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tration. As the sodium concentration increases, the
minimum distance, q;„, between the Fermi surface
and the zone boundary decreases. The contribution
of U processes to the lattice Seebeck coeScient will,
therefore, increase with increasing sodium concentra-
tion. Thus, the lattice Seebeck coefficient, shouM show
an increase in the positive phonon-drag contribution
with increasing sodium concentration, This behavior
is seen in the lattice Seebeck coefficient of Na WOs (see
Fig. 5). For low sodium concentrations there is only a
negative contribution to the lattice Seebeck coe%cient.
However, as the sodium concentration increases, the
positive phonon-drag contribution also increases.

We conclude that the Fermi surface of Na WOs is
more complicated than the free-electron sphere, but that
the x dependence of the lattice Seebeck coeKcient can be
qualitatively understood if we assume that the Fermi
level increases with increasing number of free electrons.
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Electron energy levels in perfectly ordered Cu3Au have been calculated using the modified-plane-wave
(MPW) method for the majority of points in the Brillouin zone and using the orthogonalized-plane-wave
(OPW) method for some of the lower symmetry points. The calculation has been done for the equivalent of
512 points in the reciprocal-space lattice. A mufFin-tin model potential has been used. This was constructed
from the atomic potentials of Herman and Skillman who did a self-consistent calculation based on the
Slater version of the Hartree-Fock equations. This version includes an averaged exchange term. E(k) curves
are shown. The Fermi level has been computed to be —0.39 Ry. The resulting Fermi surface compares very
well with the simplified surface constructed by Harrison by folding the copper Fermi surface in accord with
the new lattice. Calculations were also carried out at a limited number of points for copper using both the
Herman-Skillman and the Chodorow potentials in order to examine the sensitivity of the results to difference
in potential. The two compare within about 0.04 Ry near the Fermi level but some d-like points differ by as
much as 0.1 Ry.

CRYSTAL STRUCTURE AN'D POTENTIAL
' 'N the present paper, the band structure of perfectly
~ - ordered Cu3Au is calculated using the modish. ed-
plane-wave (MPW) method' in conjunction with the
orthogonalized-plane-wave (OPW) method. The MPW
method was used in order to guarantee convergence
from above. However, the OPW method was found to
be entirely satisfactory when used with accurate core
states. The simple-cubic unit cell for Cu3Au is shown in
Fig. 1. There is one gold atom and three copper atoms
associated with each lattice point. In this paper the
origin is taken at a gold atom, ~ vectors describe the
positions of unit cells, and s„vectors describe the
positions of the basis atoms within a unit cell. As the
unit cell is simple cubic, the Brillouin zone is also simple

t This paper is a condensed version oi a doctoral thesis sub-
mitted to Rensselaer Polytechnic Institute in August, 1966 by
one of the authors (D.G.).*This work was supported by the U. S. Atomic Energy' Com-
mission.

f Now at Watervliet Arsenal, Watervliet, New York.
' K. Brown and J. A. Krumhansl, Phys. Rev. 109, 30 (1958).

cubic. This is shown in Fig. 2 with the points of high
symmetry labeled in the Bouckaert, Smoluchowski, and
Wigner (BSW) notation. '

The one-electron approach is used. The crystal
potential is constructed from the atomic potentials of
Herman and Skillman' (HS) using the muffin-tin model.
In this model we surround the individual atoms with
nonoverlapping spheres whose radii are chosen so that
the potentials match at the point of contact. Inside each
of these spheres we take the crystal potential to be the
potential of that particular atom as a free ion and out-
side the spheres we take the potential to be a constant.
The HS potentials were modified slightly so that the
Au and Cu potentials join smoothly along a line from
Au center to Cu center. The value of the potential at the
joining point was used for V, the constant potential in
the region between spheres.

' L. P. Bouckaert, R. Smoluchowski, and E. Wigner, Phys. Rev.
SO, S8 (1936).

