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held of frequency c/X), we expect to obtain a pretty
good approximate description by replacing all
periodic functions of the time (possessing the smaller
period re=a/e) by their respective time averages over
any time interval of duration a/c. It should be em-

phasized, however, that this approximation wiB become
worse and worse as ) —+ a."

In conclusion, we wish to reiterate that by making
the siege approximation of replacing the coeScients
V(r) —V(x,y) and —s(e/ns)(8/Bx) ings(x, y) in Eq. (21)
by their respective averages over any single lattice cell,
we have succeeded in reducing our original problem to
an ordinary second-order differential equation in the
single independent variable $, and this differential
equation can now be easily solved to essentially any
desired degree of accuracy. On the other hand, more
conventional approaches to a theoretical description of
the interaction of laser radiation with electrons in
solids frequently resort to one or more of the following
approximations (in addition to the one-electron approxi-
mation which we assumed from the very beginning):

"The well-known appearance of resonance phenomena in
similar situations when the driving frequency approaches the
natural frequency of the driven system suggests that interesting
new physical phenomena might be discovered if and when a
practical p-ray maser (producing relatively intense, coherent,

(1) The spatial variation of the electromagnetic field
is usually neglected, i.e., A($) is replaced by A(—t).
This amounts to complete neglect of the linear momen-
tum associated with the electromagnetic field.

(2) The effects produced by B;, are calculated by
using ordinary time-dependent perturbation theory—
even though the effective coupling constant is not
necessarily small compared to unity.

(3) With regard to the use of time-dependent pertur-
bation theory, the unperturbed electron state is usually
assumed to be described by the eRective mass approxi-
mation, i.e., EIo is replaced by (y'/2rrs*), where rrs*

denotes the so-called eRective mass.

These three examples of typical approximations are
cited here mainly to suggest that in certain physical
situations (to be discussed more thoroughly in a sub-
sequent article) it may be more suitable to use the
formalism described here, whose validity is believed to
depend on the single restriction, )))a.

The author wishes to thank Professor C. Lanczos
and Professor Y. Takahashi for helpful and enlightening
discussions of this work. . Also he wishes to thank
Professor J. L. Synge for his kind hospitality at the
Dublin Institute for Advanced Studies.

and essentially monochromatic radiation of wavelength equal to
the crystal lattice spacing) is developed.
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Self-Consistent-Field Model of Bimetallic Interfaces.
I. Dipole Effects
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An electron-gas model of a bimetallic interface is constructed by joining two semi-infinite half-planes of
unequal positive charge and adding electrons until a charge-neutral system is achieved. The electrostatic
(dipole) potential equalizes the Fermi energies of the high- and low-density components of the junction by
compensating for the difference in their (bulk) exchange and correlation separation energies. The model is
used to calculate self-consistently the charge density and one-electron (junction) potential in the region
near the interface. The barrier height Vb associated with the self-consistent potential is not related to the
vacuum work functions @I, and

fthm

of the two-component metals by V&=@&,—@z.This result is due not to
either real or "virtual" surface states, but rather to the redistribution of the electronic charge at the bi-
metallic interface relative to the vacuum interfaces of the separate metals. Localized "surface states" can
occur for certain junction potentials on the high-density side of the interface. These states do not occur
in the self-consistent potential for the numerical example of n1.=10'2 and ng=10'~ cm 3. In addition,
V&&@&,—@z for these positive charge densities. Although the electron density exhibits Friedel oscillations
on both sides of the junction, only two of the oscillations on each side are explicitly incorporated into the
model charge density used in the self-consistent loops. A semiclassical (Schottky) model of the depletion
region on the low-density side of the interface is inadequate because of the presence of large evanescent
contributions to the electron density.

I. INTRODUCTION

'~~ESPITE the extensive literature on semiphe-
nomenological models of bimetallic and metal-

semiconductor interfaces, ' little attention has been

' See, e.g., E. Spenke, Zlecironsc Sernscondncfors (McGraw-Hill

devoted to the more fundamental problems of the
dynamical origin of the charge distribution near an
interface and the stability of this distribution. These

Book Company Inc. , New York, 1958}, Chaps. 4 and 10; D. V.
Geppert, A. M. Cowley, and B.V. Dore, J. Appl. Phys. 57, 2458
(1966).



