
PHYSICAL REVIEW VOLUM E 160, NUM B ER 3 15 AUGUST 1967

New Approximation for Screened Exchange and the
Dielectric Constant of Metals*

LEONARD KLEINMAN

Department of Plrysies, Unipersity of Sonthern California, Los Angeles, California

(Received 21 December 1966; revised manuscript received 14 February 1967)

Using self-consistent-field techniques, we derive the dynamic dielectric constants appropriate to electrons
and to test charges which dier with the inclusion of screened Hartree-Fock exchange. For large wave
vector (in the static limit), the exchange contributions exceed the Coulomb contributions, and the electronic
dielectric constant becomes less than unity. We also derive a screened exchange potential linearly de-
pendent on the charge density, which seems preferable to the Slater rr'rs(r) approximation for energy-band
calculations.
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where E is the number of electrons in a gas of volume
0 and et (tt, a&), the dielectric constant, is defined in terms
of an infinite sum of diagrams. Nozieres and Pines'
derived the same equation using only the definition of
et as the dielectric response function Vt(tt, po) = Vp(tt, &o)/

et(tp, or), where Vt(tp, &o) is the potential seen by a test
charge when an external potential Vp(22, &o) = Vpe'"'e'"'
is applied. By considering a single diagram Hubbard
obtained e in the random-phase approximation (RPA)
e(tp, co)=1+X(tc,or). By approximating the additional
contribution of several exchange diagrams he obtained

et (K (o) = 1+X (tt,co)[1—X (tt, (o)f&(tt)] ', (2)

where

f (tt) tx2[x2+Py2+Q 2]—1 (3)

with kp the Fermi wave vector aTid E, an inverse
screening length which did not appear in Hubbard's
original fII(tp), but which was suggested by him in
private colrimunications to several authors' ' and whose
magnitude has varied from author to author.

Cohen and Phillips' were the first to point out that
nearly self-consistent crystal potentials could be ob-
tained by considering the ionic pseudopotentia17 to
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I. INTRODUCTION

'~N a famous paper, Hubbard, ' using complicated
~ ~ diagrammatic techniques, derived a formula for the
exchange and correlation energy of a free-electron gas:

be screened by the valence electrons:

Vcrystat= 2 Vien(tp)e "'
/Ssi(2Cro) ~

The dielectric constant for an electron diGers from
that for a test charge since the latter has no exchange
interaction with the responding electron gas. We
have Vt(tp, ro) = Vp(tp, or)+Srrp, i(tt, pp)/xs (which follows
from Poisson's equation V'V= Srrp) but Srrp, i(tt, or)
= —V,i(tc, to)tt2X(tc, po) follows from the definition of
X(tt,&o), the electronic susceptibility, where V, i is the
effective potential seen by the electrons, including ex-
change. From this and the definition of e, (x,or) the rela-
tion e.i(tc,pr) =X(tt,&o)e, (tt,pr)/[e, (tt,or) —1] follows im-
mediately. Substituting for e, from (2), we find

e,i(tp, co) = 1+X(tt,po) [1—

fir�

(tp)]. (4)

This form of the dielectric constant has been used by
Sham' and Vosko et a/. 4 to calculate the cohesive energy
and its derivatives which are needed in first-principles
calculations of phonon-dispersion curves of metals.

We show in this paper from self-consistent-field con-
siderations that er(tp, &o) and e,i(x,po) have the correct form
in Eqs. (2) and (4) only in the static limit (to —+ 0) and
that even then Hubbard's fir(tt) is completely incorrect
for large tp. Note that fir(tt) r -', for large tt implies that
the exchange interactions cancel out half the direct
Coulomb interactions for large x. This is what one might
expect using very naive physical considerations, but as
we shall show, only slightly more sophistication is re-
quired to demonstrate that the Coulomb contributions
are negligible compared to the exchange for large x.
In Sec. II, on the way to deriving e,i(tt, &o), we find a new
approximation for the exchange potential which we
believe has practical as well as theoretical advantages
for energy-band calculations over the now almost
universally used Slater approximation. In the Appendix
we discuss the evaluation of the inverse screening
length E,.

