
P H YS ICAL REVI EW VOLUM E 160, NUM 8 ER 3 15 AUGUST 1967

Microscoyic Theory of Tunneling Anomalies

JOEL A. APPELl3AUM

Bel/ Telephone Laboratories, 3fgrray Hill, Nem Jersey

AND

J. C. PHILLIPS AND G. TZOURAS

Physics Department and Institute for the Study of Metals, University of Chicago, Chicago, Illinois

(Received 14 March 19671

In this paper we shall develop a microscopic theory of the zero-bias magnetic anomalies which is valid for
both the weak-coupling limit discussed by Appelbaum and Anderson and the strong-coupling (low-tempera-
ture) limit, starting from the model Hamiltonian proposed by Appelbaum. Our approach is based on a
generalization of a method employed by Ambegaokar and Saratoga for superconducting tunneling and
employs the self-consistent solution to the Kondo eBect given by Nagaoka for bulk samples.

I. INTRODUCTION
'
~~YNAMIC anomalies centered. at zero bias have

been observed. in both p-rt semiconductor and
metal —metal-oxide —metal tunnel junctions. '

Recently Appelbaum' ' and Anderson4 (AA) ex-
plained the weak zero-bias anomalies by attributing
the anomalies to the exchange scattering of conduction
electrons by localized paramagnetic states (lms)
assumed to be present near the metal-oxide interface.
Their calculations were based on perturbation theory
and were consequently limited. to the regime where
the anomalous tunneling current is small. In this
limit Appelbaum obtained for AG, the anomalous
conductance

[eV)pug
!QGrr —

~
TqL'J(p )'p ln

Ep )
where all the symbols have the same meaning as those
which were used. by Appelbaum. ' For J)0, correspond-
ing to antiferromagnetic coupling, AG enhances the
conductance.

Clearly, at suKciently low temperature the perturba-
tion approach breaks down, and it becomes necessary
to resort to more powerful nonperturbational methods.

This strong-coupling regime may be realized experi-
mentally either by studying tunneling junctions which
exhibit weak anomalies at much lower temperatures
than have been previously used, or by constructing
tunneling junctions which have a larger effective J and,
consequently, a much higher Rondo transition tempera-
ture. The strong-coupling calculation of this paper
suggests the possibility that the giant anomalies
recently observed by Rowell and Shen' in Cr—chromium-
oxide —Ag tunnel junctions may fall into the second
category.

In this paper we shall d,evelop a microscopic theory
of the zero-bias magnetic anomalies which is valid for

'A. F. G. Wyatt, Phys. Rev. Letters 13, 401 (1964); R. A.
Logan and J. M. Howell, ibid. 13, 404 (1964); J. M. Rowell and
L. Y. L. Shen, ibid. 17, 15 (1966).' J. Appelbaum, Phys. Rev. Letters 1?, 91 (1966).' Joel A. Appelbaum, Phys. Rev. 154, 633 (1967).

4 P. W. Anderson, Phys, Rev. Letters 17, 95 (1966).' J, M. Rowell and L. Y. L. Shen, see Ref. 1.
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both the weak-coupling limit discussed. by AA and the
strong-coupling (low-temperature) limit starting from
the mod, el Hamiltonian proposed, by Appelbaum. Our
approach is based on a generalization of a method
employed, by Ambegaokar and Baratoff' for super-
conducting tunneling and employes the self-consistent
solution to the Rondo effect given by Nagaoka' (N)
for bulk samples.

In Sec. II we discuss the terms which enter our
model-tunneling Hamiltonian. In addition, we discuss
the connection between the tunneling-Hamiltonian
method we use to calculate the current and a method
recently proposed by Zawadowski. ' Ke find that the
tunneling-Hamiltonian approach is quite capable of
including all contributions to the current obtained. from
Zawadowski's approach (Z) as well as important
nonlocal dynamic terms which are not contained in
the Z theory.

In Sec. III an expression is derived for the tunneling
current in terms of Green's functions from the left and
right sides of the tunneling junction.

These Green's functions are examined in Sec. IV.
It is found that some of them Inay be obtained directly
from the work of Nagaoka while for others new equa-
tions must be derived different from those already
obtained by (N). The tunneling current is examined in
Sec. V in both the low- and high-temperature limits.

