 272, 2+272, 5+ ) (40)

E(r„.)—E(r,,)
'

(I.M) = a (L' M')+ A /22888a-

E=a 'S', (36)

so that the free-electron contribution to the band curva-
ture is already included in L and M. The quantities L,
M, and N for the E(1'15) levels are related to the band
parameters y;,; by

(271,4+472, 4)
L(r„)= ——',7, ,—27, ,+27, 5+

' ', (37)
E(1„)—E(r,)

'

4(v, )'
M(1'15) = —271,2 272, 2 72.5+ i (38)

E(r„)—E(r„.)
Q(1'155) =L(li'15)+M(1'15)—N(I'15)

in which the E(I',) are defined in Eq. (16).Experimental
data are available for the quantities L(1'25 ), M(r25 ),
and Q(1'25.) in silicon and germanium from analysis of

the cyclotron-resonance measurements of holes in the
degenerate valence band E(1'25 ). No experimental
information is yet available for the corresponding
quantities for the conduction band E(I'15). How-

ever, these quantities can be calculated according
to Eqs. (37)—(39), once the band parameters have
been evaluated.

The dispersion relations tEqs. (34)-(35)) for the
energy bands in the neighborhood of the F point are
very similar in f'orm to that given by the k p perturba-
tion theory. '44 For example, the k p result for non-

71,2 472,2+72,5+71,8+272, 8 y

47 E. I. Blount, SoHd Skate Physics, edited by F. Seitz and D.
(39) Turnbull (Academic Press Inc. , New York, 1962), Vol. 13, p. 305.
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degenerate bands is

It,'k'
I (~I"I ~*E) I

'
z(r„k) =z(r, )y +0'p' p

2mo & E(r t) —E((rgs)

(43)

in which the summation is over the integer l, which
labels bands with I'» symmetry, and the notation for
the matrix elements is that used in Ref. 14. A com-
parison between Eqs. (34a) and (43) emphasizes the
characteristic features of the two expansion procedures.
First of all, the velocity matrix element in the Fourier-
expansion approach is directly evaluated in terms
of specific band parameters by taking derivatives
of the eRective-mass Hamiltonian according to the
prescription4' 4'

(44a)

This expression, which is based upon the eRective-mass
approximation, emphasizes the relation between band
curvatures and the k-dependent velocity matrix ele-
ments which determine the intensity of an interband
optical transition. Such identifications of matrix ele-
ments and effective-mass Hamiltonians have been made
in treating the infrared absorption in silicon and
germanium, " cyclotron resonance in graphite, ' and
interband transitions in bismuth. '0 The pertinent as-
sumption of the effective-mass approximation is that in
the presence of an electromagnetic 6eld, the vector k
in the eRective-mass Hamiltonian is replaced by the
operator —iv —(e/Ac) A. The resulting eRective-mass
Hamiltonian can then be expanded as

e
BC —iV —— =X —iV

Itc

LA p( —iv)+p( —iv) Ajy, (44b)
2etoc

in which the perturbation Hamiltonian associated with
the electromagnetic 6elds is written in the customary
way. With this identi6cation, the operator p( —iv)
=msv( —iV) is evaluated according to Eq. (44a). The
utility of this approach is that the k dependence for
both the diagonal and off-diagonal matrix elements of p
is calculated, and the selection rules for optical transi-
tions are determined directly from the effective-mass
Hamiltonian. Therefore, nonvanishing matrix elements
for p can only occur between those bands explicitly
coupled in K(k).

With this interpretation of the matrix elements of
p= mov in the Fourier-expansion approach, only one term
enters the sum of Eq. (34a), whereas the summation in
Eq. (43) is over all r&„. states. However, the most impor-

G. H. WVannier, Rev. Mod. Phys. 34, 645 (1952).
4' A. H. Kahn, Phys. Rev. 97, 1647 (1955).
s' P, A. Wolil', J. Phys. Chem. Solids 25, 1057 (1964).

tant term in the sum is that term which directly cor-
responds to the one and only Fourier-expansion term. .
It might therefore seem that the Fourier-expansion
technique neglects these other bands, but this is not
actually the case. The eRect of the bands that are not
explicitly treated is, nevertheless, implicitly included
both in the actual evaluation of the Fourier-expansion
coefficients from experimental measurements and in the
contribution to the dispersion relation from diagonal
terms in the eRective-mass Hamiltonian.

The treatment of these diagonal terms represents the
other striking difference between Eqs. (34a) and (43),
and is closely connected with the contrasting origins of
the two techniques. On one hand, the k p expansion is
based on a free-electron model, and the unperturbed
mass is the free-electron mass neo. On the other hand,
the Fourier-expansion technique is based on a tight-
binding model, and, therefore, the unperturbed mass
mTB is simply related to certain Fourier-expansion
parameters (or overlap integrals), i.e., (A'/2m Ts)
=a'[——',y» —2ys &]. The inequality between the
tight-binding mass nzTg and the free-electron mass can
be used to account for the neglect of bands which are
not treated explicitly in the Fourier-expansion ap-
proach. To put this another way, the eRect of more
distant ba, nds is treated in the k p approach by in-

creasing the number of bands or the dimensionality of
the effective-mass Hamiltonian, whereas in the Fourier-
expansion approach, it is only necessary to add higher
Fourier coef6cients, mlitholt iecreasieg the dimeesiomulity

of the Hamiltoniae Since the d. imensionality of the
Hamiltonian is fixed at the minimal number of bands
required by symmetry to yield a semiconductor, the
Fourier-expansion approach offers practical computa-
tional advantages.

C. Spin-Orbit Interaction

In the previous section, dispersion relations were

given for the energy bands at various high-symmetry
points and axes. At these points and axes, band degener-
acies commonly occur. Many of these band degeneracies
are lifted by the spin-orbit interaction. Therefore,
whenever the energy associated with the spin-orbit
interaction is large enough to be comparable with
other band separations, no accurate band-parameter
determination can be carried out without including this
interaction.

The effect of the spin-orbit interaction can easily be
treated within the Fourier-expansion formulation. The
spin-orbit term in the effective-mass Hamiltonian is
Fourier expanded and the Fourier-expansion coef-
ficients become spin-orbit band parameters, which are
to be determined from experiment. If the spin-orbit
interaction is small compared with other band separa-
tions (e.g. , s-p band splittings), then perturbation
theory suggests that only a few Fourier coefIicients are
required to adequately represent the spin-orbit terID
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In this section only one spin-orbit band parameter is
used to characterize the spin-orbit splitting everywhere
in the Brillouin zone.

The effective-mass Hamiltonian for the diamond
lattice including spin-orbit interaction is developed by
considering first the matrix K++(k) of Eq. (4) for
coupled s and. p bands (i.e., I'1 and I'12 bands). This
(4X4) matrix X++(k) is written in Eq. (4) in
a (s,p„p„p,) representation. Spin is incorporated into
the problem by introducing eight basis functions
(sl', P, ),P„),P, t'; s$,p J, ,P„J,,p, l). Since K~(k) does not
depend on spin, a related (SXS) matrix Xo++(k) can
be written as

p I (1/2)
1

v3

p (—1/2)

p (8/2)

p (I/2) 2(2)1/2
i 1

Q6 (Q6

TABLF. V. Coupling coefBcients for the P bands. '

1

p (—1/2) {)
g6 g6

(21/2

where 8 is a (4X4) zero block. A unitary transformation
is then performed upon Xo++(k) to change the repre-
sentation into a, (sr~2, pi/2, p2~2) representation in which
the spin-orbit interaction K, , is diagonal and the
transformed matrix is written as

X/1++(k) = UKO++(k) U+.

The matrix U which accomplishes this basis transforma-
tion is given in Table V. In a similar way, the same
unitary transformation is then applied to construct the
other (SXS) blocks, BC// (k), Xo+ (k), 3Co +(k), of the
effective-mass Hamiltonian in a representation appro-
priate to the spin problem, with

p . (—8/2)

a In this table, the unitary transformation U is defined by

Sg
pst
Pvt

s$
P*l
Pul

~pz$

St
sf
p1/2( /2)

p1/2 ( 1/2)

p 3/2 (3/2)

p 3/2 (1/2)

p 3/2 (-1/2)
Ps/2(»')

diagonal entries depending on the spin-orbit band
parameter 6

(x, .++),;= (x, .——),,= x;,8...
(Xo++(k) X/1+

—(k)
xo(k) =

iN, +(k) 22, /2))
(47)

with the diagonal terms given by

xgg= x22= 0)
X33—X44 — 3@x )

2 A (49)
The 16 eigenvalues of this Hamiltonian break up into 8
doubly degenerate pairs; and each pair coincides with
one of the eigenvalues of X(k) in Eq. (7).

The eigenvalues are, however, modi6ed by the in-

clusion of spin-orbit interaction, and the effect is most
significant at those points in the Brillouin zone where
band degeneracies are present. It is convenient to write
the spin-orbit interaction Hamiltonian as

X.„++(k) Be. „+-(k)~
K, .(k) =

x, . +(k) x, . (k)/

where use has been made of the symmetry properties
of the diamond structure given in Eq. (8). Each of the
four (8X8) blocks in Eq. (48) is then Fourier expanded.
Since for many applications (e.g. , silicon and ger-
manium) the spin-orbit energies are suKciently small,
it is necessary to retain only the leading or constant
term in the Fourier expansion. Then K, is independent
of k and is constant throughout the whole Brillouin
zone. This k-independent K, , nevertheless allows the
spin-orbit splitting of the actual energy levels in the
crystal to be k dependent. In the case of the k-inde-
pendent K, „the matrices K, ,+ + and 3C, , only have

X55 X66 X77 X88 3~ )
1 A

and the off-diagonal matrices are (SXS) zero blocks

(50)

The effective-mass Hamiltonian including spin-orbit in-
teraction Kt,,t is then written as

X2.2(k) =Xo(k)+X... (51)

in terms of the matrices defined in Eqs. (47) and (48).
The e6ect of the spin-orbit interaction is to lift

various band degeneracies, although without a magnetic
field the necessary twofold Kramers degeneracy re-
mains. At the F point, the 16 energy eigenvalues of
Xo(k) break up into two doubly degenerate s levels and
two sixfold degenerate p levels. The spin-orbit inter-
action splits each of these p levels into a twofold pi~2
level and a fourfold p2/2 level. If only the leading term
in the Fourier expansion of K, , is retained, as in
Eqs. (49) and (50), then the splittings in the valence
and conduction p bands at I' are both equal to 5, with
the p3/2 levels moving up by 3A and the p&~2 levels
moving down by -236; thus, the center of gravity of the
p-band multiplet is retained in the presence of the
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spin-orbit interaction. Although there is no theoretical
reason why the spin-orbit interaction at F should be
describable in this way with only one spin-orbit band
parameter, there is as yet no experimental evidence in
silicon or germanium to support a more complicated
model.

Note added izz proof. Recent optical measurements by
Ghosh LSolid State Commun. 4, 565 (1966)] and by
Potter LBull. Am. Phys. Soc. 12, 320 (1967)] suggest
that the spin-orbit splitting of the F~5 conduction band
is smaller than that for the F2,.- valence band. This
would indicate that the next term in the Fourier ex-
pansion of BC, should be included.

At the P point, the pp~2 levels are still fourfold
degenerate. As we move away from the F point, as for
example along the A or 6 axes, spin-orbit interaction
lifts the degeneracy. In particular, at the I. point, the
two I3 bands are each symmetrically split about their
centers of gravity to a separation of approximately
~A. This separation between the components of the A3
bands is approximately maintained for most of the
distance along the A axes from I. to F. Although the
spin-orbit interaction lifts the degeneracy of the p3/z
level along the 6 axis, the splitting in this case is very
small, or approximately one order of magnitude smaller
than the pr~, -ppzz splitting at the I' point. Nevertheless,
this splitting is important in giving these levels nonzero
slope at the X point. In fact, at X all the bands have X5
symmetry. Spin-orbit interaction does not split the
double degeneracy of the E+(Xp) levels. This degeneracy
is required for the symmetry-type change ~6~ 67 in
crossing the I point in the extended-zone scheme.
Detailed results for these spin-orbit splittings through-
out the Brillouin zone are given in Sec. III. The effect
of spin-orbit interaction on the band curvatures or
effective masses is also discussed there.

