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Quantum-Transport Theories and Multiple Scattering in Doped
Semiconductors. II. Mobility of n-type Gallium Arsenide f
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The quantum-conductivity formula derived in the previous paper is evaluated for screened Coulomb
potentials. The mobility is obtained in the form p= poL1+bn+b~+enj, where po is the Brooks-Herring
mobility, bz is a correction due to higher Born approximations for the incoherent scattering, and b~ and
bD are, respectively, multiple scattering and dressing corrections. Analytic formulas, suitable for applications
to specific semiconductors, are derived for the corrections. Applications are made to n-type GaAs, and it is
found that the corrections are significant at all temperatures and concentrations of practical interest.

I. INTRODUCTION
' 'N the previous paper of this series' (hereafter called

I) the quantum-transport theory for the impurity-
limited mobility of doped isotropic semiconductors has
been simplified and extended. A simple closed expres-
sion for the conductivity has been obtained which
includes three distinct types of quantum corrections to
the semiclassical Brooks-Herring result'. (1) processes
in which electrons are scattered coherently from pairs of
impurity centers, (2) higher Born approximations for
the incoherent scattering, and (3) the dressing effects
of the impurities on the electron wave functions and
energy levels. However, the formula obtained still
requires considerable further reduction, and some com-
plicated integrals must be evaluated before numerical
calculations are feasible. The aims of the present paper
are to carry out this reduction, to obtain numerical
estimates for the quantum effects in a typical e-type
semiconductor (GaAs), and to compare the quantum
theory with the Brooks-Herring theory and experiment.

We shall assume that the interaction between an
electron and an ionized impurity center is of the screened-
Coulomb form V(r) = —e'e "i(er), with the screening
length 0. ' being evaluated in the long-wavelength dc
limit of the random-phase approximation. The use of
this screening length will certainly be justified here, since
the condition for its validity (that the momentum
transfer in a collision is small compared with the inci-
dent momentum) is identical with one of the criteria for
the usefulness of the Born-type expansions on which the
theory of I is based. A second reason for the use of the
screened Coulomb potential is that the integrals in-
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volved in the relaxation time may then be evaluated by
the Feynman parametric-integration technique. '

Gallium arsenide is a suitable semiconductor for the
discussion of the quantum theory for the following
reasons: (1) The conduction band is isotropic and differs
only slightly from the parabolic shape4 assumed in the
theory of I. (2) The predominant scattering mechanisms
near room temperature and below have been shown4 to
be due to polar lattice modes and ionized impurities.
Ehrenreich has found that at room temperature the
Brooks-Herring theory agrees well with experiment in
the lower concentration regions where polar scattering
is the more important, but that there is a discrepancy of
approximately 40% at the higher concentrations, where
ionized impurity scattering is dominant. (3) Gallium
arsenide was thought to be important in practical ap-
plications, and hence considerable mobility data are
available for it, particularly at liquid nitrogen and room
temperatures. For purposes of comparison of the various
theories and experiment, we have assumed uncompen-
sated samples and used the parameters, quoted by
Ehrenreich, 4 of a dielectric constant &=13.5 and an
effective mass m*= 0.072m, with some adjustment
where necessary for the nonparabolicity of the conduc-
tion band. '

The general outline of the paper is as follows. In
Sec. II, the quantum-conductivity formula (1.18) is
compared with the Brooks-Herring formula and quan-
tum correction terms are defined. In Sec. III the higher
Born correction for incoherent scattering is evaluated.
The results are expressed in terms of the character-
istic lengths of the problem, namely, the electron
wavelength, the range of the impurity potential, the
mean distance between impurities, and the eRective
Bohr radius of the ionized impurity. This correction is
then calculated for uncompensated gallium arsenide as
a function of temperature and impurity concentration.
In Sec. IV the pair-scattering correction is examined,

' R. Jost and A. Pais, Phys. Rev. 82, 840 (1951);J. M. Jauch
and F. Rohrlich, Theory of Photons and E/ectrons (Addison-
Wesley Publishing Company, Reading, Massachusetts, 1955), Ap-
pendix AS.