II. EXCHANGE AND THE DIELECTRIC
CONSTANT

We here derive e,i'(tt, to) and e,r'(tt, —or), from which
we will be able to calculate et(tc, or) =ere(tt, —&o). The

' J. C. Slater, Phys. Rev. 81, 385 (1951).
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latter equality holds because if we apply an external
(real) potential

V 0(r t) (V Oeotot+ V 0"oe ivvt)—(eto r+e—ir r)ect (5)

where q is a positive infinitesimal, a test charge will
see a real potential

V t(r, t) = ([V„„/et(2c, (o)]e*' '+[V '~/0t*(2c, (o)]e '"'}
)((ei o r+ e—to r) (6)

due to the real external potential and the real induced
electronic charge density. On the other hand, the
potential seen by an electron of wave vector k and spin
0)

V. k "(rt)=V. '(r t)+V '"'(r t)+V k -'"(rt)
= ([Vo„%e) (2cvk, (o)]e'"'+[Vo„'*/0el'(22, k, —(o)]e—'")

v)('(eto r+e—io r) (7)

will in general be complex because the exchange charge
density will be complex. (The potential will depend on
k because the exchange operator is nonlocal. ) Under the
influence of the perturbation V„k,"(r,t) a typical
electron wave function becomes (using standard first-
order time-dependent perturbation theory)2

Pk'(r
li2e ivt

f
eik'—r+[—a, o (~t)+a, o( ~t)]ei(k'+o) r

+[a, , ((ot)+ak „(—tot)]e'(' —"&'), (8)

with

a'+. (~t) =
co+K +2k 'tc zr&

(—)e—ird t

a„+„(—(ot) =
—(0+&(2+2k' 2(—i)&

al; „{a)t)=,
co+ I( —2k K 21&

(—)e—.ice t

ak —o ( (Ot)=-—(0+&(2—2k' 2c—ir&

V„„k,'+& = V„„0/0.)'(2c,k', (o)

V. 2.( '= V.„0%.)'(2tt k', —(o).

(9)

(10)

We have assumed that the energy of the state k'
is 1 =k", i.e., we have neglected the k' dependence of
the screened exchange interaction in the energy de-
nominators of Eqs. (9). Note that

Q ak ~„(+cot)=Q ak. „(acot) . (11)
k'

Using (8) and (11), we obtain

V coul(() Q
—1(ei(k+o) ~ rl

~

and

2
d'r2yk .*(r2) . 0k —(r,) ~e*" )

f12

= (8 /fl") 2 [ '+ '( t)+ ' .'(—t)+ '+.'*( t)+ '+. *(—t)] (12)
k', o.

2
V exch(t) — Q

—1 P (ei(k+o) rt
~ + 4(r ) evk rtdrr

~
+, (r ))

Ih'l
l r12

= —(82r/0) P [(ak ~re~((ot)+ak+oc*( —iot)) (k kt+tc) '+(ak+„—c((ot)+a-k+„'( (ot)) (k—k')'], —
It'

l I

where the sum is over all electrons k' with spin parallel to tr.
If we now assume, as did Hubbard, ' that (k—k +2()2 may be approximated by k&, 2+t(2 (eliminating the k de-

pendence of V,„k,'*'") and that the screening of the exchange may be included by replacing (kt;2+t(2) '

by (kl 2+((2+Eo2) ', we obtain

1 1
V-.'"'"(t)= —(8~/f~) 2 (a'+:*(~t)+a'+.'*( ~t)}-+ jak'+o ((Ot)+ak'+o ( (Ot) }

)o'l
l — 022+((2+It 2 k p2+K, 2

In the static limit ((o=0) one may take 2&—=0 and
V„„,(+) real; then by examining

l (pk l', one sees that
0-' P a . „'(0)=0 ' Q a „*(0)=——,'p„.,

k'I l k'l l

where p„ is the coeKcient of the xth fourier transform
of the charge density with spin 0. We thus obtain a
new approximation for exchange in terms of the charge

' L. I. Schi8, Qgantmes Mechanics (McGraw-Hill Book
company, Inc., Neer York, 1949), p. 189,

density which is especially applicable to energy-band
calculations:

exch 4~p [(P 2++ 2)—1+(Q 2++ 2+&2)—1] (15)