The treatment of the spin-orbit interaction given
above is presented in the sense of a perturbation-theory
expansion. Although this approach is probably the
simplest to apply, it may not be appropriate if the
spin-orbit interaction is suKciently large so that
perturbation theory is not rapidly convergent. If
perturbation theory does not converge rapidly, then it
may be necessary to construct. a (16X16)effective-mass
Hamiltonian 3'.~ that includes the spin-orbit interaction
from the beginning. In this case, the eight basis func-
tions are

Cs T,sl, Primp(p))Pzzz(
—

p)) ppzz(p), pp(z(p),

Ppn( p) Pziz( —p)]

and the Hamiltonian is written following Eq. (48) jn
terms of four (8X8) blocks 3Cz++, ~r+—,~z,—+, ~r——as

Kz++(k) Kz+-(k)
se, (k) =

Kr +(k) Kz—(k)

The symmetry types of the eigenvalues of K~(k) are

labeled by double-group representations of the cubic
group, ' rather than by the symmetry types given in
Sec. IIA. Furthermore, a larger number of independent
band parameters would be required for a Fourier ex-
pansion to second-neighbor interactions (rr= 2). The
reason more band parameters are required to describe
Kz(k) when spin-orbit interaction is included ab izzztio

is that the spin-orbit interaction couples different spin
states. To say this another way, application of the
inverse unitary transformation to Xp(k), U+Xp(k)U,
results in a matrix which has only zero matrix elements
connecting different spin states, as in Eq. (45). On the
other hand, the matrix Ut3CT (k) U will contain matrix
elements connecting different spin states, and these
matrix elements will involve band parameters different
from the 13 parameters of Sec. IIA for 0. ~& 2. Therefore,
the perturbation-theory approach has the advantage of
introducing fewer band parameters, but suffers from the
disadvantage that the convergence of the perturba-
tion theory is assumed. It has been found by direct
calculation that for silicon and germanium, perturba-
tion theory with one spin-orbit band parameter is
sufhcient. Perhaps for gray tin, where the spin-orbit
interaction is larger, perturbation theory may not be
suKciently rapidly convergent, and the more general
double-group approach would be necessary.

D. Dielectric Constant

Once the energy-band parameters which enter the
effective-mass Hamiltonian are determined, explicit
expressions for E„(k) are available. Since the band-
parameter evaluation depends largely on the behavior
of the energy bands in the vicinity of a few high-
symmetry points, it is especially useful to apply these
energy bands to study such phenomena as the fre-
quency dependence of the dielectric constant which
depends on the dispersion relations E„(k) throughout
the entire Brillouin zone. The dielectric constant is
sensitive to the band ordering, and therefore is useful
in the identi6cation of optical structure with a particular
critical point.

The frequency-dependent dielectric constant is cal-
culated in the effective-mass approximation using the
expression of Ehrenreich and Cohen":

dk P j„(k)f„„„

X (~ ~„+z/r—„„.) '(pp+oz„„.+—i/r„„.) ', (53)—
in which f (k) is the Fermi distribution function, and

f& = (2/Ampzp ) ~ P& )
P. (54)

In this application of the dielectric-constant formula,
the band indices e and e' are restricted to the eight
bands which are explicitly treated by the Fourier-
"H. Ehrenreich and M. H. Cohen, Phys. Rev. 115, 786 (1959)
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expansion approach given in Sec. IIA. The energy
difference between bands e and e' at an arbitrary point
k is Ace„„=E„(k)—E„(k), and the energies E„(k) are
found by solution of the eigenvalue problem of the
Harniltonian in Eq. (7). Since electronic transitions to
other energy bands (e.g. , d bands) are neglected in this
calculation of the dielectric constant, quantitative
agreement with experiment cannot be expected above
photon energies at which such transitions become im-

portant, i.e., about 6 or 7 eV in germanium and 20 eV
in silicon. In the spirit of the Fourier-expansion tech-
nique, only a limited number of bands are explicitly
considered, and this group is chosen to include those
bands which are most important within a few electron
volts on either side of the Fermi level.

The k dependence of the momentum matrix element

p„„„in the p direction between states N and e' is cal-
culated through use of the effective-mass approxima-
tion by taking appropriate derivatives with respect to
k of the effective-mass Hamiltonian according to
Eqs. (44a) and (44b). In this way, both diagonal and
off-diagonal matrix elements are calculated, and it is
found that the magnitude of these matrix elements is
strongly k dependent.

In the actual calculation, the relaxation time 7.

was assumed to be independent of the band indices e
and e', and to be independent of the photon energy A~.
This is a great oversimplification, since the relaxation
time must vary from band to band as well as from point
to point in the Brillouin zone. Furthermore, the greater
availability of final states with increasing photon
energy is expected to result in a decrease in 7- „.with
increasing photon energy. Furthermore, 7- „.would not
be expected to be a smooth function of photon energy
because of sudden onsets of interband relaxation pro-
cesses with increasing Ace. The actual value taken for
r ~ is characteristic of a general point in the Brillouin
zone, and is therefore smaller than the values character-
istic of critical points, where certain relaxation processes
are forbidden. As long as ~r„„))1,the magnitude of
7 has no important effect on e2, except in the immedi-
ate vicinity of optical structure. However, v. ~ has a
greater effect on e~, particularly in the neighborhood of
the optical structure. In fact, the observed maximum in
c~ can be used in the actual selection of r„„ for the
calculation. With this selection, the frequency depend-
ence of e2 is only a function of the band parameters,
and no normalization adjustments need be introduced.

The actual k integration in Eq. (53) was carried out
using a Monte Carlo procedure" to select k points.
Since the calculation is limited to the interband con-
tribution to the dielectric constant, it is adequate to
take the Fermi function f (k) =0 or 1, respectively, for
unoccupied or occupied bands, thereby neglecting in-

trinsic excitation or doping effects in semiconductors.
To simplify the actual calculation, the effects of spin-
orbit interaction are neglected. Explicit results for the

frequency dependence of the real and imaginary parts
of the dielectric constant in silicon and germanium are
presented in Sec. III. It is found that the calculated
curves provide a surprisingly good representation of the
experimental data, for Fourier-expanded energy bands
which do not contain terms beyond next-nearest-
neighbor interactions, i.e., n& 2.

III. BAND-PARAMETER DETERMINATION
IN SILICON AND GERMA5IUM

The energy bands of the diamond lattice are the
eigenvalues of the effective-mass Hamiltonian presented
in Sec. II. These energy bands are completely deter-
mined over the entire Brillouin zone, once the pertinent
band parameters or Fourier coeS.cients have been
evaluated. The number of these band parameters
depends upon the number of terms which are retained
in the Fourier expansion. If the integer n denotes the
nth nearest-neighbor interaction, then there are two
independent band parameters for n=o, four for +=1,
seven for o.= 2, and seven for o.=3. In the case of silicon
and germanium, there are more than enough experi-
ments to determine all the Fourier coeKcients for
o.~&2, but not quite enough to evaluate all of the
coefficients for a=3. It is found that by including only
those 13 coefficients for which n~& 2, a, very good repre-
sentation of the energy bands is obtained, consistent
with most of the experimental results to within their
reported errors. The band-parameter determination
described here is thus an attempt to obtain the optimum
representation of the energy bands without introducing
any terms for cx&~3. Nevertheless, these 13 constants
are overdetermined by the presently available experi-
mental data, and it is found that terms in 0.=3 are
ultimately needed to trim up these energy bands to
yield quantitative agreement with certain experiments.
Such an extension of the present analysis is not dificult
and is developed in Appendix A. However, no explicit
evaluation of the band parameters for e&~ 3 is given in
the present work.

In carrying out this band-parameter determination,
more emphasis has been placed upon the frequency
dependence of the complex dielectric constant than
upon some of the less well-identified optical transitions.
It is found that in silicon and germanium, the dielectric
constant is more sensitive to the energy bands over a
large volume of the Brillouin zone than it is to the
bands in the vicinity of just a few critical points. Since
it is desirable to determine the frequency dependence
of the dielectric constant, it is fortunate that the
Fourier-expansion technique permits an accurate and

rapid calculation of this quantity.
In the case of silicon and germanium, the effect of

spin-orbit interaction can be adequately handled by
the perturbation theory approach given in Sec. IIC and,
therefore, only one additional band parameter need be



160 FOURIER EXPANSION FOR ELECTRONIC ENERGY BANDS

TAsr.E VI. Dependence of physical quantities on band parameters.

E(rI)
E(1'2 )
E(I'»)
E(1's5 )
E+(X4) E(X—4)

E(L3)—E(L8 )
Q(1'» )
E+(X4)+E (X4)
E+(X,)+E-(Xg)
E(L~)+E(L~ )
E+(Lr)+E (L~)
E'(L2)+E (L2)
E"(I's.)+2L(1'» )
E"(I's.)
L(j. 25.)
3f(I'25 )
E(X,)
E((Xi),E~"(Xy)
E(L&),E(L2.)
R"(Lr)
E~"(~I),E~"(II)

)'0 1 +0, 2

—6
—2

1

+1, 2

1
—8

—8
—2
—6

1

+1,3 +1, 4 P2, 1 72, 2

4
—16
—8
—12
—6
—6
—4

'y2 3 ')'2, 4 P2, 5 )t'2, 6 Y2, 7

introduced. This parameter is determined directly and
independently of the other band parameters. In ger-
manium, the optical doublet structure identified with
the transition E(I'») —+E(I',.) yields the spin-orbit
band parameter directly. " '4 An accurate value for this
parameter in silicon has been obtained from analysis
of the impurity level spectra of acceptors. "

If the Fourier series is terminated with terms involv-

ing next-nearest-neighbor interactions, 13 band parame-
ters need to be determined. One parameter is immedi-

ately evaluated by fixing the zero of energy at the top
of the valence band E(I'2s ), thereby yielding the rela-
tion &0 2

——Sp&,&. It is, therefore, necessary to select 12
pieces of experimental information, such that these
data yield a system of 12 independent equations in the
12 unknowns. The selection of independent experi-
ments can be accomplished by use of Table VI, which
summarizes the band-parameter dependence of several

energy bands and their derivatives at various high-

symmetry points and axes in the Srillouin zone. In the
upper half of this table, explicit values for the coef-
ficients are given for those physical quantities which

have a linear dependence on only a few band parame-
ters. On the other hand, those physical quantities that
have a more complicated dependence on the band
parameters y;,, are listed in the lower ha, lf of the table.
In this part of the table a band-parameter dependence
is indicated by a check. Derivatives of the energy bands

'2 M. V. Hobden, J. Phys. Chem, Solids 23, 821 (1962).
5' B. O. Seraphin and R. B. Hess, Phys. Rev. Letters 14, 138

(1965)."S.H. Groves, C. R. Pidgeon, and J. Feinleib, Phys. Rev.
Letters 17, 643 (1966)."S.Zwerdling, K. J. Button, B. Lax, and L. M. Roth, Phys.
Rev. Letters 4, 173 (1960).

are denoted by primes and are taken in the longitudinal
(t) and transverse (/) directions with respect to the 6
and A. axes.

