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Previous quantum-transport theories relevant to the calculation of multiple-scattering contributions to
the electron mobility of a doped semiconductor are re-examined. The Green’s-function evaluations of the
Kubo formula are extended to include contributions of second order in the impurity concentration in ad-
dition to the first-order terms included previously. The simple rigorous results obtained are used to justify
and simplify the Kohn-Luttinger transport equations. Apparent difficulties with the impurity averaging
are clarified, and the second-order Kohn-Luttinger equation is reduced to a Boltzmann form. For an iso-
tropic solid a simple closed formula for the mobility is derived, which contains such quantum corrections to
the Brooks-Herring formula as coherent scattering from pairs of impurities, higher Born approximations
for the single scattering, and dressing effects of the impurities on the electron energy levels and wave func-
tions. It is noted that a variational principle of the Kohler type exists, which should be of use in estimating

multiple-scattering contributions in anisotropic solids.

I. INTRODUCTION

N the Brooks-Herring theory! of electron scattering

by randomly distributed ionized impurities in
semiconductors, the mobility of a system of quasifree
conduction-band electrons is obtained by solving a
Boltzmann equation. In setting up the Boltzmann
equation, Brooks and Herring assume that the im-
purities scatter the electrons independently, that the
transition probability may be evaluated in first Born
approximation, and that the perturbing effects of the
impurities on the electron energy levels and wave
functions may be neglected. Although the Brooks-
Herring theory provides a good description of the
mobility in many cases, the contributions from coherent
scattering from pairs of impurity centers, from higher
Born approximations for the single scattering, and from
the dressing effects of the impurities can be important
in practice. In order to include these contributions
consistently, it is necessary to develop a quantum-
transport theory. Several such quantum approaches
have been discussed in the literature.* These ap-
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proaches may be grouped into two main classes, which
may be termed transport-equation and Kubo ap-
proaches, respectively.

A typical transport-equation approach is that of Kohn
and Luttinger,>® in which a perturbation expansion in
powers of the impurity potential,? or in powers of the
impurity concentration,? is used to reduce the quantum
Liouville equation to a series of “transport equations”
involving only the diagonal elements of the density
matrix. In these expansions the coherent-scattering
terms first appear in the third lowest order in the
potential expansion and in the second lowest order in
the density expansion. Unfortunately, however, these
higher-order equations are sufficiently complicated that
it is not apparent how to obtain an explicit expression
for the conductivity from them. Accordingly, no
applications of these equations to experimental results
have yet been made. In addition, the Kohn-Luttinger
theory suffers from some apparent formal difficulties.
Rickayzen,* for example, has objected that the impurity
averaging procedure used to derive the macroscopic
current from the microscopic current is introduced at
the wrong stage of the calculations.

In the Kubo approach a general expression for the
conductivity (the socalled Kubo formula) is obtained
by a formal solution of the Liouville equation. The
explicit evaluation of the conductivity from the Kubo
formula is a long and difficult calculation which has
been carried through in various ways. Abrikosov and
Gor’kov,5 Edwards,® Rickayzen,* Langer,” and Ambe-
gaokar® have obtained explicit results using thermo-
dynamic Green’s-function techniques. However, these
calculations are restricted to the lowest order in an
impurity-concentration expansion, and hence the
coherent scattering effects are not included. Chester and

9 G. V. Chester and A. Thellung, Proc. Phys. Soc. (London) 73,
765 (1959); 77, 1005 (1961); G. V. Chester, zbid. 81, 938 (1963).

10 E. Verboven, Physica 26, 1091 (1960).

1 P, Berger, J. M. J. Van Leeuwen, and E. Verboven, Physica
29, 1409 (1963).
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Thellung,® Verboven,'® and Berger e al.* have used
perturbation-expansion methods closely related to
those of Van Hove.!? These calculations have been
carried through to the third lowest order in a potential
expansion, and thus coherent-scattering effects are
included. However, the results obtained by this method
are extremely complicated and do not easily yield a
useable formula for the conductivity.

Although a Green’s-function evaluation of the Kubo
formula is probably the most powerful and general
method available for evaluating quantum conductivities,
this approach suffers from certain practical disad-
vantages in connection with the impurity scattering
problem. It is difficult, for example, to apply it to an
anisotropic system, and it involves sophisticated
mathematical techniques that are not always familiar
to people in the semiconductor field. The transport-
equation approach is a more practical method which
has the advantages of familiarity, easy generalization
to anisotropic systems, and ready adaptability to the
evaluation of transport coefficients other than the
conductivity. However, as mentioned previously, it is
not entirely rigorous, and some difficulties of inter-
pretation are encountered if the results of a Green’s-
function calculation are not known.

The present work has both formal and practical
aspects. The formal part of the work, which is discussed
in this paper, has three objectives: (1) to demonstrate
the mutual consistency of the Green’s-function and
transport-equation results; (2) to derive far simpler,
practical formulas for the conductivity of isotropic
semiconductors in which such quantum effects as
coherent scattering from pairs of impurities and the
dressing of the electron energy levels and wave func-
tions are important; and (3) to develop a practical
quantum-variational principle for estimating the con-
ductivity of anisotropic solids. The more practical
aspects of the work, which will be discussed in a sub-
sequent paper, are concerned with the estimation of the
quantum effects in a typical #-type semiconductor
(GaAs) and with a comparison of the quantum mobility
of gallium arsenide with the Brooks-Herring mobility
and with experimental data.