4 H. Ehrenreich, Phys. Rev. 120, 1951 (1963).
5 W. M. De Meis, Gordon McKay Laboratory, Harvard Uni-

versity, Technical Report No. ARPA-16, 1965, Fig. 4-2 {un-
published).
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(3) The lowest approximation for coherent scattering
of the electrons from pairs of impurities,II. DEFINITION OF THE QUANTUM
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For ease of reading and for completeness it is con-
venient to collect here the results of paper I. It is shown
there that the dc conductivity of a doped isotropic
semiconductor due to ionized impurity scattering is
given by'

and in Sec. V the dressing correction is evaluated. In where

Sec. VI we compare the theoretical mobilities with the
experimental results as a function of impurity concen-
tration at liquid-nitrogen and room temperatures.
Finally, in Sec. VII we brieQy examine the region of
validity of th-. present quantum theory.

o = —(2e'/3h'Q)g (Vkpk) r (k)fp (pk),

where fp(pk) = [expp(pk —p)+1] ' is the Fermi dis-
tribution for impurity-dressed electrons (quasiparticles)
of wave vector k and energy

&k=Ek+(&/")g ~(l U» I'/"kk )

with E„=A'k'/2m*, ookk
——Ek—Ek, e the impurity

concentration, and 0 the volume. The relaxation time
r(k) is defined by

2s —U(kk'kik, k)
Wp(k, k') = 8(&okk.) p

kIk& — dkkI dkk2

v(l k,l,k'k) v(kk, k'kik) ~
, (6)

dkkI dkk2dkkI dkk2

We introduce 5 explicitly and set the impurity-potential
parameter X= 1.

1/r(k) =g [Wi(k, k')+ W2(k, k')+ Wp(k, k')+ U(k, k')]

X (1—cos8kk~) ~ (3)

where the transition probabilities per unit time are:

(1) The first Born approximation for incoherent
scattering of the quasiparticles by the impurities,

Wi(k, k') = (2m/AII)
I

Vkk
I
'B(pk pk')/

X ([1—Ak (Ek)][1—~k' (Ek )]), (4)
where

Ak (Ek) 2('+/II) Pk'
I

Vkk'
I

[1/(dkk' ) +1/(dkk' )

(2) The second and third Born approximations for
incoherent scattering,

Wp(k, k') = (2e7r/h&') 8(p~kk )

XP [V(kk,k'k)/d„k, —+V(kk'kik)/dkk, +] (5)

The semiclassical Brooks-Herring formula for the
conductivity is formally identical with the quantum
result (1), but with ek replaced by the conduction-band
electron energy Ek, and with the relaxation time r(k)
replaced by the Brooks-Herring relaxation time:

I/&o(k) = (2m~/AII) pk
I

Vkk~
I
'8(pikk ) (1—cos0kk. ). (8)

The quantum result (1) has been derived by a per-
turbation-expansion method which can only be expected
to be valid if the differences between the quantum and
the semiclassical results are relatively small. In this
case it is useful to rewrite (1) in the form

(~.E.) f'(E.)"(k)a=- go(v), (9)
3h'0 k 1+bii(k)+8~(k)+8D(k)

where 5~ includes the effects of S~ and S'3 and is
called the incoherent Born correction. 6~, which arises
from the coherent-scattering U term, is called the multi-
ple-scattering or pair correction. Finally, 8~, which
includes all effects arising from the impurity dressing of
the electron energy levels and wave functions, is called
the dressing correction. Since we are considering an
isotropic semiconductor, the 8's are functions only of
the magnitude of k, i.e., of the energy Ek. After inte-
gration over the angles, (9) reduces to an energy in-
tegral with integrand E'fp'(E)/(Qo(4k'/n') [1+ bing(h)