Fortunately, a vast quantity of experimental informa-
tion is available for both silicon and germanium, so that
it is easy to find 12 independent experiments. The
selection of a particular experiment is guided not only
by the accuracy of the measurement, but also by the
number and type of the dependent band parameters.
For example, the optical structure identified with the
E(1s ) ~E(l.s) transition is a particularly convenient
experiment to use, since it depends only upon 2 band
parameters y~, 2 and 7~,3, on the other hand, the meas-
urement of the transverse cyclotron mass at the L point
in germanium is more dificult to apply, since it depends
on all 12 band parameters. As the availability and
precision of experimental information increases, a better
selection of experiments can be made. Not only can the
band parameters for n &~ 2 be determined more precisely,
but a more accurate representation of the energy bands
can be achieved through the determination of higher-
Fourier coefficients, such as the band parameters for
0!=3.

It should be emphasized that there is an element of
subjectivity involved in the choice of the 12 experi-
ments which are to be used in the band-parameter
determination. These constants are overdetermined by
the available experimental data, and no set of band
parameters exactly satisfies all the experimental in-
formation to within the quoted errors. In this particular
determination the frequency dependence of the complex
dielectric constant has been emphasized. If on the other
hand, photoemission results had received more atten-
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tion than the dielectric constant, a slightly different set
of band parameters would have been obtained. Since a
particular band-parameter determination can be carried
out in less than 1 min on a high-speed digital computer,
it is possible to vary the set of independent experiments.
It is also easy to examine various band orderings sug-
gested by optical experiments and to investigate the
internal consistency of a particular set of experimental
data.

The present band-parameter determination for silicon
and germanium is based on eight similar measurements
and four dissimilar though somewhat related measure-
ments. The experiments common to both materials in-
clude soft x-ray-en1ission studies to yield yp ~, critical-
point identification of optical transitions between
E(Fss ) -+E(Fs ), the E(Ls )~E(Ls), and the E(Ls )~
E(Li), as well as cyclotron-resonance measurements of
the three eftective-mass quantities L, M, and E of the
degenerate-valence band E(Fss ).The separation E+(Xi)

E(X4) wa—s adjusted to yield agreement between the
calculated and observed energy for the maximum in e&.

In the case of silicon, the remaining four experiments in-
volve the lowest-conduction band E(hr). The energy
E(hi) is determined from optically induced transitions
across the indirect gap E(F».) ~ E(ht)." The loca-
tion of the energy minimum along the h~ axis is found

by analysis of the spacial variation of the electron
wave functions about donor-impurity states. "The band
curvatures about the energy extremum, both along the
A~ axis and perpendicular to it, are determined from the
longitudinal and transverse cyclotron effective masses
obtained from cyclotron-resonance measurements on
electrons. '4 "In the case of germanium, use is made of
the longitudinal and. transverse cyclotron masses of
the lowest conduction band at the L point, ""the
spherically symmetric effective mass at E(Fs )""and
the energy at the conduction-band minimum E(Li)."

In both materials, the parameter yp ], which defines

the position of the valence s band at k= 0, is determined

from soft x-ray-emission studies, ""which provide a
measurement of various bandwidths and are particularly
valuable for the investigation of valence bands far from
the Fermi level. It is found that this energy band does

not interact strongly with any of the other bands, so
that the band structure as a whole is quite insensitive

to a sizeable (e.g. , 20% variation of this parameter).
Valence bandwidths of 16.7 eV and 7.0 eV have been

reported for silicon and for germanium, respectively. ""
In Fig. 2, it is seen that the valence s band is a rela-

tively flat band and shows only a small amount of k
dependence.

"G. G. Macfarlane, T. P. McLean, J. E. Quarrington, and
V. Roberts, Phys. Rev. 111, 1245 (1958).

"G. Feher, Phys. Rev. 114, 1219 (1959}and J. Phys. Chem.
Solids 8, 486 (1959).

~8 8. Lax and S. Zwerdling, I'rogress in Semiconductors (John
Wiley R Sons, Inc. , New York, 1960), Vol. 5, p. 221.

'~ W. K. Kngeler, M. Garfinkel, and J. J.Tiemann, Phys. Rev.
Letters 16, 239 (1966).

The parameter p~, ~ depends upon the separation of
the s bands at the I" point, and is determined by identi-
fication of optical structure with an interband transition
E(Fs5.) ~E(Fs.). Because of the spin-orbit splitting
of the valence band E(F» ), this transition is expected
to be a doublet with an energy separation of A. In the
case of germanium, this doublet structure is so well
resolved that this transition can be unambigously
identified. The structure is observable in both optical
absorption" and electroreRectance measurements, 53"
yielding a room temperature separation of 0.803&0.003
eV" "from the conduction s bands to the ps~s valence
level and of 1.09&0.01 eV" "to the pt~s valence level
at the F point. Therefore, in germanium, the spin-orbit
parameter is found to be 6=0.29%0.01 eV, and since
the E(F» ) level is at the center of gravity of the ps/s
and pt~s valence levels, we have E(Fs )—E(F25')
=0.900&0.006 eV.

On the other hand, the spin-orbit splitting in silicon
is much smaller, so that the identification of a doublet
structure with the E(Fss ) ~ E(Fs ) transition is some-
what ambiguous. For this reason, the dependence of the
dielectric constant on the separation E(Fs )—E(Fss )
was used to help with the identification of this transi-
tion. Characteristic features in both the real and
imaginary parts of the dielectric constant for silicon
are sensitive to the separation E(Fs)—E(Fss ). The
energy dependence of the real part ei, shown in Fig. 3(a),
exhibits a broad shoulder between 3.5 and 3.8 eV, while
the imaginary part s&, shown in Fig. 3(b), has a fairly
sharp minimum near 3.65 eV." By placing E(Fs)—E(Fss)=3.75&0.20 eV, these features in the cal-
culated curves for e~ and e~ could be obtained at the
appropriate energies. Relatively weak optical structure
has been observed at 3.7 eV" and, in addition, a small
peak in the photoemission yield has been reported at
this photon energy. "Various identifications for these
structures have been given in the literature. ' Since
there are probably several critical points in the joint
density of states at about this energy, the identification
of this structure with E(Fs )—E(F» ) cannot be made
unambigously.

The determination of the spin-orbit band parame-
ter in silicon is not made from analysis of any doublet
structure connected with the transition E(Fss )—& E(Fs ) .
On the other hand, a precise value of d =0.0441&0.0004
eV has been deduced from analysis of the infrared
spectrum of electronic transitions from the valence
bands to acceptor impurity levels. "

With the identification of the E(Fss.)~E(Fs ) transi-
tion, and the zero of energy taken at the E(F».) level,
the value of yr, r is simply given by Eq. (16) as

»,r= —ALE(Fs )—Vs, t&.

«J. Tauc and A. Abraham, J. Phys. Chem. Solids 20, 190
(&961).
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FIG. 3. Frequency dependence of the real (~&) and imaginary (e2) parts of the dielectric constant for silicon. The solid curves represent
the experimental determination by Philipp and Ehrenreich, (see Ref. &8) while the dots are calculated by a Monte Carlo procedure using
10 000 points and r =2)&10 '4 sec.

There are two other band parameters, yy, 2 and y$, 3

which can be readily evaluated. If a characteristic
optical structure can be identified with the interband
transition E(Fss) ~ E(Fts), then using Eq. (16), pt, s

is simply related to this energy separation, according
to the relation yt, s=s) E(F»)—E(Fss.)$. The char-
acteristic optical structure expected for this transition
is a triplet, with each of the two extreme components
separated by about the spin-orbit parameter 6 from
the central component. %hen the present energy-band
determination was undertaken, it was felt that the
E(Fss.) -+E(F(s) transition was not sufTiciently well-

identiied to be used for experimental data in the baod-
parameter evaluation. However, as a result of the
dielectric-constant calculation, it was found that certain
features in the dielectric constant are closely associated
with this transition. The sharp rise in e2 for silicon near
3.1 eV,"is sensitive to the separation of E(F»)—E(Fss.).
In the present calculation for silicon, this separation is
determined from other experiments, and unless Fourier
coeKcients for +=3 are introduced, the separation
E(F»)—E(F» ) cannot easily be made greater than
2.6 eV. By increasing the E(F»)—E(Fss ) separation by
about 10-20% through use of higher-Fourier coef-
6cients, an improvement in the leading edge would be
achieved. Furthermore, the E+(At) —E (As) separation

in e2 would then become more closely constant at about
3.2 eV from I' to L, and an increase would result in the
intensity of the calculated peak at 3.5 eV.

In the case of germanium, the separation E(F»)—E(F») is closely correlated with the structure in et
and with the onset of a rise in e~ observed in the vicinity
of 3.0 eV."Optical structure has been observed in this
energy range in the reflectance, " the piezoreQectance'
and the electroreAectance, 53 and has been identiied
with the E(Fss ) —+ E(F») transition. ' In fact, the
electroreQectance data of Seraphin and Hess" show a
triplet structure with each component separated by
approximately 6, the appropriate separation at the I'
point. In the present treatment, this separation has not
been used explicitly in the band-parameter determina-
tion; but instead, this quantity has been evaluated from
yt s, which in turn (as explained below) has been deter-
mined from the energy bands at the L point and from
the effective-mass parameters associated with the
degenerate valence band E(Fs; ). With these identifica-
tions of E(F»)—E(Fss ), approximately the same
separation is found for both silicon and germanium.

In the case of both silicon and germanium, various
authors ' '~"have identifjLed certain optical structures
with the E(Ls) ~ E(Ls) transition, and this energy
separation conveniently depends upon only two band
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parameters. From Eq. (33), it follows that

E(L5)—E(L5 ) =4(V1,2+Vi, 5) (56)

The characteristic optical structure associated with this
transition is a triplet, with each component separated
by 36, where 6 is the spin-orbit splitting at the F
point. Xo such triplet structure has yet been resolved
within the linewidth, and, therefore, the identification
of the structure at 5.4&0.1 eV in silicon'8'" and
at 5.5&0.1 eV in germanium"" is ambiguous. Using
the band-parameter-determination procedure described
here, it is found that the qualitative characteristics
of the energy bands throughout the Brillouin zone and
the associated dielectric constant are not significantly
affected by a &0.4 eV variation of the energy difference
E(L5)—E(L5 )

Equation (56) provides one relation involving the
band parameters p» and p&, 3. A second equation in
these two unknowns is obtained using Eqs. (17), (33),
(41), and (42), and ca.n be written as

M 4E (X4)—= M+Q E(L,.)—
= —1

2 71,2+71,3

(V1,5)'
(57)

271,2

in which the quantities M and Q are appropriate to
the valence band E(I'25 ). Thus, simultaneous solution
of Eqs. (56) and (57) yields y1,2 and y1, 5. The restriction
&1,5)0 of Eq. (26) results in only one physically accept-
able solution. The values for M and Q are obtained from
analysis of cyclotron-resonance experiments on the holes
associated with the E(1'25 ) valence band. The values are
M = —1.56&0.18 eV and Q = —0.63+0.58 eV for
silicon'~'5 5' and M= —2.21&0.18 eV and Q= —0.07
&0.84 eV for germanium """"Since the value of Q
is not well established experimentally, the energy
E (X4) is used to determine y12 and y1, 5, while Q is
evaluated according to the relation Q= E(L5 )—4E, (X4).
The energy E (X4) is obtained from determination of
the energy separation E+(X1) E(X4) and —of the
energy E+(Xi). For silicon, the lowest conduction
band is in the vicinity of the X point, so that E+(X1)
is obtained from well-established measurements of the
indirect band gap E(61 '"), of the location of the con-
duction-band minima at A~ '", and of the longitudinal
electron cyclotron mass 2151*/2125 at 61 '". Assuming
parabolic bands in the neighborhood of 61 '", E+(X1)
is related to the energy at the band extremum by

622'(1 —81)'
E4"(X )—E+(P min)+ (58)

where E+(61 '")—E(I'25') = 1.156 eV at 4.2~K and
1.114 eV at 291 K."The conduction-band minima are

' A. K. Ghosh, Phys. Letters 23, 36 (1966).
62 A. K. Ghosh, Solid State Commun. 4, 565 (1.966).
63 J. J. Stickler, H. J. Zeiger, and G. S. Belier, Phys. Rev. 127,

1077 (i962).

located at ha=~5~, where 5~
——0.85%0.03,' and the

longitudinal electron cyclotron mass is 4251*/m5 ——0.97
&0.02 at 61 m'". '4 "The distance a for silicon is 2.71 A.
Once the energy E+(X1) is determined, the energy
E (X4) follows from a knowledge of the separation of
E+(X1) E —(X4—). Since the X point is generally not a
critical point in the joint density of states, it is not pos-
sible to make an unambiguous identification of optical
structure with the E (X4) —+ E+(Xi) transition. How-
ever, because of the flatness of the energy bands in the
vicinity of the X point, various critical points exist in
this region of the Brillouin zone. These flat bands con-
tribute strongly to the dielectric constant and are
responsible for the large maximum in e2 in the neigh-
borhood of 4.2 eV. The value for the separation E+(Xi)

E(X4) h—as been adjusted to obtain a fit for the
energy of the 4.2-eV peak of the frequency-dependent
dielectric constant. " Although E+(X1)—E (X4) was
taken at 3.75 eV for silicon, a variation of &0.2 eV
could be made in this quantity without seriously affect-
ing the dielectric constant. The energy 41E (X4) was
taken as —0.63&0.07 eV. However, since the coef-
ficient in front of E (X4) in Eq. (57) is 4, and ~3II~

))
~
4E (X4) ~, the uncertainty in E (X4) has less effect

upon the determination of y~ ~ and y~, ~ than does the
uncertainty in 3f.