In Sec. VI we extend. the work of the previous
sections, which have been restricted to a single lms to
the case where one has a distribution of lms.

In Sec. VII a discussion of the results of this paper
ls given.

II. TUNNELING HAMILTO5IAN

We assume we are dealing with an idealized (metal
A)—(metal-A oxide) —(metal 8) tunneling junction. It
is further assumed that lms are present in the vicinity of
the (metal A) —(metal-A oxide) interface.

The various terms that may appear in the model

' V. Ambegaokar and A. Baratoff, Phys. Rev. Letters 10, 486
(1963).

Y. 5agaoka, Phys. Rev. 138, A1112 (1965).' A. Zawadowski (unpublished).
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Hamiltonian have been discussed. by Appelbaum. ' Here
we shall use the phenomenological form in which the
spins of the paramagnetic states are treated as operators
external to the electron system. The Hamiltonian,
assuming the presence of a single lms, then has the form
(in the absence of a magnetic Geld)

where

BC BCQ+BCj+BC9+BC3+X4)

Xp=Z (r,ur. t~r.+g (,.f,.»...
lo

h.= B.+«

(2.1)

(2.2)

(2.3)

represents the usual tunneling through the barrier
without spin Qip. This type of tunneling conserves the
transverse component of momentum of the tunneling
electrons, so that

Tlr —Tlr~l~, r~ q (2.5)

where k, is the transverse component of momentum for
an electron with momentum k. We ignore for simplicity
the dependence of T~, on 1 and r, writing it as T.

Xp= T.Q a(.tb„+b,.ta).
l, r, o.

(2.6)

correspond. s to impurity-assisted nonmagnetic tunnel-

ing. The fact that the tunneling electron scatters oR,
the localized state breaks down momentum conserva-
tion, hence T does not have the delta function conserv-
ing transverse momentum that T contains. This
distinction between T, and T will be of importance as
we proceed.

Xp=Tg Q S ~,.(a(.tb, ;+9,;ta).),
11',o'o'

(2.7)

where z is the Pauli spin operator, and S, the spin of
the localized magnetic state, describes tunneling with
spin-Qip. The same comments about momentum
nonconservation applying to T are valid in the same
way for TJ.

and a~, (b„) refer to the destruction operator for an
electron with momentum state 1(r), spin state o, and
energy $&($,) on the left-(right-) hand side of the
junction. V is the applied voltage.

Xg——Q T),a).tb,.jT),*b,.ta). , (2.4)
l, r, o.

The only eRect of the magnetic states in Zawadowski's
approach (Z) is to introd. uce a self-energy into the
Green's function for the left-hand side problem (lhp).
The magnetic states are assumed by (Z) to lie on the
left-hand side of the oxide barrier. This is justified by
the argument that the exchange interaction is local in
nature and therefore only aRects the lhp through the
self-energy of the lhp Green's function. This assumption
corresponds to retaining in the tunneling Hamiltonian
only the terms Xo, X&, R2, K4, and dropping K3.

Now K3 contains the nonlocal part of the exchange
interaction. This nonlocal behavior arises from two
sources. The first is the fact that the exchange interac-
tion is generally nonlocal in the bulk. Second, and even
more important, the distinction between an electron
from the left- and right-hand side of the junction
necessarily breaks down in the junction, which has the
eRect of breaking down the local nature of exchange
interaction further. Hence we feel that the tunneling-
Hamiltonian method is more general than Zawadowski's
approach.

where

and

BC=XB+Xr )

BCs=Xp+X4

(3.1)

(3 2)

IIl. TUNNELING CURRENT

We shall calculate the tunneling current on the
assumption that the contribution to the current from
each localized. state is additive. This assumption is
valid, if one can neglect spin-spin interactions among
the localized spins. The presence of a short mean free
path at the junction interface should have the eRect of
weakening the long-range spin-spin interaction, there-
fore making the independ. ent impurity assumption valid
at even relatively high concentrations.

We shall further neglect Xl in calculating the current,
thereby including only tunneling which proceeds
through the localized. states. The necessary modifica-
tions of the current resulting from the inclusion of R1
will be considered. when we turn to the many-lms
problem in Sec. VI.