The general outline of the present paper is as follows.
In Sec. IT the system of interest is described and basic
formulas required in the later sections are presented.
In Sec. ITI the Green’s-function evaluation of the Kubo
formula is extended to include the coherent scattering
terms. In this development the impurity potential
expansions®® are used, since these are much simpler than

2 1,, Van Hove, Physica 21, 517 (1955); 23, 441 (1957); G. V.
Chester, Rept. Progr. Phys. 26, 411 (1963).

18 Although it is questionable whether an expansion of the con-
ductivity in powers of the potential is possible, the results pre-
sented here should be correct. Langer and Neal [J. S. Langer and
T. Neal, Phys. Rev. Letters 16, 984 (1966)] have shown that the
series expansion of the conductivity in powers of the impurity
concentration does not exist. However, the more correct calcu-
lation and the calculation based on concentration expansions agree
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the concentration expansions and are more immediately
useful for doped semiconductors. This calculation leads
to a simple closed formula for the conductivity of an
isotropic semiconductor and provides a framework for
the subsequent discussion of the transport-equation
approach. In IV we re-examine the first Kohn-Luttinger
paper? (hereafter referred to as KL), in which potential
expansions are used. A brief outline of a method,
suggested by the physical interpretation of the Green’s-
function result, for reducing the second-order* KL
transport equation to a Boltzmann form is given. For
an isotropic solid this second-order Boltzmann equation
may be solved to obtain the same conductivity formula
resulting from the Green’s-function method, thus veri-
fying that the assumptions made in KL are valid for the
system considered. Since the reasons for the validity of
these assumptions are not entirely clear, we briefly
outline a third method (based on a Van Hove M
expansion) of deriving the conductivity which clarifies
these reasons. Finally, we note that the existence of the
second-order Boltzmann equation implies the existence
of a Kohler-type variational principle,'® which is useful
for estimating the conductivity of anisotropic semi-
conductors.

II. DESCRIPTION OF SYSTEM

The system we shall examine is virtually identical
with that considered by Brooks and Herring! and
consists of a gas of independent conduction electrons,
described in the effective mass approximation, inter-
acting via a finite-range potential with N randomly
distributed static impurities in a volume Q. It is assumed
that IV and Q are large, but that the impurity concen-
tration ny=N/Q is finite. In this Brooks-Herring model
the electron-electron interaction is not included ex-
plicitly, but the screening effects of this interaction are
included self consistently, i.e., in the random-phase
approximation. We are interested in obtaining the
three lowest orders in an expansion of the dc conduc-
tivity in powers of the impurity potential.

The total Hamiltonian for the system is a sum of
one-electron Hamiltonians, which will be taken to be of
the form

Hr=Hy+H'+Hp=H+Hp, ¢y
where

Ho=p2/2m.~+ p2/2my+ 9.2/ 2m. (2)

is the Hamiltonian for an electron in an ellipsoidal

valley, and
H'=NE ;=" V(—R;)

to the order being considered in this paper (i.e., to second order in
the concentration), with the differences appearing in the next
highest order.

1t The lowest-order terms in the transport equation are of zeroth
order in the impurity potential.

16 M. Kohler, Z. Physik 124, 772 (1948) ; 125, 679 (1949); 126,
495 (1949); J. M. Ziman, Electrons and Phonons (Oxford Uni-
versity Press, New York, 1960), p. 275ff.
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describes the electron-impurity interaction. The finite-
range function V(r—R;) is the potential energy of an
electron at r due to the jth impurity at R;, and X is a
dimensionless parameter characteristic of the strength
of the impurity potential. Finally,

Hp=—e& ret 3)

contains the effect of the adiabatically switched-on
electric field.

The experimentally measured conductivity relates
the macroscopic current density to the total electric
field. For the present model, the total electric field is
identical with the electric field appearing explicitly in
the Hamiltonian (3), since we are considering an
effective single-electron problem. The macroscopic
current density is the average of the microscopic current
density over a macroscopic volume of the solid.
Rickayzen* has given a physically plausible, although
not completely rigorous, argument that this average
over a macroscopic volume is equivalent, for spatially
slowly varying applied fields, to an average over an
ensemble of solids with random impurity distributions.
Kohn and Luttinger? follow the slightly different
procedure of obtaining the macroscopic current density
directly by calculating the total current flowing in a
large volume. This total current is a function of the
impurity distribution in the solid. KL then use an
“ensemble average theorem’¢ to argue that there is a
vanishingly small probability (order N-172) for the
current corresponding to a particular impurity con-
figuration to differ from the average value in an en-
semble of solids with random-impurity distributions.
Thus KL’s argument also leads to the macroscopic
current density’s being the ensemble average of the
microscopic current density. However, this KL argu-
ment is not completely rigorous, since the ensemble-
average theorem cannot be rigorously applied if the
current is calculated from the KL transport-equation
approach.’” The theorem is, however, applicable to the
Green’s function method, where it provides a proof for
the plausibility argument of Rickayzen.'®* We shall
assume at this point in the development that the
macroscopic current density is the ensemble average of
the microscopic density. The justification of this
assumption by the ensemble average theorem is given
in Sec. III.

In the Ohmic conduction region, the total density
matrix may be conveniently written as the sum of the
equilibrium density matrix p=[exp8(H—pu)+1]" and
a correction term f, which is linear in the applied

16 Appendix B of Ref. 2.

17 See discussion after Eq. (25).

18 The ensemble averaging arguments break down if: (1) the
impurities are not randomly distributed, e.g., if they form a
regular lattice; or (2) if the charge carriers are bosons which have
undergone a Bose-Einstein condensation [cf. J. M. Blatt, T/eory
of Superconductivity (Academic Press Inc., New York, 1962),
Chap. 97.
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electric field, i.e.,
pr=p+f. @

When the impurity potential is weak, it is convenient
to work in a momentum representation, since the
momentum wave functions (plane waves) are the
eigenfunctions of the free-electron Hamiltonian H,. The
required matrix elements of the Hamiltonian, the cur-
rent-density operator, and the equilibrium-density
matrix are collected in the Appendix.