SF. Herman and S. Skillman, Atonric Structure Calculationc
(Prentice-Hall, Inc, , Englewood Cliffs, New Jersey, 1963}.
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FIG. 1. Unit cell in real space for Cushu.

where the P; are known functions and the C„; are
determined by the variational procedure. In the MPW
method the expansion functions p; are of two types: (1)
plane waves which extend throughout the entire crystal
a,nd (2) atomic functions which are zero outside the
muon-tin spheres. The atomic functions are added in
order to get high wave-number components into the
expansion without using an exorbitantly large number
of plane waves. The variational procedure leads to the
set of equations

Z ~„, y,*(r)(H —Z„)y;(r)«= O, (2)

where H is the Hamiltonian of the system and E is the
eth energy eigenvalue. (We arbitrarily order the E's
from lowest to highest. ) These equations are to be
solved for each reciprocal-space k value used. This set is

equivalent to the matrix equation

HC„=E„SC„,

where

&v= 0"*( )HrI'i(r)«~ (4)

and

S,;= y,*(r)y;(r)a . (4')

As the @; are not necessarily orthogonal, S is not the
identity matrix. However, Eq. (3) is equivalent to the
standard eigenvalue equation

H'C„'=Z„C„',

THE MODIFIED-PLAgE-WAVE METHOD

We approximate the true electron wave function

4 "(r) by

0-"(r)=Z C-,S;(r),

where H' is the Hermitian matrix S 'I'HS '" and
C.'= S'~2C..

The atomic functions are Bloch sums of atomic
orbitals, namely P;exp[ik (~;+s„)jIi„& (r ~,—s„)—,
where F„~ is an atomic orbital. These atomic orbitals
are free-atom solutions of the Schrodinger equation with
the modification that they are zero outside the atomic
spheres. These functions were calculated in a separate
program4 by solving the Schrodinger equation numer-
ically using the appropriate HS potential for each atom.
The plane-wave terms are of the form e'&~+*&' where K
is a reciprocal lattice vector. For each symmetry point
group theory is used to reduce the number of expansion
functions for each representation.

E(k) has been evaluated for the equivalent of 512
uniformly spaced points in k space. Because of the high
degree of symmetry involved it is sufhcient to take 35
points in the portion of k space bounded by I'AX, 1'AR,

FZM, XZ3f, XSR, and MTE as indicated in Fig. 2.
Summing up all the irreducible representations having
levels in the range of interest (roughly —1 Ry to zero)
gives a total of 135 separate problems. For some 40 of
these problems, the OPW Inethod was used because of
the large number of atomic functions involved. In
addition there are 12 points of very low symmetry (two
members in the group of k) and one general point. These
13 points were calculated by interpolation between
neighboring points of higher symmetry.

CALCULATION OF MATRIX ELEMENTS
AND DIAGONALIZATION

In calculating the S;; and B;; matrix elements,
it is sufILcient to symmetrize just one of the g, , p;
functions. A symmetrized plane wave has the form

P~ Du(R) exp[i(k+K) Rrg where the R are members
of the "group of k," a subgroup of the full 48-member
cubic group. The R of this subgroup must satisfy either
Rk =k or Rk =k+ K. Du( R) is the "one-one" element
of the matrix representing the operator R. A sym-
metrized atomic function has the form

Q Dgl(R)g exp['ik (~;+s„)jP„& (Rr—~; s„). —

The matrix elements will be of three types: plane-
wave —plane-wave, plane-wave —atomic, and atomic-
atomic. The final expressions for these elements are
given in an Appendix. The group-theory part of the
atomic-atomic terms was calculated by hand. The rest
of the operations involved in numerically evaluating the
S;;, B„elements were done on a CDC 6600 computer.
Once the S... H;; elements have been evaluated a
unitary matrix is applied which diagonalizes S of Eq.
(3). We then transform Eq. (3) to the form of Eq. (5)
and diagonalize H' giving the energy eigenvalues. The
Jacobi routine was used to carry out the diagonaliza-

4%e are indebted to Dr. F. K. Bloom for this program,
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for the lattice constant u. For Cu3Au we used' the
room-temperature value u= 7.0825 a.u.
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FIG. 2. Unit cell in reciprocal space for CuaAu. The symmetry
points and axes are labeled in the BSW notation.

tions. The eigenfunctions are also generated by the
program. 5

5 We wish to thank Dr. R. A. Johnson for giving us the di-
agonalization program. This program was written by Dr. F. W.
Quelle.' G. A. Burdick, Phys. Rev. 129, 138 (1963).