+8~(h)+5&(h)]), where Qp(y) = ln(1+y) —y/(1+y) is
a slowly varying function in the physically interesting
region of y))1. When the 8's are less than unity, the
denominator will be slowly varying compared with
E'fp'(E), and hence, in the usual manner, we may
remove it from the integral, evaluating it at the peak
energy Ep„k of E'fp'(E). The formula for the quantum
conductivity then reduces to the very simple and useful
form

&=«/[1+ 8~(kp»»k)+ bik (hp»»k)+ bii(kp, .k)], (10)

where 0.0 is the semiclassical Brooks-Herring conduc-
tivity. We shall discuss the incoherent Born correction
first, since it provides a framework for the discussion of
the other corrections.
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III. THE INCOHERENT BORN CORRECTION

In lowest order in the impurity potential, the Born correction is given by

8ii(k) = Tp(k) P Wi(k)k') (1—cosegg') 1
kf

where, for the screened-Coulomb-potential matrix elements V~k ———(47re'/p)(~k —k'~'+n') ', the second Born
transition rate W~ reduces to

Wp(k, k') =
256~4t,4e 1—8(ppgg~) Re P—

h&'0' ~ d», —
(~k—k'~'+n')(~k —kr~'+n')(~ki —k'~'+n')

(12)

2m*e'
~e(k) =

z-'k'eQ (4k'/n')

4'2 td F(k—,t),
t+np

where

F(k,t) = Re t (kiP —k'+io)(~ki —k'~'+n')

Equations (11) and (12) may be reduced to a simpler
form by introducing the momentum-transfer variable
t=

~

k—k'
~

' and using the energy 8 function to carry
out the Ek integration. The result is

For a clearer picture of the behavior of the Born
correction, it is convenient to introduce the character-
istic lengths of the impurity-scattering problem. These
are the electron wavelength X(=2z./k), the potential
range a, which may be defined as twice the screening
length, and the effective Bohr radius ap* ——tz'p/(m*e').
These lengths are evaluated for the peak energy of
E'f'(E). In terms of these lengths we obtain

5&(k p) = P, /z' cap*)Q&(47r a /X ) = e&Qe(y), (16)

where

X(~ k—ki ~'+n')] 'dki. (14) Qe(y) =
2Qo(y) (1+x)Lx(1+y+-,'xy)]'t'

2m. 2

F(k,t) =
Lt(n'+4k'n'+ tk')]"'

)(tan '
4(n4+4k'n'+ tk')

—1/2

The integration in (14) is extremely difficult to perform

by direct methods, but is quite simple if the Feynman
parametric-integration technique is used. ' Using this
method, several authors' ' have obtained the result

L4(1+y+-,'xy)

—1 j2

(17)

is a function which is plotted in Fig. 1. From a knowl-
edge of the parameters of the semiconductor, we may
now evaluate readily the Born correction. For the
particular case of uncompensated n-type gallium arsen-
ide, the Born correction is plotted in Fig. 2. The
qualitative behavior of these curves can be easily
understood. At all temperatures and concentrations
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versus temperature at constant
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shown, the parameter Y= 4n'a'/X'& 10, and hence

Qz(y) is slowly varying. The main temperature and
concentration dependence of 8~ therefore comes from
the parameter c~ ——V/(m'aao*) of (16). At the higher
temperatures, the electron gas is dilute and the Boltz-
mann statistics apply. In this region the potential
range a ~ T' 'n ' ' and the electron wavelength X~ T ' '
and hence c~ behaves as T ' 'e' . Thus, as the temper-
ature decreases, 8~ increases, which is consistent with
the decreasing validity of the first Born approximation
(c f. Blatt'). The decrease in temperature also results in
an increasing degeneracy of the electron gas, and con-
sequently the characteristic energy E~„k of the charge
carriers changes from the 3~T of the BoltzInann regime
to the Fermi energy Ez (3m')'~'O'I'~'/(2——m*) of the
degenerate regime. Hence 6~ becomes less dependent
on temperature. The crossing of the curves near 100 K
refIects the change in the concentration dependence of
c~ from the e' ' characteristic of the Boltzmann regime
to the e ' ' of the degenerate region.