If intervalley scattering can be neglected, the
macroscopic current density for an electron in one of the
equivalent valleys may be written

dR; dRy
9(r) = / = s RuRae - RIC)

=2 {pr)udwx® =2 (Niedwx(r), (5)

kk’ kk’

where ensemble averaging'® is denoted by ( ), J(r) is the
current-density operator, and we have used the fact that
the equilibrium system carries no current. In order to
calculate the current, it is necessary to obtain the
density matrix f from the Liouville equation. The
method of doing this distinguishes the Kubo and
transport-equation approaches.

III. THE KUBO APPROACH

The method of constructing a Kubo formula for the
dc conductivity and of evaluating this formula by
means of thermodynamic Green’s functions is well-
known.*#% The extension of these Green’s-function
calculations to include the lowest-order coherent
scattering terms involves comparatively minor modifi-
cations in the methods described by Rickayzen* and
Langer.” Hence we shall only briefly outline the main
results obtained, concentrating on those required for the
justification and simplification of the KL equations.
The discussion is restricted to isotropic systems for
which m,=m,=m.,=m, where m is an effective mass.

In the present work the formalism of Kadanoff and
Martin® is used to express the microscopic current
density in terms of linear response functions which are
grand canonical expectation values of current-current
commutators. Using standard Green’s-function tech-
niques,? modified for a system not possessing trans-
lational invariance, we write the microscopic response
functions in a spectral representation form involving a
product of two one-electron spectral functions. After

19 Tdentical results would be obtained if the impurities were
restricted to lattice sites.

201, P. Kadanoff and P. C. Martin, Phys. Rev. 124, 670 (1961);
H. Ehrenreich, in Proceedings International School of Physics
“Enrico Fermi,” Course 34 (Academic Press Inc., New York, 1966).

2 P, C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959);
L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics
(W. A. Benjamin, Inc., New York, 1962); D. N. Zubarev, Usp.
Fiz. Nauk 71, 71 (1960) [English transl.: Soviet Phys.—Uspeki 3,
320 (1960)7].
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ensemble averaging and some algebra, we finally obtain
a result similar to one quoted by Langer” in his theory
of the impurity resistance of an isotropic metal,
namely,?

2

om? 27Q) kK’

(k-k)

© d o\w
X/ i )(A(k,k’;w)A(~k, —K';0))do, (6)

o dw

where fo(w)=_[expB(w—p)+11" is the Fermi distri-
bution, and

Ak ;w)=(k|4(w)|k)
=ilim (k|[G (wtis)—G—is)]|K), (7)

s—0

with G(2)= (z—H)™!, is the one-electron spectral
function. G(z) is the resolvent for a conduction-band
electron in the presence of the impurities.

The conductivity (6) can be evaluated by following
the method described by Rickayzen* and Langer,’
among others, of first constructing a Dyson’s equation
relating the ensemble averaged resolvent (real propa-
gator) to a self-energy function. A Bethe-Salpeter
equation may then be set up to express the averaged
spectral product appearing in (6) in terms of the
propagators and thus of the self-energy function. For
an isotropic system this equation may be solved, yield-
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ing a simple expression for the conductivity in terms of
the physically meaningful real and imaginary parts of
the self-energy function, i.e., in terms of quasiparticle
energy levels and transition probabilities.

The standard method of evaluating the impurity
averaged resolvent is to introduce the free-electron
resolvent Go(z)= (2—H,)™! and to use the equation
G(2)=Go(2)+Go(2)H'G(2) to expand G in a perturba-
tion expansion in powers of the strength parameter A
of the impurity potential. The averaging over the
random impurity ensemble eliminates the microscopic
or non-momentum-conserving terms in G, and only the
macroscopic (momentum-conserving) terms remain.
The expansion for (G(kk;2)) so obtained cannot be
used immediately in evaluating the dc conductivity,
since it would yield an expansion in which each term is
infinite.*? However, a finite result for the conductivity
will be obtained if an analytic continuation (renormali-
zation) procedure involving the systematic replacement
of bare propagators (z— Ex)™! by the real propagators
(G(kk; 2)) is applied to the expansion for (G). The
resulting expansion for (G) may be summed to yield the
Dyson’s equation
(G K" 2))=0w1 (G ; 2))

=6 [z—Ex—2(K;2)]", (8)
where Z(k’; 2) is the self-energy. If we retain only the
three lowest orders in X in the self-energy, the expansion

for it may be written in diagrammatic form as in Fig. 1
and in analytic form as in Eq. (9).2

A2 A3
E(k’)=N§§ lefkll2<G(k1))+N§ kZlZ{ V (k'kakok’)(G (k1) (G (k2))

)\4

+N— 2 V(k'kikoksk'){G (ki))(G (k) (G (ks))

Q4 Kikoks

4

+N— 3 V(kkikoksk')(G (k1) (G (k2))(G (k3))dx -1t ke—ks,0FONF) ,  (9)

Q4 kikoks

where

and

V(kk'k"' . .k(n))_—_— Viw Virwrrs - Vi@ =D (),

The first, second, and third terms in Fig. 1 and Eq. (9),
which contain only a single impurity (represented by a
cross), can be interpreted as the first, second, and third
Born approximations, respectively, for the interaction

2 E. J. Moore, thesis, Harvard University, 1966 (unpublished);
Division of Engineering and Applied Physics, Harvard University,
Technical Report No. ARPA-24, 1966 (unpublished).

between a quasiparticle (represented by a directed line
or propagator (G)) and a single impurity. The factor V
arises from the fact that there are NV impurities in the
solid. These linear terms in N have been included in
previous Green’s-function calculations.*~® The fourth
term in (9), which has not been included previously,
involves two distinct impurities and can be interpreted
as the lowest Born approximation for the interaction
between a quasiparticle and a pair of impurities, there
being N(N—1)=N? ordered pairs in the solid. The
Kronecker delta arises from the requirement imposed
by the ensemble averaging that momentum must be
conserved individually at each impurity.