7 M. I. Chodorow, Ph.D. thesis, Massachusetts Institute of
Technology, 1.939 (unpublished).

8 B. Segall, Phys. Rev. 125, 109 (1962).

SENSITIVITY OF E5ERGY LEVELS TO
THE POTENTIAL CHOSEN

We have also calculated energy levels for a few

symmetry points of copper using the HS potential and
compared them with the calculation of Burdick. ' In his
band-structure calculation for copper Burdick used the
augmented-plane-wave (APW) method and a potential
due to Chodorow. ' Burdick's values are in excellent
agreement with those of Segall' who used the Green's-

function method. In general our points agree fairly well

with those of Burdick in both position and shape of
band. There are, however, some discrepancies which

occur at energy levels well below the Fermi level and
which should not affect the shape of the Fermi surface.
The d-like states, 2~2 at —0.58 and F25 at —0.64 Ry
shift by approximately 0.1 Ry. Figure 3 shows this
comparison for the d, ~ representation (F25 is not shown

in Fig. 3). The long-dashed curve of Fig. 3 is Cu ob-
tained with our program by treating copper as though
it were Cu3Cu and using the Chodorow potential. Some
20 points were so calculated and the biggest difference
between ours and. Burdick's was 0.03 Ry (the high-

symmetry points compare to within 0.002 Ry). The
fact that the copper calculation is in good agreement
with the accurate calculations of Segall and of Burdick
when the same potential was used was taken as a
satisfactory test of our method. It should be noted that
our results are too high. This is to be expected since the
variational-principle results converge from above and
since we have not taken full advantage of periodicity
when we use the unit cell of Cu3Cu which contains four
atoms. For Cu3Cu we used the same value as Burdick
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FrG. 3. Comparison of this calculation with
Burdick's for the h~ representation for Cu.

' J. D. H. Donnay, G. Donnay, E. G. Cox, 0. Kennard, and
M. V. King, Crystal Data Determinative Tables (American Crys-
tallographic Association, Washington, D. C, , 1963),2nd ed. , p. 834.

CO5'VERGES CE

In the following discussion k,„will denote the
largest value of ~k+K~u/2m used for any particular
representation. The high-symmetry points (F,E,X,M.)
were calculated using the MPW method. For these
points the levels near the Fermi level are probably
convergent to within 0.005 Ry. The k, for these
representations was &4 and a typical expansion used
some 30 plane waves.

For the points of lower symmetry, we cannot get
enough plane waves into the expansion using MPW
without having extremely large matrices. This problem
was resolved by 6rst calculating these points roughly
using the MPW method, estimating the Fermi level
from this and then recalculating those points and
representations having levels near the estimated Fermi
level by using a modified form of the OPW method in
which we orthogonalized the plane waves to the lower-
lying (core) atomic orbitals only (for the gold atom we
kept the Ss, Sp, Sd, and. 6s orbitals and for copper we
kept the 3s, 3p, 3d, and 4s orbitals). To be sure we were
orthogonalizing to accurate solutions of the Schrodinger
equation, we orthogonalized only to core states which
were sufIiciently tightly bound so as to have negligible
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TABLE I. Values of k an
of n points for each k
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8
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6
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Ter.z II. L~ versus k. The third and alternate columns give the representation in the BSW notation.
The fourth and alternate columns give the energy eigenvalues for the respective bands.

BSW
Label

r
R
X
M

T
T
T
S
S
S
Z
Z
Z

r
R
X
M

T
T
T
S
S
S
Z
Z
Z

R
X
M

A
T
T
T
S
S
S
Z
Z
Z

4ak/t'm

000
444
004
440
001
002
003
110
220
330
111
222
333
441
442
443
114
224
334
401
402
403

000
444
004
440
001
002
003
110
220
330
111
222
333
441
442
443
114
224
334
401
402
403

000
444
004
440
001
002
003
110
220
330
111
222
333
441
442
443
114
224
334
401
402
403

Rep.