The level E+(X1) has not been directly studied in
germanium. Studies of the reQectivity from germanium-
silicon alloys" "have been interpreted to yield only a
small variation in the energies of E+(X1) and E (X4) in
going from pure silicon to pure germanium. To allow
for experimental uncertainties and errors in identihca-
tion of interband transitions, a wide variation was made
of the experimental data pertinent to Eqs. (56) and
(57), and only small variations in yr 2 and pi 5 resulted.

One useful application of the Fourier-expansion
description of the energy bands in a solid is exemplified
in the relation Q= E(L5 )——,'E (X4) given by Eq. (57).
Here, an energy-band curvature at the F point is
related to the energy which that band attains at distant
points L and I in the Brillouin zone. By including only
terms up to o. ~& 2 in the Fourier expansion, these band
parameters are overdetermined, and quantities such
as Q(1'25.) and the separation E(I'15)—E(1'» ), discussed
previously, cannot be adjusted freely, i.e., independ-
ently of each other.

For both silicon and germanium, experimental data
is available which determine the energy E(L5) and
Q(r». ) is thereby evaluated. By studying both the
spectral distribution of the quantum yield and the
kinetic-energy distribution of the emitted electrons on
photoemission from silicon, "it has been possible to esti-
mate both the initial and final states associated with the
5.4 eV interband transition. Since this transition has

' J. Tauc, in Proceedings of the International Conference on the
Physics of Semiconductors, Exeter (The Institute of Physics and
The Physical Society, London, 1962), p. 333.
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been identified as an E(L3.) ~ E(I.3) transition, 6 '~i2

the photo-emission results have been interpreted to
yield E(L3 ) = —1.5+0.2 eV and E(L3)= 3.8&0.2 eU."
With these data, the valence-band effective-mass
parameter Q for silicon is estimated to be Q(1'25)
= —0.85%0.25 eV.

In the case of germanium, the position of the E(L3.)
level is even more 6rmly established. By measurements
such as the piezotransmission, " an accurate room-
temperature value for E(L,i)=0.6643+0.0005 eV is
obtained. The E(Li) level is a nondegenerate level, and,
therefore, is essentially unaffected by the spin-orbit
interaction. The E(L3.) level is then determined by
identi6cation of the characteristic doublet optical
structure at 2.11&0.01 eV and 2.33&0.01 eV with the
E(L3) +E(Li) transition'" ~"" Since the sepa-
ration of this doublet is 0.22&0.02 eV, which is approxi-
mately —,'6 for germanium, this splitting is attributed
to spin-orbit interaction. From these results it follows
that the center of gravity for the E(L,.) levels is at
—1.56&0.02 eV. These arguments yield an estimate
for Q(F25 ) = —0.80+0.20 eV in germanium.

Whereas the parameters yo, ~, y~, ~, yo, g, py, g, and Vj;3
can be evaluated quite simply from experimental da, ta,
the remaining parameters are evaluated by solving
equations of higher order. Since the available experi-
mental information differs somewhat in silicon and
germanium, different procedures were used in the band-
pararneter determination for the remaining constants.

For silicon, the four variables y~, 4, y2, 4, y~, i, and
y22q ——(p22 —y~ 5) are evaluated from solution of four
coupled equations involving the energy and location
of the conduction-band minimum E(hi '"), the longi-
tudinal cyclotron effective mass at 6& '" and the effec-
tive-mass quantity L(1'25) of the valence band. The
details involved in the solution of these coupled equa-
tions is given in Appendix B. Values for y2, 2 and y2, 5

are then found directly by the simultaneous solution of
the equation p2, &5=»,&

—p&, 5 with the equation for the
effective-mass quantity M(1'») given by Eq. (41).
After these band parameters have been evaluated, the
parameter p2, 3 is simply determined from the effective-
mass parameter Q(1'25 ) by use of Eq. (42). Since Q is
not well determined experimentally, it is most con-
veniently evaluated by the first relation in Eq. (57),
as discussed above.

The parameter p2, 6 is determined by the energy" of the
E+(I.i) conduction band. Since this energy is not
measured directly, it is found from the energy separa-
tion E+(Li)—E(L3.) and from the energy of the E(L3 )
level. The sharp edge in the imaginary part of the
dielectric constant ~ ~ at 3.2.eV, 's shown in Fig. 3(b), is
closely correlated with the E(L3) ~ E+(Li) transition
and places the energy separation E+(Li)—E(I.3) at
3.2&0.1 eV. Since the energy E(L3.) =1.5&0.2 eV is

6'K. L, Shaklee, F. H. Pollak, and M. Cardona, Phys. Rev.
Letters 15, 883 I1965).

TABLE VII. Band parameters for Si and Ge.

Parameter Ry
Si

eV Ry
Ge

eV

+0, 1

+0, 2

+1, 1

'Pl, 2

+1,3

. +1, 4

+2, 1

Y2 2

y2, 3

P2, 4

P2, 5

P2, 6

72. 7

—1.2300
0.1787

—0.1881
0.0223
0.0752—0.0977

0.0555
0.0042
0.0137
0.0103—0.0147—0.0359—0.0232

0.0032

—16.73
2.43

—2.56
0.30-
1.02
1033

0.75
0.06
0.19
0.14—0;20—0.49—0.32

0.044

—0.5300
0.2089

—0.0745
0.0261
0.0751
0.0728

0.0312
0.0064
0.0162
0.0286—0.0128—0.0179—0.0304

0.0213

7&2 1

: 2.84
—1.01

0.35
. 1;02
0.99

042
0.09
0.22 .
0.39 .,—'0.17—0.2,4—0.41

0.290

known from photoemission studies, "E+(Li) is readily
evaluated. From Eqs. (31) and (32) it is seen that the
E+(Li) and E+(L2 ) levels depend only upon the
parameters p2, 6 and other quantities that have already
been evaluated. Solution of Eq. (31) for p2, 6 is thus
accomplished with the restriction that the resulting
E+(L,i) level lie lower than the E+(L2) level. With
this identification, it is found that as we move away
from the I. point, the energy-band separation of about
3.2 eV is maintained over a relatively large volume of
the Brillouin zone about the A. axis. This Hatness of
the E+(Li) band is responsible for the large contribution
to e~ from this region of the Brillouin zone. However,
it is found that this contribution to the e2 edge is not
suKciently large, so that some intensity must come
from elsewhere. For example, by increasing the E(I'i~)
—E(I'25 ) separation, an improvement can be obtainedi

both in the shape of the leading edge and in the height
of the 3.5-eV peak in e2. It should be emphasized that
contributions are made to this 3.5-eV peak from other
points in the Brillouin zone, such as along the 6 axis.

The remaining parameter-72, 7 is evaluated by fitting
the curvature of the lowest conduction band about the
energy minimum to the observed transverse cyclotron
effective-mass mi*/mo ——0.19&0.01.i4 "Since the related.
energy band curvature depends in a complicated way
upon all the band parameters, a simple numerical fitting
procedure was found to be most convenient. Since few
of the experimentally observed quantities depend upon
the value of this parameter, the characteristic features
of the energy bands are relatively insensitive to p2, 7.

To summarize these results, the values obtained. for
the band parameters in silicon are listed in Table VII.
In this table, the six band parameters corresponding to
zeroth and nearest-neighbor interactions are more
accurately determined than are the seven parameters

- for next-nearest-neighbor interactions. These seven
parameters, for which n=2, are relatively small and
have a correspondingly smaller effect on the energy
bands. In this table, the band parameters are listed in
units of both Ry and eV. The values in the rydberg
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units are quoted to one more place than in the eV units,
not because there is any significance in this last figure,
but rather because this number of figures was used in
the computation.

The actual errors associated with the band parameters
of Table VII are rather diAicult to determine. If, for
example, one of the experiments used in the band-
parameter determination were to be carried out to
greater accuracy, then not only one, but several (or
maybe all) of the band parameters would be affected,
the percentage change in the second-neighbor terms
being greater than in the corresponding nearest-neighbor
Fourier coefficient. Furthermore, the extension of the
Fourier expansion to include third-neighbor interactions
would also modify the Fourier coefficients in this table,
the largest changes again occurring for the second-
neighbor terms. No particular physical importance is
attached to the value of any of these band parameters,
but rather to the positions and curvatures of the
energy bands.

In Table VIII, certain band curvatures and effective
masses are listed and the corresponding experimental
values are included if they have been measured. Results
are given for all bands at the I', I,, and X points, and
for the nondegenerate E+(d,~) at the conduction-band
minimum; these results include the effect of spin-orbit
interaction. The band curvatures for the degenerate
valence and conduction bands at I' are tabulated in the
notation conventionally used in the literature, "

E+(k) =E(0)+
2mo

&& {Ak'a[8'k'+C'(k 'k '+k 'k. '+k 'k '))"'} (39)

whereby
A = -', (L'+2M'),
8=-', (L'—M'),
C= L-'{(N')'—(L'—~')') 3"'

(60)

"G. F. Dresselhaus, Ph. D. thesis, University of California~
1955 (unpublished).

and the L', M', and N' are related to the L, M', N, and Q
used in this paper in Eqs. (36) and (42). The constants
A, 8, and C for the F point listed in Table VIII are
determined by application of Eq. (59) which gives
E(k) including the effect of spin-orbit interaction. If,
on the other hand, these constants has been determined
from Eq. (60), and then from Eqs. (40)—(42) using the
band parameters of Table VII, slightly different values
would result, since these formulas do not explicitly in-
clude the effect of spin-orbit interaction. "

At the I. point, the band degeneracies are lifted by
the spin-orbit interaction, so that the band curvatures
can be described by simple longitudinal and transverse
effective masses. However, the curvatures at the X
point cannot be described by simple effective masses.

When spin-orbit interaction is included, all the energy
bands approach X with nonzero slope and are doubly
degenerate just at the X point, where they are described
by X5 symmetry. The X point is, therefore, generally
not a critical point in the joint density of states and is
not a particularly interesting point in the Brillouin zone.
Nevertheless, there has been much discussion and con-
fusion about this matter in the literature and, therefore,
k.p expansions for the energy bands about X are in-
cluded in this paper. The k.p expansion is of the form

E'(k) = E(X„.)~E'(X.-) (&k,—)

+ (ak, —7r)'+-
2g'm)* 2mo

)({Q(k 2+k 2) ~L(g2(k 2+k 2)2+(o2k 2k 2jl/2 j (6/)

At the X points, the band curvatures and slope de-
pend on five quantities for which values are given in
Table VIII. For the two X4 levels, which without spin-
orbit interaction have zero slope at X, the slope parame-
ters E'(X5) are very small compared with the values
obtained for the X~ levels, which have nonzero slopes
even without spin-orbit interaction.