Without evaluating the incoherent-scattering proba-
bility exactly it is difFicult to estimate how large 8& can

be expected to become before (1) ceases to be valid.
However, from previous investigations of the validity
of Born expansions for Yukawa (screened-Coulomb)
potentials by Jost and Pais' and by Dalitz, r it would

appear that second Born corrections are useful only if
they are quite small. Somewhat arbitrarily we would
estimate that the Born correction is accurate for
8~——10%, but that it is probably questionable at 30%.
If we use the fact that the range of the potential is of
the same order of magnitude as the effective Bohr
radius, then c~ ——4/y, and hence the condition that
b&(0.3 leads to the requirement that y&10.

IV. THE MULTIPLE-SCATTERING
CORRECTION

The multiple-scattering correction, which may be
obtained by comparing (9) with (1), is given by

8~(k) = ro(k) g U(k, k')(1 —cosHI, q ), (18)

where, for the screened Coulomb potential, the pair
transition rate is

2~m' ) 4~e'q 4

Z. (k,k')=—b(~», )~
——

~
2R. P» d~.,-A~, (~k—k'~'+~')'(Ik' —kryo'+~')'

~k+k' —kj —k2+2
»~u d„„,—d», +(~ k—kr ~'+n')'(~ k' —kr ~'+n')'

' F. J. Blatt, J. Phys. Chem. Solids 1, 262 (1957).

(19)
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These equations may be reduced by again introducing
the momentum-transfer variable t=

I
k—k'I ' and per-

forming the E~ integration. We find

16m*'ee4
4r(k) =

3re'I3'Q e(4k'/n')

Ls(k) t) = —~'(——',x'y+-', x'y'+-', x'+3x'y'+ (15/4) x'y

+2x'+Sxy'+9xy+Sx+y'+y)
X tan 'I x/4(1+y+ —'xy) j't'/
XL2n'x"'(1+-,'x)'(1+y+-,'xy)"'g. (27)

4' 2 g
E(k,t)+-,'

(t+ns) 3

4k2

tL(k, t)dt, (20)
The results for the multiple-scattering correction

may be most conveniently presented by introducing the
function

where

E(k t) = (k /2333*) Re LdSSr dg, gyp&

o.'y & x
Qsr(y) = Z(k, t)

2~'Qo(y) o (1+x)'

and
X(lk' —ktl'+n')'1 'dkt (21)

+-,'n4xL(k, t) dx. (28)

L(k, t) = (k'/2m*)' Ldzz, dz p+z. z,+

X(lk—kt I'+n')'(Ik' —ktl'+n')'j —'dk, . (22)

The integrals in (21) and (22) are again of the type for
which the Feynman parametric-integration technique
was developed. The evaluation of (21) is comparatively
simple, but (22) involves a long and tedius calculation.
If we denote tn ' by x and the unit step function by
8(N), the values of the integrals can be shown to be'

E{k,t) =-
n' (1+y)(1+y—x)

and

x'~'(1+y —x)3" (23)

L(k, t) =L,(k,t)+L,(k,t)+L, (k, t),
where

Lt(k, t) =s'n '{(7/256) x'y'+ —,', x'y+ (19/128)x'y'

+3x3y 3 x3+ 3 xsy2 Sxsy 3xs 3 xy2

—(17/16)xy —(9/8)x+ sty'+4 y)/(x(1+x) (1+y)

(24)

X(1+ex)(1+y+-'xy)3(1+sx)') (25)

~3(2+2x+-'x')
Ls(k, t) =-

2n'(y —x) ' '(1+x)' '(1+-',x)'