1
25'

2
3
1
2
2
1
1
1
1
1
1
2'
2/
2'

3
3
1
1
3

25'
12
5
2
5
5
5
1
3
4
3
3
3
2
2
2
1
1
1
2
2
1

25'
25'

5/
2'
5
5
5
2
1
1
3
3
3
5
5
5
1
1
2
1
1
2

Band 1

—1.004—0.972—0.970—0.964—0.993
0 974—0.965—0.981—0.956—0.951—0.969—0.94—0.959—0.963—0.967—0.970—0.943—0.943—0.964—0.948—0.938—0.954

Band 5

—0.951—0.90—0.917—0.89—0.931—0.923—0.915—0.93—0.917—0.894—0.928—0.915—0.892—0.875—0.881—0.887—0.914—0.890—0.887—0.875—0.881—0.877

Band 9
—0.768—0.765—0.755—0.761—0.756—0.750—0.746—0.756—0.751—0.753—0.752—0.746—0.752—0.763—0.758—0.762—0.764—0.753—0.753—0.753—0.763—0.754

Rep.

12
25/

1
1
2
1
1
1
1
1
3
3
3
1
5
5
1
2
2
1
3
1

25'
1
4/
5/

5
5
1
3
1
1
1
1
1
1
1
1
3
1
1
3
3
3

25'
15'

5/
4/

5
5
5
1
2

3
3
3
5
5
5
1
3
3
1
1
3

Band 2

—0.995—0.972—0.944—0.933—0.98—0.970—0.948—0.97—0.942—0.934
—0.964—0.939

0 954.
—0.921—0.943—0.966—0.930—0.939—0.959—0.927—0.938—0.932

Band 6
—0.951—0.818—0.839—0.773—0.931—0.923—0.882—0.928—0.886—0.800—0.92—0.832—0.803—0.78—0.797—0.813—0.813—0.786—0.807—0.825—0.798—0.775

Band 10
—0.768—0.747—0.755—0.756—0.756—0.750—0.746—0.754—0.746—0.753—0.752—0.746—0.743—0.735—0.739—0.745—0.750—0.74—0.745—0.745—0.755—0.754

Rep.

12
25'
3
5
1
1
2/

2
3
3
3
5
5
5
3

1
3
4

1
25'

4/
5/

1
1
1.

1
1
1
1
1

2'
2/

2'
3
3
3
3
3
1

12
15'

1
3
2
1
1
4
1
1
3
1
3
5
5
5

2

3
3
3

Band 3

—0.995—0.972—0.94—0.916—0.974—0.944—0.927—0.968—0.937—0.918—0.964—0.939—0.954—0.921—0.943—0.966—0.922—0.986—0.958—0.921—0.916—0.913

Band 7

—0.833—0.765—0.791—0.773—0.822—0.813—0.797—0.82—0.797—0.771—0.81—0.78—0.773—0.763—0.765—0.764—0.78—0.781—0.768—0.782—0.770—0.769

Band 11
—0.724—0.747—0.741—0.751—0.72—0.730—0.737—0.72—0.730—0.743—0.71—0.73—0.743—0.735—0.739—0.745—0.744—0.738—0.745—0.729—0.742—0.748

Rep.

25/
12
5
5
2/
2/

5
2
2
3
3
3
3
5
1
1
2

1
2

25/
25'

2/

1
2'
2/
2/

3
3
3
1

3
5
5
5
3
3
1
2
2
1

12
15'
5
5/

1
2
5
1

3
3
3
1
2/
1'
1/

3
4
2

1
4

Band 4

—0.951—0.90—0.917—0.916
~

0.94—0.932—0.915—0.935—0.928—0.910—0.928—0.915—0.892—0.921—0.906—0.895—0.919—0.917—0.897—0.920—0.903—0.888

Band 8
—0.768—0.765—0.780—0.765—0.764—0.770—0.775—0.763—0.769—0.764—0,76—0.77—0.752—0.763—0.758—0.762—0.77—0.754—0.759—0.772—0.763—0.761

Band 12
—0.724—0.747—0.721—0.746—0.714—0.711—0.719—0.71—0.730—0.74—0.71—0.722—0.714—0.734—0.74—0.74—0.73—0.736—0.735—0.715—0.729—0.742
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TmLE II (coettilged)