We calculate the tunneling current by a generalization
of a method. employed for superconducting tunneling by
Ambegaokar and BaratoR. '

We divide X, into

X4 J Q S ' %~~'G]~tQp~' )
1,1',o,o'

(2.g) Xr ——Xp+Xp. (3.3)

describes the scattering of conduction electrons on the
a side of the junction back into the a side.

In concluding this section we would like to comment
on the diRerence between the tunneling-Hamiltonian
Inethod. for calculating the current employed in this
paper and the method recently proposed. by Zawadowski

(Z). Z divides the tunneling junction problem into two
parts, which he calls the left- and right-hand problems.

Now, the current is given by

(3 &)

E'=Q e), .
l, o

(3.5)

where th. av. refers to the appropriate thermal average.
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Setting A= 1,
d

i E—=LE K)
df

from which we obtain

j= 4eT—P Im(a1+t(t)b, +(t))

(3.6)

Ke have used the fact that our system is invariant
under spin rotations to simplify Eq. (3.7). (We assume
S=-', .)

Treating X~ as a perturbation, we evaluate

to lowest order in Xr. When this is done and inserted
'+ ' ' ' into (3.7) we have for

j =+4eT'Re Q
Ir —QO

+6eTq' Re P dr
C
L1&(r—t)G,&(t—r) —L1&(r—t)G,&(t—r))

1r —00

+4eTTz Re+ dr 11"1 (r—t)G, (t—r) —I'1 (r—t)G, (t—r))

where

+68TJT Re P dr $81&(r—t)G,&(t—r) —81 (r—t)G,&(t—r)), (3.8)

(3.9)

(3.10)

(3.11)

r1 (r—t) =p(a1~ (t)(a1 ~(r)S,(r)+a1 (r)S (r)}), (3.12)

(3.13)

e corresponding expressions with & replaced by & are identical to those above except that the operators at
time t are interchanged with those at time v..

The above correlation functions can be expressed in terms of the imaginary parts of the corresponding retarded
double time Green's' functions employing the usual spectral theorems. The integrals over v may then be performed
quite trivially and one obtains for j
j =161reT,'Q do1 Lf(o1)—f(o1+eV))PImG1(o1))PImG, (o1+eV))

+24rreTz' P dt0 Pf(o1)—f(o1+eV))LImL (o1))DmG, (cd+eV))
1r —00

+16rreT, Tg Q do1 [f(o1)—f(o1+eV))LIml'1(o1))LImG, (10+eV))
1r 00

+24rreTqT, g do1 jf(o1)—f(1e+eV))(Im81(o1))r ImG, (o1+eV)), (3.14)
1rs 00

where
G1 Q G11'

G,=Q G„

(3.15)

(3.16)
(3.18)

' D. N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) EEnglish
transl. : Soviet Physics —Uspelrhi 3, 320 (1960)).

I"1=+I'11"~ (3.19)
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I The subscripts t, r refer to quantities on the a (left)
and b (right) sides, respectively. ) (-&)tt ()=-JZL. .

kl
(4.6)

=(&ai+I a|+'&)-

G-'=((b"+ I b.+'&).

I'»"=(&ai+S*+a|-S-I«+'»

1.„;=«a ~ S a.M,—Ia tS ))„,

(3.20)

(3.21)

(3.22)

(3.23)

To obtain the above equations, it was necessary to
factorize higher-order Green's functions generated. by
the equation-of-motion technique in order to close the
hierarchy of equations. The required factorizations,
listed below, are entirely consistent with those employed
byN:

=(( -I +'s-))-.
1

f((o)=, P=1/kT
e"&

(3.24)

(3.25)

((~ I&&)-= . ~(t)L(~(t)&(0)
2%i

+B(0)A (t))je'"'dt (3.26)

S(t) =0, t(0
t&0. (3.27)

Our problem is essentially reduced. to calculating the
Green's function (3.20) to (3.24).

IV. GREEN'S FU5CTIONS

In calculating the Green's functions (3.20) to (3.24)
we shall utilize the self-consistent solution to the bulk
Kondo eRect given by N. In what follows we shall
adhere as closely as possible to his notation.