The linearity of this expression is a real, practical ad-
vantage over the Slater' p'"(r) approximation. The
latter leads to difhculty in tight-binding calculations
with overlapping valence functions where one would
like to express the crystal potential as a superposition
of atomic potentials; it also leads to difhculty in plane-
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wave expansions where one obtains p„. directly and is
forced to calculate

pcc c7i/3p cc—cdzr

to obtain V„.'"'". We also believe our expression to be
somewhat preferable from a theoretical point of view to
the Slater approximation, which, although derived for
unscreened exchange, is known in at least one case' to
give oR-diagonal matrix elements in closer numerical
agreement with the screened Hartree-Fock matrix
elements. The "exchange hole, " being of short range,
seems intrinsically to contain screening, but in a
disguised form which cannot be compared with current
many-body theories. On the other hand, our Eq. (13)
is exact for unscreened exchange; one may add screen-
ing in as highly sophisticated a manner as one wishes
and then determine numerically, for several values of
zc, what value of k&'+E,2 makes Eq. (15) [or Eq. (14)

in the dynamic case7 agree with the screened Eq. (13).
The determination of kiz+Esz as a function of zc is
outlined in the Appendix. We should point out that
ours is a linear approximation. That is, on going from
Eq. (13) to Eq. (14), we assumed that those and only
those states within the unperturbed Fermi sea were
occupied. The external potential or ionic pseudopo-
tential must be weak enough for this to be nearly the
case. Of course one could try to account for nonlinear
effects by replacing kz in Eq. (14) with some kz'.
Besides the numerical difhculty in determining kp
one would also have to face the fact that the averaging
over the momentum dependence of the screened ex-
change becomes less valid for large kp'. The Slater
approximation is nowhere explicitly linear; on the
other hand, it does explicitly assume a momentum-
independent exchange potential and therefore it, too,
is not completely free from these difFiculties.

We now return to the evaluation of V„„'"'(t) and
V '"'"(t). Let us define

X,(zc, &cd) = X,i(zc, &cd)+iX„(x, &a&) = (32zr/Q&c') P [+~+&&'+2k' x zzt7 —',

where the subscript cT means that the sum has been done over states k' with spin 0,' thus X(zc&co) =-', [X,(zc, &&a)

+X.. (zc, &(u)7. We find

X.(zc, +~) =4(zr&c) ' dzk'[~(o+&c'+2k' zc —zzt7
—'

2 t'cc'&~ '- &c'&~+2Kkz:. zest kz. —
ln + ("~~), (»)

2&c K &&co—2Kk p zzt K

so that"

X„(zc, a~)=
cc +co &c &co+2Kkta kFcc

ln (&c'W(o)
I ccz~&0 2Kk p —K

(18a,)

2 /K +tv
X.~(zc,(u) =—k p.z—!

g 2K

if co & 2~kg —~', 0 otherwise (18b)

2

!X„(zc, —(v) =—kp, z—
2cc ] if &c'—2&&k p (cd(cc'+2Kkz„' 0 otherwise. (18c)

We may now write

U„c'"'(t)= —4z P([V„„,&+&X,(zc,co)jV„„,& ~*X,*(zc, —(o)7e*'"c

+[V„„,&+'*X,*(zc,&v)+ V„„ ' 'X. (r., —~)7e '"') (19)

1 2 K

V ' '"(t)=— —V„„,&+~X, (zc,(u)+ —V„„,& ~*X,*(ic, —cd) e'"c
4 kg.'+E',z kg. '+K.z+cc'

1 K

V„„.&+~*X.*(zc,o&)+ V„,&
—~X, (zc, —a&) e '"'. (20)

4 .kF '+Es'+&c' kp '+K.'

J. C. Phillips and L. Kleinman, Phys. Rev. 128, 2098 (1962).
"The relationship between Hubbard's susceptibility (Ref. 1) and ours is

—A(zc,a) =-,' p, I x,c(zc,ca)+x,&(zc, —ce)g

—Z (zc,co) =-', Q, P,z (zc,cu) -x,z (zc, -ca)J,
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Now
U el(t) U (+)et&et+ U ( )—e

t'—ctt U 0(t)+ U Coul($)+ U exch(t)

so that by equating coefficients of e'"' and of e '"' we can obtain four coupled equations in V„„~+&, V„„&+',
V„„„&~, and V„„.( '. We shall simplify our work, however, by considering only the nonmagnetic case. Then we
have the two coupled equations