BSW
Label

E
X
3II

T
T
T
S
S
S
z
Z
z

r
E
X
M

T
T
T
S
S
S
z
g
Z

r
R
X
M

A

T
T
T
S
S
S
z
z
z

000
444
004
440
001
002
003
110
220
330
111
222
333
441
442
443
114
224
334
401
402
403

000
444
004
440
001
002
003
iio
220
330
111
222
333
441
442
443
114
224
334
401
402
403

000
444
004
440
001
002
003
110
220
330
iii
222
333
441
442
443
114
224
334
401
402
403
102

Rep.

12
12
5
5/

2
5
5
1
3

3
2
1
2'
1
2
3
3
1
1
1

25'
25'

3/
5
2
2
5
1
2

3
3
3
2
2
2

1
1
3
3
4

15'
2/

3
5/

5
1'
1/

2
2
1
2
2
1
5
5
2/

3
3
3

3
3
+

Band 13

—0.684—0.684—0.721—0.746—0.678—0.70—0.719—0.68—0.72—0.740—0.69—0.722—0.704—0.730—0.708—0.684—0.723—0.73—0.699—0.710—0.719—0.733

Band 17
—0.673—0.675—0.703—0.713—0.672—0.678—0.69—0.67—0.683—0.698—0.68—0.69—0.677—0.697—0.688—0.679—0.68—0.675—0.673—0.685—0.693—0.701

Band 21
—0.663—0.455—0.670—0.492—0.66—0.66—0.66—0.658—0.672—0.629—0.639—0.642—0.593—0.482—0.462—0.454—0.658—0.596—0.507—0.660—0.622—0.560

(—0.68)

Rep.

12
12
2
4
1
5
2
3

2
3
3
3
1/

1
2/

1

2
2
2

25'
15/
4/

5
2'
5
5
2
1
3
2
2
3
5
5
5
2

2
3
3
3

15
15
1'
5/

1
1
1

3
3

5
5
5
1
1
1
2
1
1

+

Band 14

—0.684—0.684—0.707—0.721—0.676—0.70—0.706—0.68—0.713—0.725—0.68—0.716—0.699—0.724—0.704—0.763—0.71 7—0.721—0.694—0.702—0.707—0.710

Band 18
—0.673—0.671—0.697—0.713—0.663—0.67—0.69—0.668—0.683—0.69—0.67—0.686—0.670—0.694—0.679—0.670—0.68—0.67—0.67—0.685—0.689—0.697

Band 22

—0.236—0.408
—0.665—0.492—0.321—0.470—0.604—0.294—0.397—0.466—0.268—0.324—0.393—0.482—0.462—0.429—0.653—0.590—0.494—0.654—0.617—0.555—0.44

Rep.

2
25'

5/
5/

5
1
1

3
3
3
5
5
5
1

1

1
1

15'
15'

1
3/
il
5
2

4
2
3
3
3
5
5
5

2

3

2

15
15

5l
3
5
5
5

1
1
3
3
3
2'
2'
5
3
3
3
3
3
3

+

Band 15

—0.680—0.675—0.707—0.716—0.67—0.690—0.699—0.68—0.694—0.708—0.68—0.716—0.699—0.720—0.700—0.679-0.712—0.72—0.692—0.698—0.700—0.706

Band 19
—0.663—0.671—0.697—0.707—0.66—0.67—0.684—0.66—0.679—0.693—0.66—0.67—0.670—0.694—0.679-0.670—0.670—0.67—0.669—0.667—0.658—0.661

Band 23
—0.236—0.408
+0.08—0.456—0.20—0.13—0.03—0.291—0.377—0.428—0.268—0.324—0.375—0.454—0.454—0.429—0.08—0.25—0.376—0.063—0.220—0.355

(—o.25)

Rep.