Since many of the entries in Table VIII have not yet
been experimentally determined, this table could be
useful in planning certain optical and magneto-optical
experiments. Band curvatures are generally more
sensitive to higher-Fourier coeKcients than are the
energy levels. Therefore, neglect of Fourier-expansion
coeKcients for 0.&~3 could result in significant errors in
the calculated effective-mass parameters. The experi-
mental data for silicon overdetermines the band
parameters for a&~2, and it is not possible to simul-
taneously satisfy all of the experimental data. Since
the truncated Fourier series provides a better represen-
tation for the energy bands than for their curvatures,
the quoted experimental errors for the energy levels
were adhered to more closely than the corresponding
errors for the effective-mass parameters in carrying out
the band-parameter determination.

The energy bands along about 10 high-symmetry
directions in the Brillouin zone were studied in detail
and the results for a few of the more important axes in
silicon are shown in Fig. 2. These bands are generally in
qualitative agreement with the energy bands calculated
by other techniques, ' " though quantitative differences
occur. It is of interest to observe that the separations
E+(A.q)

—E (A3) and E+(Aq) —E (65) are approxi-
mately constant over much of the A and 6 axes, re-
spectively. The presence of nearly parallel bands over
a relatively large volume of the Brillouin zone is ex-
pected to give rise to a number of critical points in the
joint density of states with approximately the same
energy separation. These nearly parallel bands are also
responsible for the large, sharp structure in e2 which is
found in silicon at 3.5 eV. ' Since critical points in
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TABLE VIII. Masses and curvatures for energy bands of Si and Ge.

Representation
Energy (eV)

Model Experiment
Mass or Curvature

Model Expel lmen t

Fl ——F6+
,1/2 —p +

—16.74—0.044

Silicon k p expansion parameters

7 oa m*= —1.15—0.044b m*= —0.25 —0.25 ~0.01b

@2~,8/2 —Ps+

r&53/2= rs

F2 =F7
L2 =L6

L —L+

Ll ——L6+

L2 ——L6

La =L4++Lg+

L3 =L6

=L4 +Lg

X4——Xg

X4=Xg

Xl ——X5

0.0

2.39

2.43

3.74

4.01

1.77

—11.07

—16.58

3.90

3.87

—1.41

1.44

5.63

1.19

—2.55

0oo

3.8'

3.8'

A = —3.90
B= —1.03~

[Cf =3.79»

m*=0.54

A = 1.83~
8= —1.30

fC[=2.18»

m*= —14.0
mi~ ——120.0
m(*=0.96
m)*= 1.32
m~*= 0.20

m)*=0.11
m]*———2.51

m)*= —0.33
my*= 2.63

mi~ ———1.45
m]* ———5.43
m/.

*———1.45
m, *=—7.47

m)*=1.53
m, *=—0.23
m)*= 1.53
mg*= —0.21

I'(X,) =0.003m
m~*= —0.94g

0', = —1.20&

S =0.02g
e =0.14

J (X;)=0.52~
m)* ——0.96g

8,=4.34g
S, =0.87g
e =1.50g

E'(X5) =0.003&
m)* = 1.35g

0', = —3.66g
S =0.94g
e =2.07g

E'(Xs) =4.0&

m)* =0.35&
8=0.55&

S =0.09g
t. =0.66

—4, 1—1.6
3.3

~0.2'
~0.2"
~0.5'

Q min —Q 1.07 1 1h ming= 0.98
m]*=0.20

81=0.85&

0.97 &0.02'
0.19 ~0.01'
0.85 +0.03"

I —P6+
I'2~, &/2 =+7+

—7.30—0.29

Germanium k p expansion parameters
—7.0a m*= —1.29

0.29 m*= —0.10 —0.084m

r», »2=r, +

~SS / =~6
Z 3/2 —p—

I'2 =F7

0.0

2.72

3.01

0.80

0oo

2 90

0.80'

A = —12.78~
B= —9.86~

JCf =9.64»

m~ =0.64

A =1.24~
B= —1.28"

[CJ =2.22»

m =O.O38

—13.0 ~0.2"
—8.9 ~0.1"

10.3 ~0.2~
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TABLE VIII (continued)

R.epresentation
Energy (eV)

Model Experiment

Mass or Curvature
Model Experiment

L2.——L6 3.87

Germanium k p expansion parameters

m)*= 1.02
mg*= —1.09

Li =L6+

Li =L6+

L2.=L6

L3——L4++L5+

L3.——L6

=L4 +Lg

X4=X5

Xi=X5

X4-—Xg

Xi=Xg

0.66

—7.80

—8.31

4.09

3.90 .

—1,41

—1.61

5.42

1.23

—2.76

—8.64

0.93

0.6640

—1.45~

—1.67~

m)*= 1.57
my*= 0.082

m)*——0.33
m]*——1.85

m)*=1.14
m)* ———26.7

m)*———1.53
mg*= 0.87

m)*———1.54
m]*——0.13

mi*= 1.31
m)*= —0.12
m)* ——1.31
m)* ———0.13

E'(Xs) =0.019'
m)*= —1.05&

8= —1.27g
~61 =0.28~
)e =0.24

E'(Xg) = 1.09&
m)*=0.78g

8=4.59g
8 =54@
e =1.89g

E'(Xg) =0.016g
m)*= 1.06g
8= —4.10g
8 =6.20~
e =236g

E'(X;)=0.22g
m)*=0.62g

8=0.78g
(8 =0.461'

e =0.12g

mi*=0.53
m]*——0.15

bi =0.79&

1.58 ~0.02'
0.082&0.002'

& References 21, 22.
b Reference 55.
0 For this table the zero of energy is fixed at the top of the 725&3~2 =F8+ valence band.
& The definition of the constants A, B, C is given in Eq. (59).

Reference 14. The model is not sufFiciently accurate to distinguish between the values in Ref. 14 and those in Refs. 15, 16, and 63.The sign of Bcomes
from Ref. 16.

& Reference 19.
I The definition of the constants B'(X5), twP, Ol, , 6 is given in Eq. (61).
& Reference 56.
I References 14, 15.
j The definition of pi is given in Eq. (58).
& Reference 57.
i References 52-54.
~ Reference 54. The experimental error would seem to be about 20%.
& Reference 14. The model is not sufficiently. accurate to distinguish between the values in Ref. 14 and those in Refs. 15, 17, and 63.
0 Reference 20.
& Reference 54. See also Ref. 58. The experimental error would seem to be about 15%.
& Reference 59.
~ References 2, 18, 53, 59, and 65. Even if the observed structure is associated with a h.-point transition, these values are probably accurate to about

0.1 eV.

silicon are numerous, no attempt has been made to
tabulate all such points. A few of the critical points,
which are related to the bands of Fig. 2, are listed in
Table IX, together with the pertinent energy separa-
tions. These separations are given both with and with-
out spin-orbit int&rppt&oD, Since in silicon only a very

few optical transitions are well identi6ed, . it did not
seem appropriate to compare the calculated energy
separations with experimental values.

Because of the rapidity of the calculation, the
Fourier-expansion technique makes it feasible to ex-
plore the energy bands away from high-symmetry direc-
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tions. Such an investigation was carried out by cal-
culating the frequency dependence of the real and
imaginary parts of the dielectric constant, and the re-
sults are shown in Figs. 3(a) and 3(b), respectively. The
relaxation time was taken at 2&(10 '4 sec. In these
figures, a comparison with the experimentally deter-
mined" e~ and e~ is included. No normalization pro-
cedure has been used. in constructing Fig. 3(b); both
the absolute magnitude and the shape of this curve are
a consequence of the energy bands, themselves.

Although e& is independent of the relaxation time 7

for much of the photon energy range, there is a small
v- dependence in the immediate neighborhood of the
peaks. This behavior of e2 is evident upon examination
of Eq. (53). This equation also indicates a more im-
portant dependence of e& on v. Since many approxima-
tions are associated with the introduction of a relaxa-
tion time, the calculation of e2 is considered to be more
significant than that of e~. ' " In accordance with the
dependence of e~ on v, the relaxation time can be chosen
to yield the experimental peak magnitude in e&.

From a practical point of view, the relaxation time
cannot be taken too long. As ~ increases, so does the
number of points required to achieve a smooth curve
from the Monte Carlo calculation of the dielectric
constant. Fairly smooth curves, as indicated by the
points in Figs. 3(a) and 3(b), were obtained with
10000 points and ~=2X10 " sec. This value of 7.

corresponds to a resolution of 0.03 eV. The calculation
could be carried out in a reasonable length of time on an
IBM 360 computer with a speed of 1500 points/h. The
results seem to indicate that better agreement with the
experimental curves would result by making ~ some-
what longer, perhaps v 4)&10 '4 sec.

The relatively good agreement between the calculated
and experimental curves indicates that the energy
bands are nearly correct in a quantitative rather than
just in a qualitative sense. Discrepancies, however, do
occur. For example, the leading edge in e2 at 3.2 eV is
not sharp enough and the height of the peak at 3.5 eV
is too low. This behavior at the leading edge would be
improved by increasing the E(i'ro)-E(1'2o ) separation,
which can be accomplished by including the next term
in the Fourier expansion. Such terms would simul-
taneously yield better agreement with the observed
band curvatures in the degenerate valence band E(I'2o ).
Since the experimental values for e2 below 3 eV are
somewhat less certain, 6~ no great eRort was made to
obtain good agreement in this energy region. Exciton
effects have been suggested by various authors4 to
produce a sufFicient intensity in the 3.5-eV peak in e2.
The present calculation of the dielectric constant does
not rule out this possibility, although it is not clear that
a suitable refinement of the energy bands and a longer
relaxation time could not reproduce the essential fea-
tures of the dielectric constant, without invoking exciton

"H. R. Philipp (private communication).

effects. A longer relaxation time is also suggested by the
behavior of e& in the vicinity of 3.2 eV and of e& in the
vicinity of 4.2 eV. Since there is little experimental
data for energy band gaps exceeding about 5 eV, the
energy bands of Fig. 2 are less reliable far from the
Fermi level. For example, in Fig. 2, the energies E+(L~ )
and E(Lo) are approximately degenerate, whereas other
calculations'" place E(L2 ) several electron volts above
E(Lo). Since there is no experimental information on this
point, and since the dielectric constant is quite insensi-
tive to the position of E(L~ ), it is not clear where this
level should be placed.

The band-parameter evaluation in germanium is
somewhat more tedious than in silicon, since much of
the detailed experimental information in germanium
pertains to energy-band separations and curvatures
about the L point, rather than the 6 axis as in silicon.
The expressions relating the band parameters to the
experimental quantities near the L point depend on
most of these parameters. Hence it is necessary to
simultaneously solve a larger set of coupled equations.
The procedure used in the present band-parameter.
determination for germanium involves the simultaneous
solution of seven equations for the seven parameters
y~, 4 and y~;, i——1, , 6. A description of the method of
solution is given in Appendix C. Using this method, all
of the solutions for real values of these parameters are
examined. Since it is not convenient to solve seven
coupled nonlinear equations simultaneously, six of the
seven unknowns are related by experimental measure-
ments to the seventh parameter p&, 2, which is explicitly
evaluated to yield the longitudinal cyclotron effective
mass for conduction electrons at the L point. ' " In
practice, there are several solutions for p2, 2 that yield
the experimental value for the longitudinal cyclotron
mass, and all of these solutions are examined. By re-
quiring convergence of the Fourier series, most of these
solutions are eliminated. Among the few remaining
solutions, there is one solution that converges much
more rapidly than the other solutions, and this is the
set of parameters presented in Table VII. Solutions
with less rapid convergence also presented difficulties
in fitting the frequency dependence of the dielectric
constant.