Now G»'(&v) and I'»"(&v) have already been cal-
culated by N. Unfortunately this is not the case for
I.» and 0», and it becomes necessary to solve for
these quantities using standard equation of motion
techniques. Setting

(( I ))„denotes the Fourier transform of the retarded.
double-time Green's function, which, for completeness,
we de6ne below:

&ap ag+tagiM
I
agytS )

=(«-a~+'S-&&a~ -I a,+ S )
+& ~ t '-S-&&

I »-), (4 7)

&S+ag ap akiyI any S )
= —&S+ak-'a'+&&ai-I «+'S-)

+(" t' )(S"',I,»-), (4 g)

(a„ta „a& IaitS&
=(.+' '+)& +S+I +'S-)

—(a+ta ~ )(a S Ia tS &, (4.9)

&a&- a&'—a&'+S+ I
a&+"S—)

=(a~-'a'-&&ai+S+
I
ai+'S-&

—&ag tai+S+&&ag I
al+tS ), (4.10)

&S,al,+tap+ay Ia|+tS &

= &a~+'ai+&&S*a~-I «+'S-&

+ &S.a,+ta, +&(a, Ia,+ts ). (4.11)

Subtracting Eq. (4.4) from (4.5) we obtain

((o $.)1. . (co—)= ( ', 8 2—(a -ta —S &}2~'
—2J(~i —2)Z I» (~)

+J(m| ——,')P 8», (co), (4.12)

ii,.=&a|+S+Iai+tS ),
Aip=&ai M, Iai+tS ),

(4 2)

(4.3)

L 11'=C'11' ~11' (41) .h„,
(we drop the superscript a and b from now on), where

k'

n|——P(ag tag ),
k

mi. =3 P (ag+ta| S ) .

(4.13)

(4.«)

we obtain equations for C», A», and 811 From (4.12) and (4.6) one obtains

1
( —5 )C' =—(-'b —&S- +' -))2~'

+J(&i —k)Z C'»+3J(mi —~)Z 8»"
kl

+2J(ep ——',)g A»", (4.4)

1
S &--.J(- —:)Z~'

2' kl

+J(Nv —-')g C'» (s&), (4 5)

and

where

Oi(a)) = JF((u)l.i(cu)—'

1 1
4(~)= — —c(~)

27rd((o) 2(a —Pi

(4.15)

(4.16)

&a|+tap S &

r|(~)=2 Z
1 Q)—$p

(4.18)

d(a&) = 1+2JG(a&)+J'&'(~)1'(co), (4.17)



APPELBAUM, PH I LLI PS, AND TZOURAS

and

P(&, &) (M)— (4.»)
L.()—=EL ()= L-lr()7,

22rd (M)
(5 2)

(I', r') M —$(p ~i)

m —3

r(M) =2
I M —(p

(4.20)

(4.21)

d(M)

1 JF (M)r()—=pr()= — r(),
22r d((0)

(5.4)

1 F (M)L1+2JG(M))
G ( )=KG( )=— (5.3)

1 2'

1
G'(M) =Z G.(M) =—P'(M)

2'
(5.5)The remaining Green's functions may be obtained

directly from N. %e conclude this section by listing
them below for convenience.

1 1 1G(-)=- (1+2JG(M))
22I' M —$) d(M)

(4.22)
ImG (M)=——',p (M)

We now evaluate (5.1)—(5.5) to lowest order in
which anomalous (log) terms appear.

1 1 1
r((M) =- {Jr( )},

22I M —$I d(M)
(4.23)

M

&( 1—42r'(Jp)'I 1+2Jp ln —,(5.6)
D

(5.7)ImI:(M) ——4p (M)I 1+4Jp' ln. —
(4.24)

'
(, D j '1

G, (M) =-
22r M

7r2

Im8'(M) ——p (M) (Jp')'—
4V. TUNNELING CURRENT

A. Weak Coupling (High Temperature) M f M

Xtanh
I

1+6Jp ln —,(5.8)
2keT( D

(5.9)Imr~(M) = -', Im8'(M),

ImG'(M) = —-', p'(M) . (5.10)

Ke consider the tunneling current in the weak. -
coupling regime.