25'
25'

5/
5/

5
2
2

1
1
3
3
3
5
5
5
2
2
3

4
3

15'
15'
3f
1'
5
2'
2/

3
3
2
3
3
2
1'
]I
1'
2
2
2
1
2

15
15

5/

1
5
5
5
3
3
1
1
1
3
1
1
1
4
4

1
1
1

Sand 16

—0,673—0.675—0.707—0.716—0.67—0.685—0.694—0.67—0.692—0.700—0.68—0.69—0.677—0.720—0.700—0.679—0.698—0.714—0.682—0.694—0.700—0.705

Band 20
—0.663—0.671—0.689—0.701—0.66—0.663—0.663—0.66—0.67—0.682—0.66—0.67—0.643—0.690—0.679—0.669—0.66—0.665—0.66—0.664—0.657—0.659

Band 24
—0.236—0.408
+0.08—0.440—0.20—0.13—0.03—0.18—0.05—0.235—0.27—032—0.375—0.433—0.424—0.416—0.04—0.21—0.348—0.034—0.197—0.341—O.ii
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TABLE II (coeteuued)

BSW
Label

$1

R
X
M

Z

Z

'1
T
T
S
5
S
z
z
z

4ak/w

103
203
112
223
113
221
332
331
214
314
324
123

000
444
004
440
001
002
003
110
220
330
111
222
333
441
442
443
114
224
334
401
402
403

Rep.

1
25'

5
2'
1
1
2
1
1
3
3
3
3
2'
2'
2/

2
2
2
4
2
2

Band 21

(—0.67)—0.66
(—0.65)
(—0.63)
(—0.66)
(—0.66)
(—0.56)
(—0.60)—0.61—0.56—0.54
(—0.64)

Band 25

0.117—0.134
0.082
0.241
0.124
0.130
0.145
0.133
0.037
0,13
0.246
0.107—0.068
0.123

—0.008—0.099
—0.018

.
—0.090—0.123

0.119
0.166
0.213

Rep.

12
25'

5
5/

2
2
1
4.

1
1
3
3
3
5
5
5
1
1
1
2
3
3

Band 22

—0.57—0.52
(—0.40)
(—0.45)
(—0.53)
(—0.36)
(—0.39)
(—0.43)—0.61—0.55—0.53
(—0.48)

Band 26

0.121—0.134
0.082
0.322
0.128
0.135
0.149
0.237
0.158
0.225
0.246
0.107—0.068
0.180
0.032—0.088
0.010—0.062—0.100
0.134
0.178
0.261

Rep.

12
25'

3/
5/

1
5
5
1

4
1
1
1
5
5
5
2
3
3
3
4

Band 23

(—0.16)—0.30
(—0.23)
(—0.29)
(—0.15)
(—0.33l
(—0.39)
(—0.41)
(—0.23)
(—0.35)
(—0.35)
(—0.29)

Band 27

0.121
—0.134

0.150
0.322
0.233
0.347
0.216
0.242
0.398
0.344
0.256
0.128

—0,047
0.180
0.032—0.088
0.323
0.245—0.007
0.180
0.179
0.270

Rep.

15
1
4/

3
5
5
5
1
2
3
3
3
1
1
1
1
3
1
1
1
1
1

Band 24

—0.01
—0.09

(—0.23)
(—0.27)
(—0.10)
(—0.14)
(—0.37)
(—0.30)
(—0.21)—0.33—0.32
(—0.18)

Band 28

0.618—0.071
0.154
0.361
0.450
0.347
0.216
0.342
0.401
0.349
0.343
0.496
0.139
0.267
0.102—0.028
0.358
0.319
0.048
0.306
0.315
0.320

the nonidentity matrix is —1. The less precisely
determined points are given to two signi6cant 6gures
only. No particular effort has been made to determine
the precision of the higher levels (bands 25 through 28)
as these are of secondary interest in this calculation.

We are now in a position to compute the Fermi level.
Only the valence electrons contribute to the range of
interest (—1.0 to 0.0 Ry). The other (core) electrons
lie below this range and their E(k) curves are essentially
flat for all values of k. It is thus necessary to account for
44 electrons from each unit cell (ten d electrons and one
s electron from each of the four atoms), The allowed
number of k values equals the total number of unit
cells in the crystal considered so that in using 512 values
of k we have 44X 512= 22 528 electrons. As each E„(k)
can hold two electrons (due to spin) the first 11 264
energy levels are occupied (at O'K) and all levels above
this are empty. By simply counting up the levels we
obtain a Fermi level of —0.39 Ry. In counting these
levels the 6rst 21 bands can be counted ee masse as 512
levels each. In counting the remaining 512 levels we
must count each 6 listed in Table II as 6 levels; each A

as 8 levels; etc.