542 A. J. BENNETT AND C. B. DUKE 160

problems are the analogs at a surface of the calculation
of the cohesive energy of a self-binding system. The
many-body systems for which the cohesive energy has
been most extensively studied are the electron gas in
a uniform positive background and nuclear matter.
The analysis of the cohesion of a uniform electron gas
provides the foundation for the original models, ' ' and
their later refinements, ~' of metallic interfaces. The
calculations' ' of charge densities and one-electron
potentials at interfaces constitute a relatively simple

special case of the problem of determining the properties
of an inhomogeneous many-body system' in which the
deviations from homogeneity are in general neither small

(i.e., linearizable) nor slowly varying. In order to utilize

the results of previous investigations of the uniform
electron gas and its vacuum interface, we adopt the
model of a bimetallic interface in which the interface
is specified by joining at x=0 two semi-infinite half-

planes of (unequal) uniform positive charge. Super-

posed on this positive charge is an electron gas of a
composition which guarantees electrical neutrality of
the final system. The eigenfunctions and eigenvalues of
the system are calculated self-consistently from the
Poisson and Schrodinger equations and used to evaluate
the charge density and one-electron ("junction" )
potential near the interface. The only parameters in the
model are the two semi-infinite positive-charge densities.
In particular, there are no phenomenological parameters
like work functions, electron amenities, or energy-band

gaps. Our primary interest lies in examining the quali-
tative character of the charge density and junction
potential predicted by this highly idealized but "first-
principles" model. The model can be extended easily
to give a description of the (often confhcting) experi-
mental data' on metal-semiconductor contacts only at
the expense of introducing at least two phenomeno-

logical parameters, the electron afFinity and energy gap
of the semiconductor. The neglect of the periodic ionic
potential, which renders the model inadequate for the
description of low-energy electrons in a semiconductor
without the use of additional parameters characterizing
the bulk. band structure, is rigorously justi6able in
bimetallic junctions only in the sense of a pseudopo-
tentials or extended effective-mass" (Bethe-Sommer-
feld) approximation.

From our study of this simple electron-gas model
emerge two major conclusions which are not properly
incorporated in current versions' ' of phenomenological
models of contacts. First, the redistribution of charge
near a bimetallic junction relative to its distribution
at the vacuum interface of either component metal
implies that to within energies 0.5 eV there is no
general relation between the maximum height V~ of
the junction potential and the difference in the vacuum
work functions pz and P~ of the composite metals.
In particular, the failure of the equation

&s=4z 4n,—4z,'&4m

is not in general due to conventional" surface states
but rather is primarily a consequence of the tunneling
of electrons from the high- into the low-density electron

gas. Such evanescent contributions to the charge
density are the electron-gas analog of Heine's "virtual"
surface states" at a metal-semiconductor interface.
In our model these contributions to the charge density
are included in the self-consistent determination of the
junction potential and one-electron eigenstates. How-

ever, in Heine's analysis the band bending induced

by the "virtual"-surface-state contribution to the
charge density modi6es his starting potential and conse-

quently invalidates conclusions based on the use of the
starting potential. " Our second major result is that
bona fide "localized" states near the interface can occur
for suitable junction potentials. These states are con-
centrated on the high-density side of the interface and
are the direct analog of quantized states in narrow ac-
cumulation or inversion channels at semiconductor
interfaces. " " Their presence is signalled not by the
failure of Eq. (1.1), but rather by the failure of charge
neutrality and by a qualitative change in the character
of the charge distribution near the interface if their con-
tribution to the charge density is ignored. However, we
have not found a set of parameters for which these
localized states occur in the final "self-consistent" junc-
tion potential.

The physical origin of the above conclusions can be
demonstrated easily without appeal to a detailed ana-
lysis. ' Measuring energies in Hartrees, we recall that
for a uniform electron gas" of density ts, and Bohr
radius u~, the Fermi energy Ep, the average kinetic

s E. Wigner and J. Bardeen, Phys. Rev. 48, 84 (1935);J. Bar-
deen, ibid, 49, 653 (1936); Surface Sci. 2, 381 (1964).

3 H. Y. Fan, Phys. Rev. 61, 365 (1942); 62, 388 (1942).
4 H. J. Jnretschke, Phys. Rev. 92, 1140 (1953).' T. L. Loucks and P. H. Cutler, J. Phys. Chem. Solids 25, 105

(1964).
6M. Kaplit, in Proceedings of the Thirteenth Field-Emission

Symposium (Cornell University, Ithaca, New York, 1966), p. 5.' See, e.g. , P. Hohenberg and W. Kohn, Phys. Rev. 136, 3864
(1964); W. Kohn and L. J. Sham, ibid. 140, A1133 (1965).' See, e.g. , D. V. Geppert, A. M. Cowley, and B. V. Dore, J.
Appl. Phys. 37, 2458 (1966); A. M. Cowley and S. M. Sze, ibid.
36, 3212 (1965).