The remaining parameter p2, 7 is determined by 6tting
the curvature perpendicular to the A axis of the lowest-
conduction band at L to the observed transverse
cyclotron effective-mass m&*/no=0. 082&0.001.'4" As
in the case of silicon, a numerical fitting procedure for
this band parameter was found to be most convenient.

A summary of the band parameters found for ger-
manium is given in Table VII. In this table, it is seen
that the corresponding band parameters for silicon and
germanium are more similar to each other for the

p bands (po, 2,&r, 2,&2,2,&r,a,po, o,&2,o,&2,7) than they are
for the s bands (yo, r,yr, r,yo, r) or the s-p interaction

(y, 4,y& 4,y2, o). Not only do the s and p bands lie closer
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for a smaller energy range away from the Fermi level
than for the case of silicon. Inspection of Table VII
shows that the band parameters of silicon and ger-
manium converge with approximately the same ra-
pidity. Therefore, the discussion given for the un-
certainties in the silicon band parameters of this table
applies equally well to those of germanium.

Using the band parameters for germanium given in
Table VII, band curvatures including the effect of
spin-orbit interaction have been calculated at the same
high-symmetry points as for silicon. The effective
masses and band curvatures are summarized in Table
VIII, and wherever possible a comparison with ex-
perimental values is included. This table also compares
the various effective mass quantities in silicon and
germanium. In general, the agreement between the
observed and calculated values is better for germanium
than for silicon, since the band-parameter determination
in germanium depends upon more firmly established
data than in silicon. In fact, by including only terms to
next-nearest-neighbor interactions in the Fourier series,
most of the experimental data for germanium is well

satis6ed. Because of the larger spin-orbit interaction
in germanium, this interaction has a more important
e6ect on the curvature of the degenerate energy bands
at r and L. At the X point, the slopes E,'(&s) « the
levels derived from the degenerate X4 bands are con-
siderably larger in germanium than in silicon.

The energy bands in germanium along certain high-

TABLE lX. Critical points for optical
transitions in Si and Ge.

Ge (eV)'si (ev)LocationTransition

0 90 0.80
1.09
2.55

2.84 2.84
3.13

2 18 2.08
2.27

2 17 2.07
2.26

q =0.4
2.112.22 2.32

g =0.2
5.32

5.51 5.51
5.70
5.295I38 5

3 74 3+73
3.77
2.39

2.43 2.43
2.47

320 3.21

(0,0,0)~25' ~2'

(0,0,0)~2S —~i5

(s-/a)(0. 5,0.5,0.5)

(~/a)(n, n, n)

L3.—Lj

3 22
3.20
3.23

q =0.3

5.27
5.30 5.30

(5.55
5.425.44 5'45

(~/u)(0. 5,0.5,0.5)

(vr/u)(0. 5,0.5,0.5)

(~/a)(g, 0,0)

L3 —L3

L3.—L2.

4.904.92 4'94

q =0.6
4.12
q =0.6
4.14

4.527'" 4.533
2) =0.4
4.43
q =0.6
4.33

(~/ )a(n, ~ 0)

I- Uaxis (—x/u) (0.8,0.25,0.25)

& Spin-orbit splittings are indicated by brackets where they occur.

to each other in germanium, but also the d bands are
closer to the Fermi level. Therefore, even though there
are a larger number of well-identified optical transitions
in germanium, and the band-parameter determination
can be made with more confidence, the calculated energy
bands provide a quantitative description of the bands
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FIG. 5. Energy versus dimensionless wave vector. for a few

high-symmetry directions in germanium. Spin-orbit interaction
has been included and the bands are labeled by the double group
representations.

FIG. 4. Energy versus dimensionless wave vector for a few
high-symmetry directions in germanium. Spin-orbit interaction
has been neglected.
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Fro. 6. Frequency dependence of the real (e&) and ima inar en rmaginary (es) parts of t id ctrl m o e m nium.
g na ysis o experimental retlectivity data (see Ref. 70~ wh'1 h

r using points and ~=2)&10 '4 sec.
e . ) w r e t e dots are calculated by a Monte Carlo

symmetry directions are shown in Fi . 4 for th
w ere he spin-orbit interaction is ignored and

' F'

thes'-
re his interaction is treated explicitly. I '1'I j. n sl icon

e spin-orbit interaction is so small that the cor-
respondin two 6'

g gures would be nearly coincident.
With only one spin-orbit band parameter, equal spin-

generate E(Fts) and E(Fss ) levels. The spin-orbit
splittings of degenerate bands at oth h' h-
points are smaller. A summary of calculated spin-orbit

Brillouin zone is given in Table VIII and, wherever
possi e, a comparison is made with ob d 1'o serve sp ittings.

it improved resolution of optical structure, these
spin-orbit splittings can be utilized in the identification
o optical structure with interband transitions at
speci6c points in the Brillouin zone and between specific
energy bands. As in the case of silicon th ese energy

an s are in qualitative agreement with other band
calculations. '"Thhe energy-band separations for several
of the bands shown in Figs. 4 d 5
matel cons

an are approxi-
mate y constant over relatively large volumes of the
Brillouin zone, thereby resulting in a fairly large num-

er o critical points in the joint density of states. As in
silicon these c ' '

ese critical points can occur at general
' tpoin s

ri louin zone. Critical points along afew of the

the c
high-symmetry axes are listed in Table IX 1

'
h

e corresponding energy differences. The results are

presented both with and without spin- b't '
spin-or it interaction.

along much of the A axis, several critical points are
onn at (m/a) (0.2,0.2,0.2), (a./a) (0.4,0.4,0.4) as

well as at I.= (a/a)(0. 5,0.5,0.5).The spin-orbit splitting
at (7r/u)(0. 2,0.2,0.2) is 0.21 eV, while for the other two

ere is soInecritical points the splitting is 0.19 eV. Th
experimental evidence supportin multi lemu ip e critical
poin s a ong the A. axis, although their number and loca-
tion have not been well established. Recently, Potter' s

have re
measurements of the optical constant f

vicinity of 2 eV, separated by about these spin-orbit
sp ittings. PiezoelectroreQectance studies by Cardona
and Pollak indicate that the (vr/a)(0. 2,0.2,0.2) critical
point contributes strongly to the observed structure. "

The frequency dependence of the real and imaginary

e energy bands of Fig. 4 is given in Figs. 6(a) and 6(b),

the experimental determination of these uanti-
ties."The calculated

' '
r ye points are based on simpler energy

"R.F. Potter, Phys. Rev. 150, 562 (1966).

(1967M)
Cardona'and F H Pollah, Bull Am Phys Soc. 12, 101

s-Kronig analysis carried out by Dr. H. R.The Kramers-Kro '

y, . E. Bennett (J. Opt. Soc. A . SS,
ns y
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bands, which neglect spin-orbit interaction. The relaxa-
tion time was taken as ~=2)&10 ' sec, which gives
results for the extremal values of e~ that are consistent
with the experimental data, as shown in Fig. 6(a). The
Monte Carlo integration procedure was carried out
for 10000 points in k space. In the photon energy
range 2&A~(5 eV, excellent agreement is obtained
between the calculated and experimental curves. Below
about 2 eV, the agreement is not as good for two reasons.
On one hand, the experimental data in this region is less
certain, "and on the other hand, since the contribution
in this photon energy range occurs from a small volume
around F, a very large number of Monte Carlo points
are needed to obtain a smooth curve in e2. Above about
5 eV, the agreement is also not as good. In this energy
range, there are not so many experimental data avail-
able, and the d bands, which have not been explicitly
treated, become important. "

With the increasing availability of reliable optical
data, it has become fashionable to identify certain
optical structures with interband transitions. 4 The ex-
cellent agreement illustrated in Figs. 6(a) and (6b) for
the energy range 2(Acr&5 eV indicates that the cal-
culated energy bands provide a good description of the
the actual energy bands in germanium. Therefore, it is
possible to investigate the critical points that are as-
sociated with the various optical structures. For ex-
ample, the sharp, leading edge in e2 at 2.1 eV is closely
associated with the various A3 —+A~ transitions along
the A axis, and including the E(J.3 ) ~ E(L~) transition
at the L point. This assignment has also been made by
numerous other authors. 4 The onset of the second rise in
~, at 2.9 eV is closely identified with the E(F2q ) ~
E(Pr5) transition, and this also is in agreement with the
results of other authors. ' However, in this dielectric-
constant calculation, the identi6cation of the sharp peak
in e2 at 4.2 eV is not found to be particularly closely
related to any single transition such as the E (X4) —+

E+(X~) transition. ' In fact, in order to obtain this sharp
peak at the observed photon energy, the E+(X~)

E(X4) separa—tion was taken at 4.0 eV, which cor-
responds to the beginning of the sharp rise in e~. Since
pairs of energy bands, separated by about 4.2 eV, are
nearly parallel over a large volume of the Brillouin zone,
there are numerous critical points at about this energy.
For example, in Table IX, critical points are listed along
the Z axis with a 4.12-eV separation and along the L-U
axis with a 4.14-eV separation. Experience gained from
this dielectric-constant calculation indicates that the
identification of optical structure with a particular
critical point is sometimes dangerous. Although some
structures are identified with a small volume of the
8rillouin zone, others involve large volumes. The

'

availability of a band model which is amenable to the
rapid calculation of experimental quantities should
prove useful in the identi6cation of optical structures
with specific critical points.

In this paper it is seen that a one-electron effective-
mass Hamiltonian can be used to describe the observed
optical properties of silicon and germanium. For
energies sufficiently small so that the effect of the d
bands is not important, it would appear that any small
discrepancies which exist between the observed and
calculated dielectric constants could probably be cor-
rected by including higher-order terms in the Fourier
expansion. However, as the experimental data become
more and more precise, it is likely that discrepancies
will arise which cannot be handled by a one-electron
Hamiltonian, no matter how many Fourier terms are
included. Certain many-body effects are, in fact, in-
cluded in the one-electron Hamiltonian, because of the
experimental determination of the energy-band parame-
ters. However, the origin of these contributions is not
examined in any detail; hence, contributions from the
exchange, correlation, electron-phonon interaction, etc.
are not distinguished from one another. From a many-
body point of view, the term which has been retained
is the 6rst term in the expansion of the Landau theory
of the Fermi liquid. "

In metals, there is considerable discussion about the
effect of electron-phonon interaction on the one-electron
energy bands. ~' If this interaction is large, it might be
necessary to include many terms in the Fourier ex-
pansion. An alternate and more rapidly convergent pro-
cedure would be to Fourier expand the electron-phonon
interaction directly and then to solve the coupled
problem for the energy eigenvalues. The general
application of the Fourier-expansion technique to
treating the lattice-vibration problem and the electron-
phonon interaction is presented elsewhere. '
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APPENDIX A: CONTRIBUTIONS TO THE
EFFECTIVE-MASS HAMILTONIAN FROM

THIRD AND FOURTH NEIGHBORS

As more experimental information becomes available
for silicon and germanium, a more precise determina-
tion of the energy bands for these materials can be

7'P. Nozieres, Theory of Interacting Fermi Systems (W. A,
Benjamin, Inc. , New York, 1964).

7'W. A. Harrison, Pseudopoteetials &s the Theory of Metals
(W. A. Benjamin, Inc. , New York, 1966), p. .125.
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TABLE X. Number of band parameters for various neighbor
distances in diamond lattice.