Summing over the remaining indices in Kqs. (4.15),
(4.16), and (4.22)—(4.24), we obtain

J z.( )r( )
~'(M) =2 ~I(M) =-

32r d(M)
(5.1) When these expressions are substituted into (3.14),

we obtain for the total tunneling current

/weak coupling = 47CCT0, dM Lf(M) f(M+«)3u'(M—+eV)p (M) 1—4~'(Jp )'—2~'(Jp )'»—
D

(5.11a,)

+32reT g
( M

dM jff(M) f(M+ev)—jp (M+ev)p'(M)rI 1+4Jp ln—
D)

(5.11b)

+62reT. Tz dM ff(M) f(M+ev)]p (M+—ev)p'(M) tanh 1+6Jp'ln —I2r2(Jp.)2. (5.] lc)
2keT D )

&. Strong Coupling (Low Temperature)

In the low-temperature limit it becomes necessary
to adopt a self-consistent procedure for evaluating our
Green's functions in the case where J(0.

The self-consistent solution we adopt, due to Nagaoka,
is equivalent to assuming

where
-=2A/-I JI'

$2+ Q2
tanh d$,

2k~T

and 6 is determined by

(5 13)

(5.14)

CO

G( )=-r( )——,
n 2J

(5.12)
at T=O (where T here denotes tempera, ture),

(5.15)
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(5.16)8'(4o) =—
6 to+id

D, the energy cutoff introduced by N, is identical to
Es. Using (5.12) to evaluate (5.6) to (5.10) one obtains

lpga 1

Focusing on the conductance

Bj

BV
(5.24)

L (td)=—
a 1

62rJ 4o+iA (5.25)wc ~ WCM& WC
/const I /anomalous

where

one finds that g"' (wc—=weak coupling) can be written

(5.17)

(5.18) 3 '
gcottst =p p 32re TZ +42re T 1 (Jp ) (5.26)

G'(to) =—Zpb

zp cx 1r()=—
4 4o+iA

(5.20)
where

WC — WC WC

g wc 122re2T~ pap Jpaf(eV)

g "'= 6~'T—.'p p'(Jp )'r(eV)

(5.27)

(5.28)

(5.29)

where we have assumed J't s&(to) = —iirpt' 'i(ot). Insert-
ing the above into (3.14), the total current in the low-
temperature regime now becomes

Bf Bf—(to+ e V) (to') ln
eo BG7 /co

d otto'. (5.30)

jstrong coupling =4~eT~

4e T'+-
2r (Jp )'

d~ Lf(~) f(~+eV)—7

Xp'(4o+eV)p (to) (5.22)
+2+~2

XP ( +«)P ( ) (5 21)
to2+ 62

G,"' was first derived by Appelbaum while G,„, '
was obtained by Solyom and Zawadowski" by another
method. They have identical voltage and temperature
dependence, but while G,"' yields a conductance peak
for ferromagnetic coupling (J)0), G,„,"' yields a
conductance peak for antiferromagnetic coupling
(J&0). These terms would be expected to behave
differently in a magnetic held.

In the low-temperature regime (we shall assume
T=O) one obtains (sc= strong coupling)

+8e dho [f(to) f(to+—eV)j
where

Gsc —G sc+G sc
) (5.31)

( +eV)p ( ) (5 23)
to2+ Q2 Gi-(eV) =

4~2 T 2 Q2

p bpe

~ (Jp.)' (eV)2+ ~2
(5.32)

The relative importance of the various terms which
contribute to the current depend on the relative size
of T„Tq, and J, quantities which a priori are difFKult
to determine. It is to be expected that T, representing
direct tunneling, would be greater than its exchange
counterpart. However, whereas the anomalous behavior
(in the weak-coupling regime) in the terms proportional
to T ' appear first in order J', those proportional to
Tg' appear 6rst in order J. The interference terms
proportional to T Tg erst exhibit anomalous behavior in
order J' and consequently are smaller than either the
T ' or the T~' terms. Furthermore the interference term
(T~T,) leads to a conductance which is odd in the
voltage. In addition, if we assume the presence of
localized paramagnetic states on both sides of the
tunneling junction, this term would be zero. A combina-
tion of these facts probably accounts for the fact that
these odd anomalous terms have not yet been observed
experimentally. For simplicity, therefore, we restrict
our attention to the T ' and Tg' terms below.

(eV)'
G2-(eU) =42re2T, 2p p'

(eV)'+3,2
(5.33)

' J. So1yom and A. Zawadowski (unpubhshed).