The physically significant values of the complex
frequency z are given by z=w=is, where w is a real
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frequency and s is a positive infinitesimal. In the limit
of s—0, Gk, wtis)*=G(k, w—1is), and it is then
customary to define a dressing function Ay(w)=ReZ
(k, w+1s)=ReZ (k, w—1s) and a width function I'y(w)
=ImZ (k, w—is)= —ImZ(k, w+1s). In the present cal-
culations, it is possible to assume that I'k(w) is small®
and that there is one and only one zero* of w— Ej
——Ak(w), given by szk‘i-Ak(Ek)—*—O(}\a): 6k+0()\3).
The spectral function

(A4 (kk; w))=lim i[ (G (k, w+15))— (G(k, w—1s))]

is then sharply peaked at w= ex, and may generally be
replaced in integrands by the equivalent § function®
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where

Ak'<Ek>=[a—iAk<w>]

w=Ex

The quantity (4 (kk;w)) may be interpreted as the
spectral distribution for quasiparticles with energy
levels e, and with lifetimes related to the width func-
tions I'k (ex). The function Ay’ (Ex) represents a change
in the normalization between the quasiparticle wave
functions and the plane-wave {ree-electron wave
functions.

In calculating the dc conductivity to a given order in
A, we require the same number of terms in the expansion

2k (w) for the energy as in the expansion for the scattering. To
(A (kk; w))= " X obtain the three lowest orders in the energy (A\\2%),
[o—Ex—Ax(w) P+Tx(w) Ag(w) is required to order A2, whereas to obtain the
2Ty (ex) three lowest orders in the scattering (A2,A*\%), we
=~ require I'k(ex) to order M. On taking the real and
[eo—ex PL1—Ax' (Fx) P+Tx(ex) imaginary parts of the self-energy (9) and making use
=~ 278 (w—ex)/[1— A (Ex) ], (10)  of (10), we obtain? (P denotes principal value)
A2 1 : AZ | Vi |2
M) =1V~ | ka,|2[ - J:N—z P o) (11)
0w w—Ew+is w—Ep—is P w—FEy
and
i) =§[1= A (B IS D s 6K+ K)+ W k)+-U (kK) TH00), (12)
k/
where the W’s and U are transition probabilities per unit time defined by
Wik k) =2aN (/@) | Vi |?6(ex— ex)/{[1— Ak’ (Ex) J[1— Aw’ (E) J}HO0 (), (13)
Wallo ) = 2 (V/ 905 ua0) X [V Kk K)/dus+ V (K)o THO0V) (14)
k1
At V (kk'kikok) V(kkokk'k) V (kk.k'kk)
Wg(k,k')=27rN——6(wkk») Z I: f } :' (15)
o kike L dye, Ay, AyieTdxr,™ Ay By
and
A V(kk'kk.k) V(kkok:k'k) V (kkok'k k)
Uk k') =20N*—8 (wixr) 2 !ak—k’—i—kl—kz[ } ] k+k’——k1—kz_"—} . (16)
5 kiks kki Cxky Ay T dxx,™ ki Criyt
In these equations wxw = Ex— Ex and dyw*=wyp=is.
Wi is the term derived from Fig. 1(a), and hence it is
the first-Born-approximation transition rate for proc-
esses in which the impurities scatter the quasiparticles
incoherently. Similarly, W, and W3, which come re- N o N RN o N
spectively from Figs. 1(b) and 1(c), are the second and | [J = / AV R WY A S WL S U O W
third Born approximations for the incoherent scatter- @ @ @ @
% The restrictions which these assumptions impose on the region
of validity of the final result (18) for the conductivity are discussed
in Chap. 2 of Ref. 22. They are: (1) for Boltzmann statistics,

7>%/«T, where 7 is the relaxation time defined in (19); and (2) for

a degenerate gas, 7>>7%/Er, where Er is the Fermi energy.

% For Ax(w) given by (11) and for the special case of a screened
Coulomb potential it may be proved explicitly that there is only
one zero. These potential expansions are therefore obviously
unsatisfactory if there is a significant contribution to the con-
ductivity from an impurity band.

Fic. 1. The diagrammatic expansion for the self-energy function
[Eq. (9)]. The first three diagrams represent scattering of quasi-
particles by single impurities, while the fourth diagram is the
lowest-order contribution to coherent scattering from pairs of
impurities.
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ing. U arises from Fig. 1(d) and is therefore the lowest
approximation for coherent scattering from pairs of
impurities.