Neighbor

0
1
2
3
4
5
6
7

Number
of band

parameters

2
4
7

7

7
10
4

Coordinates

a(0,0,0)
~1 a(1,1,1)
a(1,1,0)

-,'a(3, 1,1)
a(2,0,0)

ma(3, 3,1)
a(2, 1,1)

—,'a(3,3,3)

Distance

a0.0
a0.866
a1.414
a1.66
a2.0
a2.18
a2.45
a2.60

carried out by including more distant-neighbor inter-
actions in the effective-mass Hamiltonian. In Table X,
a summary is given for various neighbor distances in
the diamond lattice, and the number of band parameters
or Fourier coefficients associated with each neighbor is
also included. Since the third-neighbor distance is
relatively close to the second-neighbor distance, third-
neighbor contributions to the Fourier expansion might
be expected to be of some importance in constructing
the energy bands in these materials. In order to evaluate
seven band parameters associated with third-neighbor
interactions (n=3), seven additional pieces of experi-
mental information need to be introduced.

From the symmetry properties of the diamond
lattice, the additional terms in the effective-mass
Hamiltonian arising from third-neighbor interactions
are of the form hr(k) and g&(k) and can be written as

h, &'&(k) =y, ,Lc(3,k; r )+12]5(s,r )
+yp, (c(3,k; r,)+12js(p, r&)

+l~. ..c(3,k; r„.a)+y, „c(3,k; r„,b)l s(p, I'„,)
y(~. ,..c(3,k; r„u)+~.,..c(3,k; r„h) l s(sp, r„)

+~, , ,-C*(3,k; r„) S(p,r„), (A1)
and

gpss&(k) =hi&s&[k+(pr/u)(1, 1,1)j. (A2)

These terms merely add to the h&(k) and g&(k) functions
given by Eqs. (10) and (12), respectively. In order to
maintain the top of the valence band E(rps) at the
zero of energy, a constant energy hp(')

hp&'& = —12yp, &5(s,r )—12yp, 5(P, r&) (A3)

must be supplied, and this is added to hp(k) in Eq. (9).
In a similar way, the terms arising from fourth-

neighbor interactions are all of the form hp(k) and are
explicitly written as

h, ~ &(k) =y, ,c(4,k; r,)5(,r )+y, ,c(4,k; r,)s(p, r, )
y&, ,C(4,k; r„).S(sp,r„)

y&, ,C*(4,k; r„) S(p,r„), (A4)

so that hp~s'(k) is the next term in the expansion of
hp(k) given by Eq. (9). The additional band parameters

&&
of Eqs. (A1) and (A4) which are introduced with

TABLE XI. Band-parameter notation for third
and fourth neighbors.

This paper

+3, 1

')i'3, 2

p3, 3Q

P3, 3b

73, 4a

+3, 4b

P3, 5

+4, 1

p4, 2

p4, 4

ji'4, 5

Da

2 [(-; —', -', ),r, ; r, ~ r,]
2n[(-,' —,

' —',),rs5 ss ris ~ r»]
2n[(-;; —;),r».b; r„~r„]
2n[(-; -', -', ), r»g, ; r, ~ r„]
2n[(-,' -,'-', ), r„b; ri ris]
2 [(-,'-', —,'), ri, ris r»]
s [(2oo), r„r, r,]
Sn[(200), ri; ris s-s ris]
Sn[(200), rls r, i-s ri"]
Sn[(200), ris', ris +-+ ris]

third- and fourth-neighbor interactions are listed in
Table XI, which is an extension of Table I, given in
the main body of the paper. A band-parameter identi-
fication is made only with the coeKcients used by
Dresselhaus, 4' since no corresponding terms occur in the
treatment by Slater and Koster. 33 In the band-parame-
ter notation y ~, a denotes the 0.th neighbor, whereas

P labels the various Fourier coef'ficients corresponding
to each a. A particular P index describes a symmetry
type F; which arises from coupling bands with sym-
metries F, and Fk, so that the symmetry types involved
in y3, y are the same as in pp, 1, y1,1, and in y~, 1. Now, for
an arbitrarylattice point u(l, m, m), ~l~ 4 ~m( 4 (&p~, there
are as many symmetrized Fourier functions C(n, k; rs)
as the dimensionality of the representation Fp. For ex-
example, the band parameter y 3 refers to a three-
dimensional representation F~5, and there can be as
many as three distinct symmetrized Fourier functions
and associated Fourier coeKcients. For the lattice point
p'g(3, 1,1), m= e, and only two distinct functions occur;
and the pertinent band parameters are labeled y3, 3,
and y33~. Table XII lists the symmetrized Fourier
functions which occur for third-neighbor interactions,
while Table XIII lists the corresponding functions for
fourth-neighbor interactions. The basis matrices which
enter Eqs. (A1)—(A4) are listed in Table III.

The energy levels at k=0 still depend on only a few
band parameters:

&(rr) =yp, &

E(rp ) =yp, i—8'r~, i—24yp, i

+(r15) vp, p

z(r„,) =~, ,-3~, ,-24&, ,

(As)

Since the energy levels at the F point do not depend on
the band parameters for second-neighbor interactions
0.= 2, the terms for o.=3, which occur with rather large

a See Ref. 46. Because of the choice of zero of energy, the yo, i and yo, 2 of
Table I are re-identified with the band parameters of Ref. 46 according to
the relations

yo, i =24a((000),Fi, Fi ~ Fi) +4+1,1+6+2,1+12ys,i+3y4, i
+0,2 =24CX((000) Fl' Fli ~ Vis) +4')I1,2+672, 2+12y3, 2+3y4, 2,

while the definitions for the band parameters yi4 and y2, p are unchanged.
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TABLE XII. Symmetrized Fourier functions for third-neighbor interactions in a diamond lattice.

C(3,k; r1) +12
C(3,k; r2 )

3k+a+k 4+3Yf+0 i+v+30 34 —n-f -k+3n —I -8-e+3I' -3k-0+k 0 —3e —0 -0+v-30 —3k+v —l
C
S

—k-3Yf+k 4 —n —3f
C
S

C&(3,k; r»)
C1(3,k) r12 )

C (3k;r25c)
Cg(3,k; r15a)

C (3,k; r» b)
C.(3,k; r15b)

C~(3,k; r1k )
C (3,k; 1'2k)

ca)C

o)S

—C
—S

co'-'C

ar&S

C
S
C
S

o)C
o)S

a)2C

44)2S

—C
—S

—C
-S

AC
a)S

C
S

—C
—S

o)2C

o)2S

—C
—S

C
S
—C
—S

-C
—S

o)2C

GP2S

C
S

a In this table ($,q, |)=~2a(kx, ky, kz) and o) =e22rs». A C indicates that the cosine of the argument at the top of the column is taken whereas an S indicates
the sine. The C2(3,k; r&2) and C2(3,k; I'12') entries are the comPlex conjugates of the entries given. The C& and Cz entries are obtained by cyclic Permuta-
tions of k~, k)1, and kz.

TABLE XIII. Symmetrized Fourier functions for fourth-neighbor
interactions in a diamond lattice. '

C(4,k; j. 1) = —3+cos2ak +cos2ak„+cos2akz
C1(4,k; F1~) =cos2ak, +co cos2ak„+oP cos2ak,

Cs(4,k; I'~s) =cos2ak, +44" cos2ak +~ cos2ak,
C (4,k; I'16) =sin2ak
C,„(4,k; F15)= sin2ak„
C, (4,k; F,s) = sin2ak, .

a Vjfhere O) =@2)rs/S

Xx~= Vo, i—4Vi, i—8m~, i—&2V3, ~,

~22 70,2 471,2 872,2+872, 5 1278,2 y

12 42[71,4 73,4a+ 278,457 ~

(A8)

coeS.cients, can lead to significant corrections to these
energy levels. It is of interest that terms in ca=4 do
not contribute to the energy levels at F.

On the other hand, the terms in n~&3 are of less
importance in determining the energy levels at other
points in the Hrillouin zone. In particular, the energy
levels at the X point to terms in +=4 are given by

&+(X4)=70,2
—471,2

—872, 2
—472, 5

—1273 2

~4t 71,8+73,3a—278,8b7, (A6)

(X1)= 2L(xll+)122)~(()111 x22) +4 ~ )~12~ ) 7 (A~)

where

In Eqs. (A6)-(A8) the band parameters 781 and 73,2

enter in the same combination as in Eq. (AS) for the I'

point, and, therefore, these terms are easily eliminated

from the equations for E+(X4) and E+(X1). Further-

more, since the parameters 73,3 p3, 3Q p3, 4 and y3 4Q

enter with small coefIicients, these parameters are not
expected to be very important for the X-point energy
levels. It is of interest that these energy levels do not
depend on terms in +=4.

Although the energy levels at the L point depend

on a larger number of band parameters, even here

many of these parameters enter in the same combina-

tions as at the I' and X points. The doubly degenerate

levels E+(Ls) are given by

E (L3)=70,2 471,2 6'Y2, 2+ 272, 3 1278,2 674, 2

+2(71,2+71,3 37s, s—78, 8 +278, sb) ) (A9)

while the nondegenerate levels E+(L1) and E+(Ls.) are

given by Eq. (31), where the quantities A(L;), B(L;),
and C(L;), which contain band parameters for n &~ 2, are

replaced by 2&4 (L~), B~4)(L;), and C& '(L,) which in-

clude terms to ot. &4:

A")(L1)=A(L1)—673,1
—674,1,

B'"(L1)= B(L1)—1873,2+4(73,8a 273, 35) 674 2,

C &4) (Ls) = C(L1)—2(3) '~2(78 4
—27, 45),

A "'(Ls ) =A (Ls )—1873,1—674,1,

B (L2') =B(L2') 673,2 4(73,8a 2Y3,3b) 6Y4,2 q

C&41(L2 )=C(I2.)+2(3)')'(73 4.—278, 45) .

(A10)

(A11)

In addition to these energy levels, the band-parameter determination involves certain band curvatures. These
band curvatures at the F point are particularly sensitive to the higher-Fourier coefficients. Explicit expressions for
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the nondegenerate bands E(F1, k) and E(I'2, k) to terms in n&4 are

E(rl, k) = yp, l+ (ak) 2(——'2yl, l—2y2, 1—(11/2)yp, l—2y4, 1

+(2~, ,+4y, ,+6y, +4y3 „+2y )'[E(F )—E(E, )3 '}, (A12)

E(r'2'k) —pp, l Spl, l 24y3, 1+(ak) 'j +1,1 2+2,1+(11/2)y, ,
—2y, ,

+( 2y,—,,+4y, ,, 6y,—„4y,—„+2y,,,)'[E(F,,) E(I—'2, )j '}, (A13)

while the effective-mass parameters for the degenerate bands E(F1;) and E(F25 ) are given by

L(r„)= —-y, ,,—2y, ,,+2y, ,,—(11/2)y, ,,—Sy, ,,—2y, ,,—4y, ,,
+(2v,.+4m, +6m, .+4m, +2v, )'LE(rl.-)—E(r,)]-1, (A14)

M(F15) 71,2 272, 2 72 5 (11/2)73,2+473,5 2+4,2+274, 5

+(2V, 3
—6&33.—4&, , )'[E(r»)—E(r )j ', (A15)

Q(F15)= —Vj 2 472,2+72 5+71 3+272 3
—1173,2—4y3 5

—4y4, 2
—2y4 5+73,3 +6%3,35,

for the degenerate conduction band, and by

(A16)

L(I'25 ) =—y1,2
—2y2, 2+2y2, 5+ (11/2)y3, 2+ Sy3,5

—2y4, 2
—4y4, 5

+( 2y, ,,+4—y, ,, 6y, „—4y, ,, +—2y, ,,)'[E(F25,) E(F2,))—', (A17)

M(r )=-'yl, —2y, —y, +(11/2)y, —4y, ,
—2y, , +2y, ,

+(—2y, ,+6y, ,+4y, )'[E(r 5 )—E(rl;)) ', (A18)

Q(F251) —71,2 4+2,2+ r2, 5 r1,3+2y2 3+11y3,2+473 5
—4r4 2

—2r4, 5
—73 3 6 r3, 35 ) (A19)

for the degenerate valence band. Higher-Fourier
coeKcients are relatively more important in these
eRective-mass formulas, because these higher-order
band parameters enter with larger coeKcients and in
different combinations than occur in the energy levels
themselves.