2
K

V„„(+)= V.„'——', V„„(+)x(Ic,cu) 1—-', — ——,'V„„(—)*x*(Ic,—co) 1—-',

kr'+E, 2 kr'+E, I+/c'
(21a)

V..' '= V..'*—-', V. ' )x(Ic, —co) 1——,
' —-', U. (+'*x*(Ic,cu)
kF'+E,' kr'+E, '+tc'

(21b)

Solving for V„„'+'=V„„/«, l(Ic,co) and V„„' '= U,„ /«, l(Ic, —cd), we find

«, i(Ic,co) = 1+
nx(Ic, co)+px*(Ic, —co)+ (n' —p')x(Ic, cu)x*(Ic, —co)

1+ (n —P)X*(Ic, —or)
(22a)

nx(Ic, —cu)+px*(Ic,cu)+ (n' —p')x(Ic, —a&)x*(Ic,co)
«,I(Ic, —cc) =1+

1+(n—P)X*(Ic,c0)
(22b)

where

P =-'[1—-'/c'(kr'+E '+/c') 'j
(23)n= i[1—i/P(k 2+E 2)—lj

It is interesting to examine Eq. (22) in the static
limit co=0; then X is real and

where

«, i (Ic,O) = 1+x(Ic,O) [1—f(Ic)$, (24)

K
21 2

f(~) =- + (25)
4 k '+E'+tc' k '+E '

pl/I [p +P p etr rjl/I p I/O+ p
I/I P p etr r

we see that the xth Fourier component of exchange
potential should be expected to be proportional to p„.
On the other hand, the xth Fourier component of the
Coulomb potential is proportional to p„//c', so that the
ratio of the exchange to Coulomb potentials is not -',

but rather K'. This exchange-hole argument is of course
approximate in that it contains an assumption of a

Equation (24) is in the same form as Eq. (4), but f(Ic)
differs markedly from Hubbard's fII(Ic) in the limit of
large lc. In the factor [1—f(Ic)], the 1 represents
Coulomb contributions and the f(Ic) exchange. One
supposes that the physical justification' for fry(Ic) I -',

as x —+~ is that x~~ implies r —+0, and the ex-
change interaction expels —,'the charge density from the
point r =0. This reasoning is fallacious; however,
because the Coulomb interaction is long range, one
must consider the entire exchange hole. As is well
known, ' the electrostatic energy of a point charge in
the center of a hole of density p and radius such that it
contains a total charge of just one, is proportional to
p'~'. Now if we expand

square-shape exchange hole. Note though, that it leads
to conclusions in agreement with Eq. (25) in both the
large and small x limits. This discussion is given for
whatever physical insight it may provide, not to prove
the correctness of either our approximation or the Slater
exchange-hole approximation in the high-x region. That
our Ic dependence is correct (for large Ic) follows imme-
diately from Eqs. (12) and (13), which are exact. If
the approximations made in Eq. (14) are not done
carefully, they affect the numerical results but leave the
x dependence unchanged. The same result may also be
seen by forming an integral equation for 1/«(Ic, 0) from
Eqs. (9), (10), (12), and (13), the latter either screened or
unscreened. Solving this integral equation in the large-
Ic limit, one finds «(Ic,O) =1—nK '+P/c ' (where n and P
are numerical constants), in exact. agreement with
Eq. (24). Note also that because f(Ic))1 when
/c') 4(k&'+E,'), the dielectric constant is less than unity
throughout this range. Although X(Ic,0) is small in this
range, so that e,& never drops appreciably below' 1, this
is, as far as we know, the first example of antiscreening
of a static potential.

To obtain «t (Ic,O) one needs only to substitute f(Ic) for
fII(Ic) in Eq. (2). It is not much more difficult to obtain
«t(Ic,ct)). Using

V„„'(t)= V„„'(t)/«I (Ic,co) = V„'(t)+V„„,c'"'(t),

substituting from Eq. (10) for the V„(+) and V. ' )

which appear in the V„„c'"'(t)of Eq. (19),and equating
separately the coefFicients of the e'"' and e '"' terms, one
obtains

1 1 1 X(Ic,co) X*(Ic,—cd) )+,
«I (IC)C0) «t(IC )