The next stage in the derivation of the dc con-
ductivity is to set up a Bethe-Salpeter integral equa-
tion relating a general pair of resolvents G(k’k;2)
Gk k'V; 2') to the (G), and hence to the quasiparticle
energies and transition probabilities. Since the micro-
scopic conductivity tensor is a sum of such resolvent
products, it is possible to establish rigorously the
equivalence of the macroscopic conductivity and the
ensemble average of the microscopic conductivity by
showing that the volume and the ensemble averages of
the above products are identical.!® To establish this
result, we note that the equation G=Goy+GoH'G may
be used to expand G(k’k”; 2)G(k'" k'V; 2’) as a power
series in H’. This expansion is a sum of impurity
Hamiltonian products of the form

H' (kkik;- - -k,)= (x/g)n‘ ZA V(kk;- - -k,)

Xexp{—i[ (k—ki)-R;1+ (ki—k2)-R;,

in which all the dependence on the impurity positions
appears explicitly in the rapidly varying exponential
factors.?’ We note two points: (1) In a term in which
momentum is not conserved the exponential factors
fluctuate over regions of space of atomic dimensions,
and hence the average value over a macroscopic volume
is vanishingly small. Also it can easily be proved® that
the ensemble averages of these terms vanish, and hence
the ensemble and the volume averages yield the same
(zero) result. (2) The terms in which momentum is
conserved satisfy the conditions of the ensemble
average theorem of KL.1® Hence there is a vanishingly
small probability that the values of these terms for a
particular impurity configuration differ from the
ensemble average values, which are independent of
position. We therefore require only the ensemble-
averaged GG.

The method of setting up and solving a Bethe-
Salpeter equation for the (GG) has been described in
detail by several authors.*—® The extension of these
calculations, which are restricted to lowest order in the
impurity density, to include the lowest-order coherent-
scattering contribution is straightforward, and hence
we shall only present the final results obtained for the
conductivity. Details of the calculation are given in
Ref. 22. After introducing an extra factor of 2 to allow
for the two spin states of the electron, we find

o=—(2¢"/ 39)% (Ve fo' ()7 (k) (18)

2% This situation contrasts with that in the KL transport-
equation approach in which the dependence on the impurity
configuration appears both implicitly (in fx and fxx) and ex-
plicitly (in H’ products).
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where we have formally introduced a relaxation time
7(k) defined by

1/ T(k)=§ [W1(kK)+ W2 (k k)

+Ws3(k,k)+ Uk k)J(1—cosbux).  (19)

Formulas of the form (18) are very familiar from the
Boltzmann-equation theory of conductivity. This is the
result which would be obtained from a Boltzmann
equation for particles of charge e and velocity Viex
whose interaction with an external scattering mecha-
nism is given by the relaxation time (19). As mentioned
previously, the W terms can be identified as the first,
second, and third Born approximations, respectively, for
the incoherent scattering of the quasiparticles from the
N randomly distributed impurities, while the U term is
due to coherent scattering from pairs of impurities.

IV. THE KL TRANSPORT-EQUATION APPROACH

The Green’s function calculation of Sec. III has
yielded a simple rigorous result for the conductivity of
an isotropic semiconductor and a simple physical
interpretation for the behavior of the electrons in the
presence of the impurities. In the present section these
results are used to justify and simplify the second-order
Kohn and Luttinger equations. We shall first outline the
KL procedure, briefly discussing some of the assump-
tions involved. Then, using the quasiparticle description
as a guide, we reduce the second-order KL equation to
a Boltzmann form. Since the restriction to isotropic
systems, which was introduced in Sec. III to permit the
solution of the Bethe-Salpeter equation, is no longer
necessary, and since one of the main practical ad-
vantages of the transport equation approach is that it
can easily be applied to anisotropic materials, we shall
consider the anisotropic system described in Sec. II.
Although KL originally discussed an isotropic model
with a Boltzmann distribution for the electrons, their
equations can be taken over virtually unchanged, the
sole differences being a trivial redefinition of the free-
electron energy and the use of the Fermi distribution.

KL examine the Liouville equation for the one-
electron density matrix in the momentum representa-
tion. If only linear terms in the electric field are retained
and it is assumed that f, which is defined in (4), has an
e*! time dependence,?® the matrix form of the Liouville
equation may be written

Ay frw =0, H p Jxxr
+2 (fuwH wwrr—H' xirr frrw) .

Kk’

(20)

From the expansion (50) of the equilibrium density
matrix it can be seen that the expansion for the diagonal
elements begins with zeroth-order terms in the impurity

26 This assumption is discussed in KL, Appendix D.
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potential strength parameter A, whereas that for the
off-diagonal elements starts with first-order terms. The
inhomogeneous terms in the diagonal and the off-
diagonal parts of the Liouville equation are therefore of
different order in A. The diagonal and the off-diagonal
equations are, with superscripts indicating the orders of
the inhomogeneous terms,

—isfx=[p,Hr ] +[o,Hrx®
+ Y Gaelv— e fron)

k'’ (k)

(21)

and
A frw = [p,H 7 Jix O+ [p,H 7 Jxw @4 (fe— fir) H e
+ 2 (fuwH wiwo—Hyo frow). (22)

k'’ (%k,k’)

In order to develop an iterative procedure for solving
these equations, it is necessary to make an assumption
about either the ) or the s dependence of f. One possi-
bility is to assume that sfx— 0 as s — 0 (sfx nonzero
implies an infinite dc conductivity), or, equivalently,
that the leading term in fy is O(\2). Either of these
assumptions implies the other and leads to transport
equations of the KL type. The other possibility is to
consider finite s and arbitrary values of A?/s. Van
Hove-type N%#(=\%/s) expansions for fx and fyx are
then obtained. This second method does not lead to
transport equations but yields perturbation expansions
for the conductivity which are essentially equivalent to
those of IIL. In the following discussion we shall first
examine the KL transport equation approach. Then,
in Sec. V, we briefly examine the Van Hove expansions
in order to clarify the assumptions of the KL method.