These results are valid for antiferromagnetic coupling
(J&0). In a tunneling junction in which Tg terms are
important one expects a peak in the conductance
varying initially as ln~D/(eV+k&T) ~, but saturating
at low temperatures and voltages to the value given
by Gi-(0). For a junction in which the Ta terms are
dominant one expects a dip in the conductance varying
as lnL(~eV ~+keT)/D'j and eventually going to zero
as T and V —+0. It should be emphasized that the
asymptotic behavior of gi- and g2- as given by (5.32)
and (5.33) only sets in for k&T, eV&A which may
correspond to very low temperatures and applied
voltage (6 2.5&&10 4 eV for J'p 0.05 and D 5 eV).
These results will be somewhat modified by the presence
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of many impurities, even in the independent-impurity
model, because the 6 corresponding to a single impurity
at a fixed distance from the (metal A) —(metal-A oxide)
would be replaced by a range of 6's which would have
to be averaged over. This is considered in the next
section.

VI. THE MANY-LOCALIZED-MAGNETIC-
STATES PROBLEM

Up until now, we have pictured the localized magnetic
states as confined to a plane parallel and close to the
(metal A)—(metal-A oxide) interface. It will be our
intention in this section to relax this restriction by
admitting a distribution of lms in the direction per-
pendicular to the junction interface. This introduces a
range of values for the exchange interaction J over
which it will become necessary to average.

Before considering this problem it would be approp-
riate to consider in some detail the Ims-averaging
problem when the lms are confined to a single plane.
In Secs. III—V we bypassed this averaging by assuming
that only a single lms was present.

In order to focus on the essential aspects of the
problem we consider as our Hamiltonian

3C=BCp+3Cp+K4, (6.1)

where R„ is the position of the eth lms and

X4= —J Q Qe"(k—k')'R"ak. tak .S ~.. (6.3)
1 k', a~' n

The expression for the tunneling current now becomes

j=4eT„' Re Q d(p $f((p) f((d+ e V)—j
X L

—2 ImG]] ((p)]L—2 ImG, ((p)j
i(r—I') ~ R» —i(r—I) ~ R» f6 4)~~ e' —'

n, n'

where we have used the fact that the right-hand side of
the junction has no lms, so that

G„((d)=G, ((p)B„. (6.5)

The current averaged over the position of the localized
states is what one is after, so one needs to know

2 (L mG]1, ((r))j g ei(r—I ) R»'—i(r—I) R») (6 6)
n, n'

One cannot break. this average up into

( 2 IniGII, (M))( P ei (r—I') ~ R» —i(r—I) ~ R») (6 7)
n, n'

without losing completely the dependence of G». on J.
This is essentially because a surface density of lms
could not affect the bulk spectral function ImG]1 ((p).

where now

Kp ——T, g g(e'(k k') ' »akt1]k. +e '(k k') '"»f)k "ak), (6.2)
n

To perform the average it is necessary to express G]1 (&p)

in terms of
p(Q Qr) Q ei(k—k') ~ R» (6.8)

This is dificult to do in the s-d exchange problem but
one can see how it comes out by considering the case
where BC4 is replaced by

]) P ei(k—k') R»a ta,
jr. ,h', 0'

Then one finds that (6.6) becomes

M,{Q —2 ImG]] ((p) ),

(6.9)

(6.10)

where G]1 ((d) is the Green's function for a single lms,
and where M, is the number of lms in the plane. We
choose units where 3E =1. These results are modified
if we replace R2 by X~. Then one has to consider

( P —2 ImG]] ((p)8], ,],) (6.11)

J(x)=J e
—"' (6.12)

where k is the wave number of the tunneling electron.

which yields no terms dependent upon J.This is for the
same reason we could not write (6.6) as (6.7):A surface
density of states cannot affect a bulk spectral function.

An analysis of what modifications result from the
inclusion of K~ in our tunneling current leads to the
following conclusions.

1. Interference terms proportional to TTg and TT
appear with the same dependence on voltage and
temperature as the T,T~+T' terms.

2. There are no anomalous T' terms except for a
constant conductance term.

Since we are primarily interested in the functional
d.ependence of the conductance upon voltage and
temperature and we expect T((T„4' we shall not
concern ourselves with these terms.