—
Ct)) '2 ( «e)lICr(«0ei (ICt Ct)) /

Note udded in proof. Because in the limit Ic—I 0 Eqs.
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(18), (22), and (26) yield e, (O, ru) =1—ar„'(1+60)/&o2,
where ~~'= 16k~'/3m and d, o

——~~co„'(k~2+K,2) ', in viola-
tion of a well-known theorem that e&(0,~) =1—~~'/cu',
we have considered the effect of including the screened
exchange self-energy in the energy denominators of
Eq. (9). One has

exch g exch
R+a k

eg(a ~~, 0) = 1+X(1+fX)

C0& A~Cd& M& 1 K

=1+ — +
~4 ~' ~4 4 kg'+E. 2

(33)

6=—kp2
3~ ($p2+g2+g 2) (Pp2+E 2)

(28)

The inclusion of 6 in the denominators of (9) leads to
the replacement of &~ by &co+6 wherever it appears
in Eq. (17) for X,(x, &co) and to no other changes in the
theory. Note that for small K, 6 —+ K260. A rather tedious
expansion of Eq. (18a) yields

co ' co '(1+60) 64 kp'
X(~~ 0, a(o) =a

lPCd Cd 15'' Cd

8~ t 1 1
(27)

0 ~ i( E(k+x—k')' (k—k')')

And for screened exchange with our usual approximation

Thus the self-energy term cancels the regular exchange
term of order ~ ' (which of course is negligible anyway
compared with the Coulomb term) and the leading ex-
change term will be of order K '. This result was ob-
tained by Geldart and Vosko, Can. J. Phys. 44, 2137
(1966).I thank Dr. Vosko for calling it to my attention.
It appears to be pure coincidence that Hubbard using
the incorrect f~(r) and neglecting self-energy correc-
tions also gets the leading exchange term in 6g(K ~~, 0)
to be of order K

Thus we see that our formulas for e.q(x, &&o) and
e~(~, +~), which as far as we know are the only ones
including exchange contributions ever derived, in closed
form for all values of x and cd, yield results which are
correct (to within ones ability to calculate K,2) in
every limit in which one can test them.

16~' 4 kp'(1+50) kp'(1+Do)' 16 4'
ZCd2 5 Cd2 3cd 35 cd

(29)

This substituted in Eq. (22) gives

Cd&

6q](K ~ 0, &M) = 1—

(&y2 60
+~' &~ —1 —+terms of constant sign . (30)

Cd
2

Cd

We have explicitly displayed terms vanishing as z be-
cause when combined in Eq. (26) with the ~ ' terms of X

they contribute to e&(0, War), yielding

e, (0, ace) =1—co '/(u'. (31)

X(~ —+~, 0)=
~

1——
~,

~4 k ~' i ' (32)

where the only K ' terms included are the self-energy
ones. Since we see from (24) that the regular exchange
terms contribute to e,q(~~~, 0) as ~ ' and the Cou-
lomb terms as K~, the self-energy terms which go like
K ' are completely negligible. We may determine the
large ~ dependence of e, by expanding Eq. (2) with fez (x)
replaced by f(x) to obtain

It is of interest to examine the eQect of these self-
energy terms on the large ~ dependence of e, (x,O) and
e,q(x, O). One has 6 ~6„=4ar„'/(k~ +E,'). Expanding
(18a) in this limit,

APPENDIX

We here screen V„„z' '"(/) of Eq. (13), evaluate it
numerically for the cases x~0 and x —&~, average
over occupied states k, and determine what values of
k~'+E, 2 are needed in Eq. (14) to make it agree with
our screened averaged V„„~'"'".We first examine the
x —+~ case; then we may take the a&+„(&~3)'s to be
independent of k' and thus require

1 1 1
Re — =, (A1)

(k—k')' e(k—k', v„—v„') . kF'+E', '

where we have screened the exchange interaction be-
tween a pair of electrons with wave vectors k and, k' and
energy v& and v& with the real part of the RPA dielec-
tric constant as suggested by Phillips" and by Nozieres
and Pines. ' Since the screened exchange is a slowly vary-
ing function of k and k', we shall approximate the
average in (A1) by merely substituting the average of
(k—k')'and