APPENDIX 8: SOLUTION OF COUPLED
EQUATIONS IN SILICON

For silicon, the four variables y1,4, y2, 4, y~, 1, and

72,» ——y2, ~
—y2, 5 are evaluated from solution of four

coupled equations. The four pieces of experimental data
that are involved are the energy and location of the
conduction-band minimum E(A1 ' ), the longitudinal
cyclotron effective-mass at h1 ' and the effective-mass
quantity L of the E(F25.) valence band. Since the
coupled equations are written in terms of the energy
and derivatives of the E+(Xl) band at the X point, it is
convenient to relate these quantities to the observables
E(A1 ' ), ml* and bl by the relations

yields a room-temperature value E(hl '~)=1.114 eV,
while cyclotron-resonance experiments on the elec-
trons" "provide a value ml*/mp=0. 97+0.02 at Al '".
By direct computation of the curvature of E+(61 ' )
(see Table VIII) about the energy minimum and about
the X point, it is found that the band curvatures at
these two points differ by about 2%, which is within

the experimental error in the effective-mass measure-

ment of m~*. '4 "Analysis of the spacial variation of the
electron wave function for donor-impurity states" has
yielded the location of the conduction-band minima on
the 6 axis at ak=x51, where 51=0.85+0.03.

The four coupled equations which are to be evalu-

ated are conveniently written in terms of the four
variables

a= [pp, l 41 1 E (Xl)j 8 Y2, 1 q

b= [4~,.—E'(X )3—8(~. .—~,.),
4+1 4

f 4r2, 4 y

E+(X ) —E+(A min)+ (1 b )2
2m)*g'

BE+�(Xl)

I422r

(1—bl),
8(akim) ml~a2

(B1)

(B2)

in which the quantities in the square brackets are
constants which have already been evaluated. The first
of the four coupled equations is obtained by rewriting

Eq. (17)for E+(Xl) in terms of the variables of Eq. (B4),
yielding

82E+(Xl) k2

8(ak, ) ' ml*a2

Optical measurement of the indirect gap in silicon"

ah= d' (B5)

The second equation is found by differentiating Eq. (15)
and then rewriting it in the form

[BE+(Xl)/8(ak, )J(a+b) = 2(apl, 2+ baal, —l)+2df (B6).
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The third equation arises from taking a second deriva-
tive of Eq. (15), and is written in the form

aA+ bB+C=—-'d' —2f' (87)

in which the coefficients 2, 8, and C are treated as
constants and are written as

W = [a2E+(X,)/a(ak )']—2V, , 2y-2, E+(X,),
8= [a2E+(Xl)/8(a&g)'] —-', Vo, l+2V1,1+2E+(Xl) )

C= —2[cjE+(X,)/rt (ak,)]'—4[ojE+(Xl)/8 (ak, )] (88)

X (vl, l+v1, 2) Svl, lvl, 2 ~

The fourth and final equation is obtained by rewriting
Eq. (40) in terms of the variables of Eq. (84) and is
given by

(89)[Z,b+Z2]= (d—2f)',
in which

@1 (vo, l Svl, l)

APPENDIX C: SOLUTION OF COUPLED
EQUATIONS IN GERMANIUM

For germanium, the seven variables y1,4, y2, 1, F22,
+2,3 72, 4 p2, 5, and y2, 6 are evaluated from solution of
seven coupled equations. The seven pieces of experi-
mental data that are introduced include the energy of
the levels E+(Ll)=0.6643&0.0005 eV," and E+(Xl)
=1.2&0.2 eV, the effective mass of the conduction

g2 ——[E+(Xl)—2v1, 2
—4L(I'„.)]g, . (810)

The simultaneous solution of Eqs. (85)—(87) and (89)
can be accomplished by eliminating the variables b,

d, and f to obtain a quartic equation in the variable a.
The roots of this quartic equation may be all real or
complex in pairs. In practice, every real root is examined
and most solutions are ruled out by the convergence
requirement for the Fourier series (i.e.,
((

~ V0, 4
~ ) &

so that the energy bands are adequately
described by only a few terms in the Fourier series.
For the set of experiments selected in this band-
parameter determination, two roots are approximately
equal and rapidly convergent, while the other two roots,
which are poorly convergent are quite different from
these and from each other. Because these poorly con-
vergent solutions do not provide a good description of
the dielectric constant, they are not considered as physi-
cally meaningful. Since the rapid convergent solutions
can be made complex, in fact, complex conjugates of
each other, by small changes of the band ordering, the
experimental data is constrained and cannot be varied
freely. Of these two solutions, the more rapidly con-
verging one yields the better dielectric constant as well
as energy bands which more closely resemble the cal-
culated germanium bands. This most rapidly con-
vergent solution of the four coupled equations yields
values for a, b, d, and f, and in turn, the quantities
y1 4, y2 4, y2 1, and y2 25 are evaluated for silicon.

[E (Xl) ~11][E (Xl) )122])' 0
in which

~11 +0,1 471,1 872, 1 )

)122 V0, 2 4V1, 2 SV2, 2+SV2, 0 ~

(C2)

(C3)

The unknowns y2 1 and y2 5 can be eliminated from these
equations by use of Eqs. (34b), (40), and (41). Sub-
stitution into Eq. (C2) results in the restriction on

72,2

where

(420+ 24V2, 2) (po —24V2, 2))0 ) (C4)

,=v. ,—6v, ,—6v, ,+4[(v, ,) /v, ,,]+m(r„,)
+4L(I', )+4[4)'E(I' )/8( k)'] E+(X ), (CS)—

and

Po=gvl, 2
—4[(vl, o)'/v1, 2]—SM(1'20 )—E+(X,). (C6)

Upper and lower bounds on the value of y2 2 are also
imposed by the reality requirement on (V1,4+V2, 0),
which follows from Eqs. (31) and (32a) for the energy

band E(1'2) which is 2r4r, , */2220 ——0.040~0.005, '4" the
longitudinal cyclotron effective mass of the conduction
band E+(Ll), which is 2221*/2220 = 1.58+0.02, '4 "and the
three effective-mass quantities for the degenerate
valence band L(1'20 ) = —15.6&0.3 eV, III(1'2, ) = —2.21
&0.18 eV and Q(l'20 ) = —0.07+0.84 eV.""""Since
the value for Q(l'22 ) is not well established from the
cyclotron-resonance experiments, it can be estimated
by Eq. (57) to be Q(1'20 ) = —0.80+0.20 eV. The energy
E+(Xl) for germanium is estimated to be close to the
value 1.2 eU, which is well established for silicon.

These seven experimental quantities determine the
seven unknown band parameters listed above through
a set of seven coupled equations. Six of the seven
equations are easily written in explicit form, but the
seventh, involving the longitudinal cyclotron eRective
mass of the conduction band is sufficiently complicated
so that it is most conveniently solved by numerical
procedures. For this reason, the six explicit equations
are solved for six unknowns in terms of the seventh band
parameter p2 2 and the experimentally measured
quantities. There are several solutions for p22 that
yield the experimental value for the longitudinal
cyclotron mass and all of these solutions are examined.
The solutions for p2 2 are readily found, since 72,2 is
restricted to a small range of values.

An upper and lower bound on y2, 2 is established by
requiring that y1, 4 and y2, 6 be real, in accordance with
the formulation of the effective-mass Hamiltonian in
Sec. II. The 6rst set of upper and lower bounds result
from the expression for the energy of the E+(Xl) level
which is given by Eqs. (17),and (18). This equation
can be rewritten as

v1, 4 ~4 j[E (Xl) xll][E (Xl) x22]) 1 (C1)

and the reality condition on y1, 4 implies that
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A (L1) 'Y0, 1 6 Y1,1 6 Y2,1 (CS)

B(L1)=7o,s—271,2
—471,8

—672,2
—472,s. (C9)

The reality requirement for (71,4+72 6) leads to the
restriction

[2E'(Lr) —A(L1)—B(L1)]'—I:A(L1)—B(L1)]'
=pr' —(581+3672,2) ')0. (C10)

The unknowns y2, 1 and y2, 3 are eliminated from these
equations by use of Eqs. (34), (40)—(42) to obtain

nt =7o, 1—(15/2)71, 1—(27/2)71, 2+671,8

+4[(71,8)'/71, 2]+3L(f'25 )+8~(f'25 )+2Q(f'25 )
+3[82E(F2 )/d(ak) 2], (C11)

A(L1)+B(L1)=nr+1871, 2 1271,8 2[(71,8) /71, 2]
—4M(F25 )—4Q(I'25 ), (C12)

P,=2E+(L,)—[A(L1)+B(L1)]. (C13)

The range of allowed values of y2, 2 is established by
taking the most restrictive of the upper and lower
bounds imposed by Eqs. (C4) and (C10).

Kith an arbitrary value for p2, 2 but within the range
of allowed values, the other six band parameters are

of the E+(Lr) level. These equations can be rewritten as

4V3
I 71,4+72, 6 I

+{[2E+(L1)—A (L1)—B(L1)]'
—

I A(I.,)—B(L,)]2}»2, (C7)
in which

evaluated according to the relations

72, 1=-,'71,1+-,'71,2
—372, 2

—[(71,8) '/271, 2]—fif (1'25 )
—lL(f' 5 )—-'rdsEP' )/~(~&)'1 (C14)

Y2, 3 3Y2,2+271,3+[(71,8) /4Y1, 2] 4 Y1,2+2~(f 25')

+2Q(f'25 ), (C1S)

7, =—7, —27, —[(7, )'/27, )—M(F ), (C16)

71 4 ~6[{70,1 4Y1 1 872 1 E (+1)}
X {471,2 872,2+8'Y2, 5 E+(Xr)}]'", (C17)

72, 5———2'71,8a-,'[{L(r25)——,'71,2+272, 2
—272, 5}

X {871,1—7o,1}]'", (C18)

72, 6 71,4~ (1/4~&) +1'—(581+3672,2) ] ~ (C19)

Arbitrary allowed values of y2, 2 are scanned and from
the resulting energy bands, this parameter is evaluated
to obtain the experimental value for the longitudinal
cyclotron effective mass. '4 ' In general, several such
solutions are found and all mathematically valid
solutions are examined. Some of these solutions are,
in fact, equivalent and involve only the change in
sign of a few band parameters. The most convergent
solution also seems to yield the best dielectric constant,
and for these two reasons is considered to be the most
physical. This solution remains the most convergent
under small changes in the band ordering. If, however,
a major reordering of the energy bands is made, some
other solution might become the most convergent and,
therefore, provide the best description of the real solid.
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Localized States
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Space-charge-induced accumulation regions in semiconductors and semimetals can lead to localized,
discretely spaced two-dimensional energy bands for which the existence criteria and the eigenvalue spectrum
are derived. The contribution of these states to the conductance of a planar metal-oxide-semimetal (-semi-
conductor) tunnel junction exhibits structure associated with the critical points in the density of states for
motion parallel to the junction. As an example, numerical results are given for Al-oxide-Bi junctions.

I. INTRODUCTION

I
'HE existence of localized, quantized one-electron

eigenstates in narrow accumulation or inversion
layers at semiconductor surfaces has been conjectured
for at least ten years. ' ' However, only surface trans-
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Kingston (University of Pennsylvania Press, Philadelphia, Penn-
sylvania, 1957), p. 68.' J. F. Dewald, Ann. N. Y. Acad. Sci. 101, 872 (1963).' R. F. Greene, Surface Sci. 2. 101 (1964).

port measurements4 " have given evidence for the
existence of these states, and the interpretation of those
experiments is qualitative, owing to the lack of a micro-
scopic quantum theory of surface transport. ' Optical

4 P. Handler and S. Eisenhouer, Surface Sci. 2, 64 (1964).
~ N. St. J. Murphy, Surface Sci. 2, 86 (1964).

F. Proix and P. Handler, Surface Sci. 5, 81 (1966).
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