We return now to the question of averaging over the
distribution of impurities in the direction perpendicular
to the tunnel junction. We assume that we may perform
this averaging by first calculating the tunneling current
for a given value of J and then averaging over this value.

This assumes again that we may ignore the interfer-
ence effects among various localized spins. This assump-
tion, which appears valid for the weak-coupling limit,
would become less so as we enter the strong-coupling
regime because of the long-range nature of Nagaoka's
solutions below T,. In order to make any progress,
however, we will continue to assume an independent-
spin model even below T, (keT, 6).

In order to bring out the relevant features of this
averaging we assume that the lms are uniformly
distributed in the perpendicular direction from the
(metal A)—(metal-oxide A) interface to a distance d.

We expect J to be a function of x, the distance from
the A interface to the lms, as shown below
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Furthermore
(6.13)

We shall be primarily interested in the effect of averag-
ing on the functional dependence of the conductance on
voltage and temperature.

In the high-temperature regime the conductance
varies as

~ev )+/. T
8(V,T)-a(J)+f (J)»

D
(6.14)

where a(J) and b(J) are functions of J. It is clear that
averaging over a distribution of impurities will lead
to no change in the functional dependence of g(V, T).
In the strong-coupling regime this will not be the case.
In averaging over g~-(eV) and g2-(eV) we observe
from (6.13) 5 is a very much more quickly varying
function of x than J, so we shall average only over A.

From our assumption of a uniform distribution of
impurities we obtain for P(A), the probability of an
impurity having a 6 between 6 and d+dA,

(6.15)

In deriving (6.15) we have assumed that J is essentially
a constant in comparison with A.

If we average (5.32) and (5.33) we obtain

aild

~0 ~0
Xp~p ln ln— (6.16)

[eve

/ev/
(g2"(eV)), =4me'T, 'p p~ ln ln—.(6.1/)

J J g
—2dk (6.20)

VII. CONCLUSIONS

It has been our intention to examine in as much detail
as possible the tunneling current which results from the
model Hamiltonian proposed by Appelbaum. The
results we have obtained in the weak-coupling limit,
based as they are on the well-understood solution to the

The above expressions are valid in the limit Aq ~eV~

go —D~—&/'2I ~0l ta (6.18)

(6.19)
where

Kondo problem in the perturbation-theory limit, are
fairly certain.

Our strong-coupling solution, on the other hand,
must be viewed with considerable reserve. The first
difBculty is that, while a number of theories have been
advanced to describe the strong-coupling Kondo
problem, " there appears at present to be no clear and
conclusive description of the low-temperature Kondo
"bound state. " However, in order to investigate the
implication of such a bound state on the tunneling
characteristics, we have chosen the solution advanced
by Nagaoka.

The implications of N solution are rather striking.
For those functions in which the T terms are pre-
dominant, the conductance goes to zero as (T,V) ~0.
This behavior is similar to what has been observed in
Cr—(chromium oxide) —Ag tunneling junction, where
one finds a large rise in the resistance of the junction
centered on zero-voltage bias. In those junctions in
which the Tg2 terms are predominant, one has the
conductance saturating as (T,V) ~ 0, as described by
(5.33) or (6.16).

There is no doubt that a better solution to the lower-
temperature Kondo problem will modify our conclu-
sions, especially so because tunneling measures the
spectral function quite directly and therefore would be
sensitive to different solutions to the Kondo problem.
While this makes the present work more tentative, it
also points out the inherent advantages of the tunneling
measurements in exploring the Kondo problem.

Note added il martgseript Amor. e careful solution of
N's self-consistent equations has recently been per-
formed by Hamann. "The new solutions do not change
the basic conclusion that g~"(eV) ~ gq" (0) Las given
in (5.32)j or that g2" (eU) —+ 0 as e V -+ 0. However,
g~-(eV) approaches G~-(0) as ln '~eV/h~ and G2-
X(eV) ~0 as 1n'~eV/A~.

Note that because 6 now appears in a logarithm this
result will not be substantially changed in averaging
over the lms. Averaging over this quantity leads
qualitatively to ln '

~

e V/6' ~, where 6'= De "& ~~~'~.
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