CONSTRUCTION OF THE FERMI SURFACE AND
COMPARISON WITH OTHER CALCULATIONS

In the following discussion we refer to our 21st,
22nd, 23rd. , and 24th bands as the 6rst, second, third,
and fourth bands, respectively. As the 6rst 20 bands
are completely filled, this is in keeping with standard
terminology. Knowing the Fermi level, we construct a
Fermi surface by determining where the E(k) curve for
each k direction intersects the Fermi energy. Figure 10
shows the resulting Fermi surface as well as two sets of
surfaces constructed by Harrison' based on folding
from Cu to Cu3Cu. Harrison constructed the upper set
of Fig. 10 by starting with an (unfolded) spherical
Fermi surface and the second set by starting with the
Pippard model for copper. For our Fermi surface, cross
sections in the (110) plane for zones 2, 3, and 4 are
shown in Figs. 11, 12, and 13. It is noted that with our
Fermi level of —0.39 Ry all four bands agree closely
with the surface based on the Pippard model. We also
note that in Harrison's constructions the first band is
completely filled in the Pippard model, whereas there is

~o W. Harrison, in W. Harrison and M. B. Webb, Tice Fermi
Surface (John Wiley tk. Sons, Inc. , New York, 1960), p. 28.
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4th band

Rag X

. From Copper Fermi Surface (Pippard)

This Calculation

Fxo. 10. Comparison of the calculated Cu3Au
Fermi surface with Harrison's folded surfaces.

Cu3Cu. We use Fig. 5 to illustrate this. We emphasize
that we are here concerned only with the change in
Brillouin zone in going from the fcc lattice of Cu to the
simple-cubic lattice of Cu3Cu and not with an actual
calculation of Cu or CusCu as such. The point M of
Fig. 5 has 4 equivalent points in the simple-cubic
reciprocal-space unit cell. For Cu, with a truncated
octahedron reciprocal-space unit cell this M point is a
Z or interior point and has no other equivalent points.
There would thus be four degenerate levels somewhere
near —0.45 Ry for Cu3Cu. The change from Cu3Cu to
Cu3Au splits this degeneracy into the levels M& at
—0.440, M3 at —0.456 and M5 at —0.492. As M5 is
two-dimensional, the degeneracy is not completely
removed.

We now compare the band gaps of the present Fermi
surface with those calculated by Giaever" using the
nearly-free-electron model and the Hartree screening
function. Giaever calculated the band gaps in the (100)

FIG. 12. Energy contours near the Fermi level
in the (110) plane for the third zone.

and (110) planes from one adjustable parameter fit by
three independent types of experiments (dilute alloy
resistivity, "variation of Hall effect with ordering, '3 and
the ratio of temperature coe%cient of resistivity of
ordered and disordered" CusAu). With the assumption
of an isotropic relaxation time all three ways gave band
gaps of =0.03 and =0.04 Ry for the (100) and (110)
planes, respectively. (Giaever gives normalized gaps
AE100/Ei' 0.06 and AEtto/EF= 0.08. Using EF=0.48
based on a free-electron calculation gives the AE as
stated above. ) In our calculation we find no single value
for the band gap in either plane but rather a range of
values. This is to be expected when the fairly com-
plicated nature of the band structure is considered. In
the (100) face the gap (from third to fourth zone) ranges
from =0.01 up to 0.03 and then down to =0.015 Ry as
one goes from the Z direction to the 5 direction. As one
goes along the XSR line from kp„; toward X, the gap
opens up to a fairly constant value of 0.03 and then
narrows to 0.005 Ry at X. The same is true for the

R
-0.43

- 04I

.57

FxG. 11. Energy contours near the Fermi level
in the (110) plane for the second zone.

"I. Giaever, Ph.D. thesis, Rensselaer Polytechnic Institute,
1964 (unpublished).