( — 1+x -'~3
X —~el 2

x(y —x)

(1+x) 'ts
+2 tan-'I I, (26)

ky —x)
& F. J. Mzpre, thesis, Harvard University, 1966 (unpublished);

Division of Engineering and Applied Physics, Harvard University,
Technical Report No. ARPA-24, 1966 (unpublished).

where

&~(k...~) = cMQsr(y),

Csr ——lt'as/(4~as*'D')

(29)

(30)

is called the multiple-scattering parameter. For y&10,
Q3r is slowly varying and ranges in value between
1.6—1.The parameter c~ then provides estimates for the
importance of multiple scattering. The smallness of this
parameter for small ) and a bears out the physically
expected result that multiple scattering should be
unimportant if either the electron wavelength or the
range of the potential is small compared with the mean
distance between impurities. In applying (29) one must
bear in mind that it has been derived by a perturbation-
expansion method which assumes that the impurity
potential is weak and that triplet and higher-order
scattering processes can be neglected. The formula is
therefore not applicable when the multiple-scattering
processes are most important, as, for example, when the
electron wavelength is of the same order or greater
than the distance between impurities.

From Eqs. (29) and (30) and Fig. 3 one can easily
evaluate the multiple-scattering correction for specific
semiconductors. The results for uncompensated n-type
gallium arsenide are plotted in Pig. 4 as a function of

This function, which can be evaluated easily by nu-
merical integration on a computer, is slowly varying
for y) 10 and approaches unity for large y. Qsr(y) is
plotted in Fig. 3.It is unclear what physical significance,
if any, should be attached to the behavior of Qsr and,
in particular, to the cusp at y=8.2. Although one might
expect resonance-type scattering to be observed under
certain conditions of electron wavelength, range of
potential, distance between impurities, and phase shift,
the cusp occurs in a region (y(10), where Born expan-
sions are either beginning to break down or are invalid.

In terms of Qsr and the characteristic lengths of the
problem, namely, the range a, the electron wavelength
), the effective Bohr radius ao*, and the mean distance
between impurities D=e ' 3, the multiple-scattering
correction (20) can be written
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temperature for impurity concentrations between 10"
and 10" cm '. The behavior of the curves is readily
understood. For temperatures above approximately
100 K the Born parameter y is sufficiently large at all
concentrations shown that the main temperature and
concentration dependence of 8~ is due to the variation
of c~. At the higher temperatures the Boltzmann
statistics apply, and u~ T'~'e 'I' and ) ~T '~'. The
temperature dependence of the range thus dominates
c~, with the variation in the electron wavelength re-
ducing this dependence from T'~' to T' ' The r'esult

that multiple scattering becomes less important at the
higher impurity concentrations may appear surprising.
The explanation is that we are considering an uncom-
pensated extrinsic semiconductor in which all the con-
duction electrons arise from the ionization of the im-

purities, and for which the electron concentration equals
the impurity concentration. As the concentration in-

creases, the electrons screen the ions more e6ectively,
thus reducing the range of the potential. This reduction
of the range dominates the concentration dependence
of b~, although the decrease in the impurity separation
D reduces this dependence from e ' ' to n '~'. At the
lower temperatures the electron gas becomes more
degenerate, and hence c~ is less dependent on tempera-
ture. However, at temperatures near 100 K for impurity
concentrations between 5)&10"and 10" cm ', the pa-
rameter y approaches 10 and the cusp in Q~ then leads
to a marked decrease in 8~ in this region. As previously
noted, the formula for b~ is of doubtful validity in this
cusp region. The minima in the 10"—10" cm ' curves
near 1000 K is due to the fact that the parameter y
passes through a minimum value in the region of inter-
mediate degeneracy. The variation of b~ with impurity
concentration is relatively insensitive to the degree of
degeneracy of the electrons, with b~ ~ e ' ' in the non-
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degenerate and 8~~ m ' ' in the degenerate limit. The
values of the multiple-scattering corrections are sur-
prisingly high, and for concentrations below about 10"
cm ' are so large that the validity of the present theory
is questionable.