If fi is of lowest-order X=2, Eq. (22) implies that
fxi is of lowest-order A1, Iteration of this equation
then gives a series of equations which express the off-
diagonal elements of f in terms of the diagonal com-
ponents. When these equations are substituted into
(21), a series of transport equations in which only the
diagonal elements of f appear is obtained. These
equations are frequency-dependent microscopic equa-
tions. The required macroscopic dc transport equations
are obtained from them by letting s— 0 and by
ensemble averaging.

To lowest order in A\, Eq. (22) becomes

dx™ frw= (fx— fir)H xw+0(\9) (23)
which on substitution into (21) yields
—isfe=[p,Hr O+ 2" |H v |*(fr— frr)
kl
X[l/dkkl—— 1/dkk'+]. (24)

The term on the left of (24) is of order s/A%, and hence
may be neglected in the dc limit. As KL have pointed
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out, there is a large range of values of s for which (24)
is practically independent of s, and for which the
summation over k’ may be replaced by an integration,
and the factor [1/dxw——1/dgw], by a 8 function.

In order to compute the macroscopic current density
(5) from a transport equation approach it is necessary
to reduce (23) to an equation for {f)xx and (24) to one
for (f)x. On averaging (23) and (24), however, we
obtain equations which contain quantities of the form
(fxH'«w) and {fx| H'xr|?), and hence (f) does not
appear explicitly. To obtain equations for (f)x and
(f)xw we introduce a “decoupling assumption’ that

(el (kiks: - ki - k)
= <f>ki<H’(klk2‘ ki ko)) [1HO@ Y]

It is worth pointing out here that fi is a microscopic
quantity and may easily be shown® to contain rapidly
varying exponential factors of the form

In applying their ensemble-average theorem to the
microscopic Eq. (24), KL implicitly make the physi-
cally plausible assumption, which is completely equiv-
alent to the decoupling assumption (25), that fx does
not contain any physically important, rapidly varying
exponential factors.

An explicit proof of (25) and of the equivalent KL
assumption can readily be given by developing N*/s
expansions for f. These expansions, which are briefly
discussed in Sec. V, also yield some insight into the
physical significance of (25), particularly of the con-
nection between it and the Van Hove conditions for
irreversibility.!?

On averaging (23) and (24) and making use of (25),
we obtain (f)xw=0 and the zeroth-order KL equation

(25)

0= e&- kao(Ek)
+27rN()\/9)2§ | Viewr |28 (@reir) ((Hx— (Hw),  (26)

which is, of course, the Boltzmann equation used in the
Brooks-Herring theory.!

The higher-order equations may be obtained by
following the procedure of KL. We again find that
(f)xx=0, and that the decoupling assumption must be
made in the derivation of the macroscopic transport
equations from the microscopic equations. In first-order
KL obtain a result analogous to the zeroth-order, the
sole exception being that the transition probability also
includes second-Born-approximation terms. The effects
in which we are interested (the coherent scattering from
pairs of impurities and the impurity dressing of the
electron energy levels and wave functions) first appear
in the second-order equations. In this order KL obtain
a complicated equation which may be written in the
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form

+5 <<f>k—<f>kf>{

where C=[p)HF:|7 <Ck>=[<p>’HF]k=ie£‘vk<p>k? and

MOORE 160
0=(Cx)+ k%ﬁ:k) [{CrwH 1)/ dkk'““C-C-]'l‘i%:' [Wo (e &)+ W3 (k, k) 4+ U (k,K) I )e— (]
H e |? 1 T |2 "exrr |2
(| | >|' X /Z'<|H 12) Z,<|H [ >>j|_c.c.}
Ay~ I— B~ \K’ Ay~ k7’ dyxrr™
~k,ij, (e =) H s | D H i D[/ @i A A ™) —c.c. ], (27)
H’kk’ 2 0 E —Jo Ek'
- (] | >(Vk+Vk,)f( 1) — fo( ); (28)
Wik Wik’

Y dywr—

Wi, Ws, and U are the transition rates defined in
(14)-(16).

In their treatment, KL reduce (27) to a slightly
simpler form, which, however, is still very complicated.
Since the conductivity (18) obtained from the Green’s-
function calculation resembles the result obtainable
from an appropriate Boltzmann equation for quasi-
particles, one would expect that (27) could be reduced
to a Boltzmann form by rewriting it in terms of a
quasiparticle description.

A simple method of introducing a quasiparticle
distribution function is to recast the expression (5)

9= (/DL ViEx(f)x (29)
k

for the current, which involves the free-electron velocity,

into a form in which the quasiparticle velocity appears,

i.e., we define a distribution function Fy such that the

current is given by

9= (e/Q)Z ViexFk. (30)
k

But the equation connecting the quasiparticle and
free-electron velocities is

Viexr= ViBx—352" (| H xx |2)
kl

X[1/ @xw™)*+1/ (@) J(VeEx— Vi Ex),  (31)

Xx=1e& Vi(o)pt+3iie& -3 ' <|H'kk'[2>< +
kl

D™

(CxwH' i) .
> |:———C.C.:|=2’L€$'Z/ P

: )(vk+vk'>{[fo(Ea—fo(Ek,)J(

dkk'+

which may be derived from the definition e,=Ey
+Ax(Ex) by differentiating (11), making use of the
relation ViVyw= — Vio Vi, and then dropping surface
terms of the form?%

% Vie[{| H v

D1/ dwwt+1/dr™)].

From (31) it is apparent that (30) will hold for an &
defined by

=32 ([ Hiaw

%

X1/ @™ 4+1/ [@xw )N (Fe—Frr) .