FIG. 13. Energy contours near the Fermi level
in the (110) plane for the fourth zone.

"F.Blatt, Solid State Phys. 4, 199 (1936), in particular, p. 318.
"A. R. Von Neida and R. B. Gordon, Phil. Mag. 79, 1129

(1962).
"M. C. Anquetil, J. Phys. Radium 23, 113 (1962).
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XZM direction with a fairly constant value of =0.025
Ry. In the (110) face the gap (from second to third
zone) ranges from 0.02 to 0.002 as one goes from the Z
toward the A direction. Along the FZM line the gap
changes considerably as can be seen from Fig. 5. The
band gaps in the present paper are thus seen to be of the
same order of magnitude as those calculated by Giaever
but differ both qualitatively and quantitatively.

To the best of our knowledge, standard Fermi-surface
experiments such as the de Haas —van Alphen effect,
magnetoresistance, magnetoacoustic effect, and cy-
clotron resonance have not yet been done for Cu3Au.
These experiments require a long mean free path and
large samples of CusAu with perfect (or nearly perfect)
ordering are relatively dificult to obtain. Perhaps other
types of experiments such as optical effects" and the
polar Faraday effect" which do not require long mean
free paths will be useful in determining the shape of the
Cu3Au Fermi surface.

CONCLUSIONS

It is felt that the computed Fermi level is accurate to
between 0.02 and 0.03 Ry for the potential chosen. We
note that the MPW method (in conjunction with
OPW) converges without an exorbitant number of
plane waves in the trial expansion functions. The
surface calculated here agrees very well with Harrison's"
construction based on the Pippard copper model. It
appears that the nearly-free-electron approach, al-
though adequate for a rough description, does not give
a detailed picture of the Fermi surface of Cu3Au.

We have seen some difference in E(k) on going froin
the Herman-Skillman to the Chodorow potential but
from the points sampled we feel that the shape of the
Fermi surface should not be appreciably altered.
Further experimental work on Cu3Au is needed before
a detailed comparison can be made between our calcu-
lated results and experiment.
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APPENDIX

The three types of S and H matrix elements are as
listed below.

Plane-Wave —Plane-Wave

S,„p„——(Vol/4m. )P Dii(R)SLk+ K', R(k+ K)),
R

"M. SuBczynski, Phys. Status Solidi 4, 3 (1964}."J.C. McGroddy e$ al , Phys. Rev. 139, A1.844 (1965).

where
Vol= volume of the unit cell,

H„, =L(k+K)'+V)S,„,„
Rs

+Q Dii(R)
p

(rUA (r) —«)js(l Kil r)«r

+Q exp(iKi s„)
Cu

Rs

(«c.(r) —«)jo( I Kil r) rdr

where Ki——R(k+ K)—(k+ K') and R, is the radius of
the appropriate muon-tin sphere.

Atomic-Term —Plane-Wave

U„,(r)j,(l k+Kl r)rdr

XP D»(R)X&;(8) exp(iKs s„),

a.„„=(k+ K)'S.„„
+ U„i(r)ji(l k+K

I r) V„(r)rdr

XP D»(R)Xi;(8) exp(iK, s„),

and the I'~ are spherical harmonics. The i' was added
to make the S matrix real.

Atomic-Term —Atomic-Term

U~i(r) U„ i(r)dr

XP' D»(R) expLik (Rs„—s„))

r) p Rr)
x xi, —lxil

r/ kr)
~„„=—P'Dii(R) expl ik (Rs„—s„))

4~ a

F*„; (Rr)L —V'+ U, (r))F„ i~ (r)dr.

The prime on the R sum indicates that only those R
for which some ~ satisfies Rs„=~+a„are allowed. In
the equations in this Appendix, K and K' are reciprocal
lattice vectors and j& is the /th spherical Bessel function.
The subscript v runs over the one gold and three copper
basis atoms.

where Ks ——R(k+K) —k and 8= R(k+K)/Ik+Kl.
The atomic orbitals are expressed as

i (r) i LU l(r)/r)Xi, (r/r),
where

Xi, (r/r) =Q a(lj; m) U&„(r/r)