V. THE DRESSING CORRECTION

The dressing corrections SD are due to the perturbing
effects of the impurities on the electronic energy levels
and wave functions. Characteristic of this type of cor-
rection is the appearance of the dressing function d,s(ro).
The change in the energy levels produces changes in
the equilibrium distribution function fo(es), in the first-
Born-approximation transition probability t/V~, in the
screening length, and in the velocity term Vi, e~. We shall
not investigate these effects here, since it can be proved'
that the characteristic parameter describing them is
small compared with the multiple-scattering parameter
in the region in which the Born expansion is useful.
However, the correction due to the impurity dressing
of the electron wave functions is not small and must be
included. It is a relatively straightforward calculation
to show that the wave-function normalization correction
is given by

8D(k) = ro(k) P W, (k,k')(1—cosOaft') 1

= [1—4csry/(1+y)] '—1+0(cd/y) . (31)

By comparing (31) with (29) we can see that both the
multiple-scattering and the dressing correction have the
same expansion parameter c~ and that, in the region
in which y)10, 5D is aPProximately 30—50/o of 6or.
Although possible, it is doubtful that there is direct
physical significance in the fact that c~ appears as the
parameter in both the multiple-scattering and the dress-
ing corrections, since the structure of the two terms is
very different [cf. Eqs. (4) and (7)J.

VI. MOBILITY OF GALLIUM ARSENIDE

The simplest method of evaluating the quantum
mobility consists in 6rst calculating the Brooks-Herring
mobility and then using (10), where the values of the
corrections can be obtained from Figs. 2 and 4 or from
the Eqs. (16), (29), and (31). To obtain the measured
mobility it is then necessary to combine the impurity
mobility with the polar mobility. At 77'K the results
of Ehrenreich4 give a polar mobility in excess of 10'
cm'/V sec, while at room temperature the value is
9300 cm'/V sec. In the calculations of Ehrenreich, the
polar and impurity mobilities at room temperature were
combined by means of a variational principle. Since
this is a lengthy calculation and we expect our results
to be valid only in the degenerate limit, ' we have

j When the electrons are not degenerate, b~ is sufIj.ciently large
that formula (1) is of questionable validity (cf. Fig. 4).

combined the mobilities by the formula

1/I = 1/pe+1/I r, (32)

"J. F. Woods (private communication)."R. K. Willardson (private communication)."S.E. Slum (private communication); L. R. Weisberg, J. R.
Woolston, and M. Glicksman, J. Appl. Phys. 29, 1514 (1958);
F.J. Reid and R. K. Willardson, J.Electron. Control 5, 54 (1958);
N. G. Ainslie, S. E. Blum, and J. F. Woods, J. Appl. Phys. 33,
2391 (1962);J. Black and P. Lublin, ibid 35, 2462 (1964). .

which is exact when all the carriers have the same
energy, as they would at the Fermi energy in the extreme
degenerate case.

The results obtained for the mobilities at 77'K are
shown in Fig. 5, and for those at 300 K in Fig. 6. Since
polar scattering is insigni6cant at 77 K, the curves of
Fig. 5 represent the most meaningful test of the quan-
tum theory. In Fig. 5 the quantum mobility is compared
with the Brooks-Herring mobility and with the experi-
mental results of Woods" and Willardson. " The ex-
perimental data quoted are the highest values for a
given concentration, since these presumably correspond
to the least, compensated samples (the actual scatter of
the experimental data of Woods" was in fact reason-
ably large). The agreement between theory and experi-
ment is surprisingly good, with the quantum curve
corresponding to a parabolic band giving the best fit
at all concentrations. Above 10" cm ', the agreement
should be quantitatively meaningful, since the cor-
rections are sufficiently small for the theory to be valid.
At lower concentrations the agreement must be re-
garded as somewhat fortuitous, since the Born expan-
sion is of doubtful validity, the multiple-scattering
correction is very large, and the neglect of electron-
electron scattering is not justified. However, the results
indicate that the inclusion of the quantum corrections
produces a significant improvement between theory and
experiment at all concentrations.