This equation is the formula for f corresponding to the
relation (51) between the equilibrium quantities (o)
and fo(ex) (note pr=p+ f). Fx may therefore be inter-
preted as the field-dependent part of the quasiparticle
distribution function.

The reduction of (27) to a Boltzmann form is com-
paratively straightforward if the quasiparticle and
propagator formalism of III is used as a guide. Since the
calculation is somewhat tedious, only a brief outline is
given here?2 From (27) and (28) we have for the
explicitly field-dependent part of the KL transport
equation

(32)

1 1
+ )} .39
dxw™ dxe™

After making use of (51), differentiating, dropping surface terms, and rearranging, we find

Xi=1e8&" Ve fo (ex)+3ie€ X (| H wwr I?>[
K/ (dxw™)?

2

+§I' (|H v |2)

(wkk,2+ 52)2

(drw™)?

[vk JolE) = Vi o)~

][kaO(Ek)— Vi fo(Ex)]

M(Vkl’:k— Vk,Ek,):I . (34)

Wkk’

2" The neglect of these surface terms is certainly justified for the special case of the screened Coulomb potential, since
| Hix ' |2(1/dyw—41/diic™) vanishes at least as fast as |k’|~¢ for |k’| large.
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The third term on the right of (34) vanishes in the limit of small s, since the integrand has a zero at wgir=0. The
first term is the field-dependent term which one would expect in a Boltzmann equation for the quasiparticles. The
second term should not appear in the final result; we shall show that it can be absorbed into the collision term of
the Boltzmann equation.

If (32) and (34) are substituted into (27), the transport equation becomes

0=1¢8&" Viexfo' (ek)+izk:/l [W (kK )+Ws (kK )+ Uk k)] (Fx— Fu)+ R, (35)

where

H' |2 1 H' |2 H |2

Ry=Y" (Fx— Fw) <| B { >l—1 - /Z' (Hww [ > <] = >>:|—c.c.}
k! Kk I—- dkk’—\k” Ayxrr™ k' dyt

- k%f, (Frr—Frw )| H s || H e | D[/ ([ @i~ ™) — .. ]

+1ieg ~§’ (| H ww |H[1/ @rie)*+1/ (@i I Vi fo(Er) — Vie fo(Exr) ]

=12 (T T )| H v [ H e

k'K’

2>[1/ (dkk”—)2+ 1/ (dkk”+)2]7l'5 (wkk,)
+i Y (For—Fow )| H wier |2 H e |1/ (@i ™) 21/ (@i )2 Jrd (i) OV . (36)

klkll
The KL transport equation will reduce to the appropriate Boltzmann equation if

Rk=i§,’ W1k (Fx—Fu) OO, (37)

where Wi, defined by (13), is the first-Born-approximation transition probability per unit time for incoherent
scattering of the quasiparticles by the impurities. To prove (37) we first note, from (7), (10), and (13), that W,
is related to the quasiparticle spectral distribution (4 (k’,k’; ex)) and hence to the propagators (G(k’; ex=tis)).
To order \?, {G) may be expanded as

(G(K'; exis) )= (1/diiw®) {14 (1/duww*)[Aw (Ex) — Ax(Ex) Filw (Ex) JHON)} (38)

where both the dressing function
Ax(w)=2 P(|H xw |?)/wxw
kl

and the width function
Pk(w) =7I'Z < [ H,kk’ ! 2>B(‘-"_Ek')
k'

are of order A2

In order to recast (36) into a form in which the expansion of (G) can be identified, it is necessary to eliminate
the electric-field-dependent terms and to find an interpretation for the term containing 1/dyx~dxx~dxw~. The
field-dependent terms can be eliminated by using the zeroth-order Boltzmann equatian (26) and then noting that, to
the order in M of interest, the zeroth-order distribution function may be replaced by . If we now use the identity

: [5( ) 5( )][ ! -+ ! :|+ .5( )[ 1 | 1 :I (39)
C.C.=m1 Wrrgrt)— 0(Wkk’’ 720 (Wk k! -+ ,
(dkk’—)2 (dkk’+)2 y (dk’ k"-‘)z (dkl k"+)2

which is valid in the limit of small s, and introduce the dressing function A, the differentiated dressing function
A/ (Ey), and the width function T, Ry can be rewritten as

H,kk' 2 1
Rk:z gk{q d _I >[1 |L _[Ak'(Ek)-'Ak(Ek)—i-iPkr(Ek)]]—C.C.}

K’

Axr Ay Arierr™

H’k .12 1 Frers
n> %[” ol >[1+ [Ak,<Ek)~Ak<Ek>+~zrz | e
K SO K Gy

Bixr™

2)6(wkku):l:|—c.c.}

+iAk’ (EQ% 21r<fH/kk» |2>5 (wkk')(ffk— Efk»)-}—O()@) . (40)
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To the relevant order in A, the free-electron first-Born-approximation transition probability 2 (| H' yi- |2)6 (wix)
may be replaced by the quasiparticle first Born term ;. By analogy with the expansion of {(G), we can rewrite

(40) in the form
Re=Y 5| H xxr
o
=2 Fw(
k’

If we assume, as in Sec. III, that the imaginary parts of
the denominators in (41) are small, the functions
(G)—c.c. and

[ex— Exv— Aw (Fx)
—iry, (Fir/F )| H wiwr |8 (wrw) ] —c.c.
=

may be replaced by the equivalent energy-conserving
8 function 2718 (ex— ex’)/[1— Ax’ (Ex)], and hence (41)
reduces to the required form (37). It is of interest to
note that the natural width of the é function correspond-
ing to scattering out of the initial-state k is determined
by the “forward-scattering” width function

T =32 2m(|H v |28 (wrrr)
P

while that for the scattering into the state k is deter-
mined by the “back-scattering” width function

Tt=32 20(| H wierr
P

28 (wikrr) COSOkr - -

An analogous result has been found? in the Green’s-
function calculation.