~ t~
—v~

~

= ~k' —k"
~

over the Fermi sphere.
These are easily found to be

((k—k)'). =(6/5)kp', (~vg —vg ~). =—,', k~', (A2)

so that

E,'(x —+ ~)
={(6/5)LReg—'((6/5)«'P —'P ')$ ~—1}yp'. (A3)

To determine E,2(x —+0) we note that we can let

"J.C. Phillips, Phys. Rev. 123, 420 I'1961).
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ic —+ —st and k' —+ k'+sc in the first term of Eq. (13) to will contribute to the dielectric constant. Thus
obtain

(k—k')'= 2k p'(1 —cosft), vs —vs ——0, (AS)

V exch
KGlk

v„„,.(+).'-

0 &'I
i to+—tc +2k 'st+est

to+it'+2k' ic+irt

V s. &
—

&e
—'"' — n(k'+sc) —rt(k')-

(k—k')'
(A4)

so that

E,s(~ ~ 0)

1
—1

=kg' —1
2(1—cosg)eL(2kp'(1 —cosg))' ' 0j

(A6)
where we have used the fact that V, k'+'*= V„„k & ) in
the sc —& 0 limit. )This follows from Eqs. (10), (22), and

(18).] Thus only states k' within tt of kp contribute to
V„„&' '". Now the dielectric constant LEq. (22)j
implicitly contains V„„i,'"'" integrated over all k. How-

ever, to the extent that the k dependence of V„„k(+& can
be neglected, only those states k also within tt of kp

We have evaluated E,s(sc —+ 0) by averaging over the
four values of 8=0, 4m, —,'x, ~m, for kg=0.485, the value
for sodium. We have also evaluated E,'(sc —+co) for
the same value of kp. We find E,s(r. ~0)=0.553,
E,'(ic —+~)=0.604; these should be compared with
the range of values to be found in the literature, '
E,'=2Iep/7r=0. 309 to E,s=4kp/rr=0. 618.
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The dynamical properties of a magnetic impurity in a metallic host are studied. We employ the Wolff
model, which describes an impurity of the 3d series placed in a nonmagnetic 4d or 5d host. We calculate the
dynamical susceptibility of a material in which a single impurity is imbedded. We imagine the system is
placed in an external magnetic field at the absolute zero of temperature. It is assumed that the ground-state
wave function is well approximated by the Hartree-Fock ground state in the presence of the external field.
A generalized random-phase approximation (RPA) is employed in the equation of motion for the two-
particle Green's function; this allows us to find an approximate expression for the two-particle correlation
function. The same result may be obtained by a diagrammatic analysis, in which the contribution from a
certain subset of diagrams is summed. The dynamic susceptibility obtained in this manner exhibits a reso-
nance for frequencies in the vicinity of the free-election spin resonance frequency. The total transverse

magnetic moment that arises in the system from the application of a field of fixed frequency and arbitrary
spatial variation exhibits a resonance response at the free-electron spin resonance frequency, with vanishing
width. The short-wavelength components of the induced spin density exhibit a resonance of finite width,
shifted from the free-electron resonance frequency. The g shift and width of the resonance in the short-wave-
length response is independent of the wave vector of the component examined, so long as v~q, v~q'))0, where
vz is the Fermi velocity of an electron at the Fermi surface, 0 and q' are the frequency and wave vector of
the driving wave, and q is the wave vector of the component of the spin density in question.

I. INTRODUCTION

'HE theoretical studies of magnetic impurity states
in metals have involved several different ap-

proaches. In the theory of the formation of magnetic
moments, ' ' one employs a Hamiltonian which describes

*Based on thesis No. AO 1194 to be submitted by one of us
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' J. Friedel, Nuovo Cimento Suppl. 7, 287 (1958).
2 P. W. Anderson, Phys. Rev. 124, 41 (1961).
' P. A. Wolff, Phys. Rev. 124, 1030 (1961).

the perturbation produced on the Sloch states of the
host metal by the impurity, including the intra-atomic
Coulomb interaction between two electrons on the
impurity site. If the intra-atomic Coulomb interaction
is treated in the Hartree-Fock approximation, then
the criteria for the appearance of a local moment may
be obtained without difhculty. We should mention
that the validity of the Hartree-Fock approach has
recently been questioned. 4

4D. C. Mattis and J. R. Schrieffer, Phys. Rev. 140, A1412
(1965).