In Fig. 6 the theoretical curves represent: (1) the
present quantum theory, with the polar and impurity
mobilities combined according to (32); (2) the semi-
classical theory, with the Brooks-Herring mobility and
the polar mobility combined according to (32); and (3)
the semiclassical variational calculation of Ehrenreich. 4

The experimental data"" represent a selection of
mobility values corresponding to the highest values
for a given impurity concentration. The 6gure shows
that the inclusion of the quantum corrections results
in improved agreement between theory and experiment
in the degenerate region between 10" and 10" cm '.
The curve, however, does fall considerably below the
values due to Willardson. "At lower concentrations the
agreement also appears quite good, but must be regarded
as fortuitous, for the same reasons as at 77'K. In
addition there are two further complications. First,
Eq. (32) is significantly in error, as can be seen by
comparing the semiclassical curve obtained from (32)
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with the more exact variational curve. Second, since
the pair scattering is a coherent effect, the question
arises as to the validity of using the formula for 8~ when

there is a second important scattering mechanism

present.

VII. DISCUSSION

%e have seen that for concentrations above approxi-
mately 10" cm ' the quantum corrections are sufFi-

ciently small that the quantum-mobility formula is
valid. At these high concentrations the largest correc-
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tion is the multiple-scattering term, which is typically
0.35. The dressing correction and the incoherent Born
correction are smaller, being in the range 0.1—0.2. We
have also seen that the inclusion of these terms results
in good agreement between theory and experiment. The
theory of mobility in gallium arsenide in the degenerate
region therefore appears fairly satisfactory.

At lower impurity concentrations, and for uncompen-
sated samples, the theory is invalid, since the correc-
tions become suKciently large that the perturbation
approach used in the present series of papers breaks
down. This breakdown may be due to one of three
reasons:

(1) The incoherent Born correction may become so
large that the Born expansions are unreliable. In
principle, the development of a theory which does not
use Born expansions is straightforward and can be
achieved by the introduction of a T matrix to describe
the interaction between a quasiparticle and an im-

purity. This approach yields expansions in the impurity
concentration, in contrast to the impurity potential
expansions used here. Of the quantum theories discussed
in paper I, Rickayzen' and Langer" have both used
T matrices, but their theories have been restricted to
lowest order in the impurityconcentration. Luttinger
and Kohn" have introduced the T matrix in a transport-
equation approach and have included the coherent-
scattering processes. Although numerical calculations

'4 G. Rickayzen, in Lecture Notes on the Many-Body Problem,
edited by C. Fronsdal (W. A. Benjamin, Inc. , New York, 1961).

~s J. S. Langer, Phys. Rev. 120, 714 (1960); 124, 1003 (1961);
127, 5 (1962).

'e J. M. Luttinger and W. Kohn, Phys. Rev. 109, 1892 (1958).

have been carried through for the incoherent processes
(Blatt'), no estimate of the pair terms has been made.
As pointed out in Sec. I, the condition for the validity
of the erst Born approximation and for the applica-
bility of the long wavelength screening is the same, and
hence a T-matrix calculation should include the quan-
tum screening sects.

(2) The multiple-scattering correction 5sr may be-
come so large that triplet and higher-order coherent-
scattering processes cannot be neglected. The theory for
this general case is related to the problem of calculating
the conductivity of an amorphous solid. Some progress
has been made for these amorphous materials. "

(3) The neglect of electron-electron scattering may
not be justi6ed. In this case it will presumbaly be neces-
sary to consider the complete many particle system as in
Langer" and Ambegaokar. "
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