On substituting (37) into (35), we find that the
second-order KL transport equation reduces to the
quasiparticle Boltzmann equation

0=¢&- Vkékfol(ék)+z [Wl(kyk,)+W2(k;kl)
kl

+Ws(k )+ Ul k) ] (Fo— Fr) -

For the special case of an isotropic system this equation
may be solved for Fy, the result being

Fr=—e8 Viexfo (ex)7(k), (43)

where 7 (k) is the relaxation time defined by (19). After
substituting (43) into (30) and introducing the extra
spin factor of 2, we obtain the identical conductivity
formula (18) resulting from the Green’s-function calcu-
lation. Thus, the decoupling assumption and the KL
assumption of fx~X2 for s— 0 lead to the correct
result for the conductivity of the isotropic system.

(42)

V. DISCUSSION

As mentioned above, two assumptions are made in
the transport equation approach which prevent it from

H{1/[ex— Ew— Aw (Ex)—il'w (Ex) ]—c.c.}
H' o | {1/ [ex— Exw—Aw (Ek)—h% (Frerr/F )| H s

2>5(wkk/r)]—C.C.}
+iAk’(Ek)§k:, Wik k') (Fe—F)+ON) . (41)

being a completely self-contained theory. We have seen
that these assumptions lead to the correct conductivity
for an isotropic system, but it is not completely clear
why they do or whether they also lead to correct results
for an anisotropic system. These points may be clarified
by developing an expansion of the Van Hove N (=\?/s)
type for fr and frxw. The Van Hove expansions are
obtained by examining (21) and (22) for finite s and
arbitrary A?/s. In lowest order, fx and fyw then go,
respectively, as A° and X\. On iterating, we find that
frw can be written as a sum of off-diagonal products
of the H’ impurity matrix elements of the form
H'(kk’k”---k™), The average of each of these off-
diagonal products vanishes, and hence we can prove
rigorously that (f)xw=0. We also find that fix can be
written as a sum of diagonal products of the H’ elements
i.e., of products H'(kk'k” - - - k™k). The validity of the
decoupling assumption (25) can then be seen to depend
on the result, which may easily be proved,?® that

(H' (k' - kD - . k®k)H' (k@k;- - k- - -k,))
= (H'(kk'- - - k®- - . k®K)W{H (kDk,- - -k- - -k,))
X[1+0@™)]. (44)

This result is closely related to the diagonal singularity
condition of Van Hove,"? which requires that diagonal
products be an order of N higher than off-diagonal
products. These results hold for both the anisotropic
and the isotropic cases.

In general, the Van Hove expansions may be re-
grouped and the Boltzmann equation (42) recovered.
Thus the KL approach must also be valid for an aniso-
tropic system.

The existence of the Boltzmann equation (42) means
that a variational principle of the Kohler type must
exist.!%? This principle should be of importance in
estimating the quantum conductivity of anisotropic
materials.
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APPENDIX: MOMENTUM MATRIX ELEMENTS

For the various parts of the Hamiltonian Hr we have
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with
(48)

kar = / V(r)e—i(k_kl) "dr .
Q

= = 8uus (B2 2 2
Howwe= By =biwe (k) 2mart- b2/ 2myrt k3 2ms) , (45) The diagonal elements H'yx are independent of k and,

Hppw=—e8& Iywe't=—ie& Vidgpe=1ie&- Viodywes, Dy a redefinition of the energy zero, can be set equal to
(46) zero. The matrix elements of the current-density
operator are
and T (£) = (¢/2mQ) (k-+K) exp[—i(k—k')-r]. (49)
Hlkk'=§§ iUk R -(47) With the exception of H'yy, all of the above matrix
Q i=1 elements are independent of the impurity positions
and of .

To order A? the equilibrium density matrix is given by

H' oo |2 H' g [ fo(Ex)— fo(Exr)
Pkk’=6kk’{f0(Ek)(Z P{ | >“§: Pl | -

k'’ Wk’

Wik’ Wik’

fO (Ek) - fo (Ekl)

Wk’ Kk’

H (kK"K fo(Ex)— fo(Ew 0(Ex)— fo(Ex
. FfolE— fo(Bx)  fo(E)— fol >]} -

Wr''k |_

1 —8xx] {H'kk

Wk’ Wkk’

where P indicates principal value, fo(Ex)=exp[B(Ex—uo)+1]" is the Fermi distribution for the free electrons,
wre=Ex— Eyx is an energy difference, and H’ (kkiks)=H'yx,H'x,x,- When the average of (50) over an ensemble
of solids with random impurity distributions is taken, the off-diagonal terms vanish and the diagonal terms can
be written in the concise form

(o= foler) —Ax, (51)
where
2 | Vi |2 A2 | Vi |
fole)=[expB(ex—p)+117"= fo(Ex) { 1—BN—2_ P 82 fo(Ew)N—2 P +O()  (52)
02 Wik’ k1 Q2 k2 Wiike
is the Fermi distribution for the quasiparticles of energy ex. The second term in (51) is given by
N Viw |* fo(Ew)— fo(Ex)
Ae=No s P| x| 2 fo(Ex)— fo(Ex . 53)
9w Wik’ Wik’

At first sight one might expect the Fermi distribution for the quasiparticles to be equal to the averaged equilibrium
distribution {p)x. However, this cannot be the case, since {p)x is taken with respect to the plane-wave (free-
electron) states rather than the quasiparticle states.