'W. A. Harrison, Pseudopotentials in the Theory of lVetals
(W. A. Benjamin, Inc. , New York, 1966).

Jo D. J. Bennanicl hand C, B, Duke, Phys. Rev. 152, 683 (1966).

' See, e.g. , A. Many, Y. Goldstein, and N. B. Grover, Semi-
conductor Surfaces (North-Holland Publishing Company, Amster-
dam, 1965), Chap. 5.

"V.Heine, Phys. Rev. 138, A1689 (1965).
"This fact is recognized in Ref. 12, but no effort is made to

extend the considerations presented therein to systematically
incorporate the effects of the band bending.

'4 P. Handler and S. Eisenhour, Surface Sci. 2, 64 (1964)."F.F. Fang and W. E. Howard, Phys. Rev. Letters 16, 797
(1966).

"A. B. Fowler, F. F. Fang, W. E. Howard, and P, J. Stiles,
Phys. Rev. Letters 16, 901 (1966)."D. J. BenDaniel and C. B.Duke (to be published)."C. B. Duke (to be published).

"See, e.g. , P. Nozieres and D. Pines, Phys. Rev. 111, 442
(1958).
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Vec Sni +Snii

+ EFi. - EFii

Vg
= Sni.

-
Snii

Vo =EF, -EF~

V«(x)

V& (x)

V(x)= V~(x)+V (x)

model potentials V(x) for which the Schrodinger equa-
tion can be solved analytically. From the characteristic
features of these model charge densities we select, in
Sec. III, a four-region parametrized model of the charge
density for use in the full self-consistent-Geld calcu-
lation. The remainder of Sec. III is devoted. to the
speciGcation of the details of the self-consistent calcu-
lation, together with a presentation and discussion of
the results of this calculation.

II. CALCULATION OF THE CHARGE DE5'SITY

A. Definition of the Boundary-Value Problem

I'Io. 3. A schematic representation of the bulk exchange and
correlation potential U„, dipole potential Vq, and total potential
in the neighborhood of a bimetallic interface at which the lower-
density metal also exhibits a smaller magnitude ~S ~

of the elec-
tron separation energy than the higher-density metal.

d2Vg 4me2

n(x), (2.1a)

The boundary-value problem which we consider is
that of obtaining the (one-electron) dipole potential
Vs(x) delned to be the solution of Poisson's equation

a dipole potential of height V~=
~

AS
)
= )5 zz

—5 z,
~

must be generated near the interface. The details of
the junction potential depend upon how this potential
drop is divided between the two metals. Therefore all
that can be said, a priori, about the maximum height
of the junction potential V& is that it probably satisfies

Vg& Vg=S g—S„l.
with the equality holding for a (Schottky) barrier in
which the entire voltage drop occurs across the low-
density metal. Even in this case it is the difference in
the bulk separation energies, not the observed work
functions, which appears in Eq. (1.4) as opposed to Eq.
(1.1). A schematic representation of the junction
potential is shown. in Fig. 3. Evidently a (Schottky)
depletion region is probable if U &&Epz and occurs only
if V —Vp& Epg. The dip in the potential on the left-
hand side near @=0can, in some cases, contain one or
more bound states which are the "localized" states
referred to above. The occurrence of such states requires
simultaneously a large V z and a suKciently long range
on the left-hand side (i.e., low-continuum charge
density). The density parameters, nr, =10" cm ' and
n~ ——10" cm ' (for which the results of detailed nu-
merical calculations are given in subsequent sections)
represent a limiting case of the model in which localized
states might be expected to occur on the high-density
side of the junction at actual metallic densities. Even
in this limit, however, such states do not occur in the
self-consistent potential.

From the above discussion we see that the general
features, although not the details, of our results are
self-evident from simple physical considerations. ' The
body of this paper is devoted to making these consider-
ations quantitative. In Sec.II we outline the self-consist-
ent-Geld boundary-value problem and investigate the
quantum-theory charge density resulting from two

n(x) =n, (x)—n, (x) (2.1b)

for a system of interacting electrons in a positive back-
ground given by

n„(*)=n.O( *)+n.o—(*)

O(x) =+1; x& 0

0; x&0.

(2.2)

(2.3)

The electrons are taken to interact through Coulomb
interactions with the resultant exchange and corre-
lation energy for a uniform system given in the Intro-
duction. The Hartree Coulomb energy of the inhomo-
geneous system is obtained from the one-electron
potential Vs(x) speci6ed by Eq. (2.1).The total system
is required to be electrically neutral in the sense that

[n,(x)—n, (x)$dx =0. (2 4)

The electron density n, (x) is obtained by solving the
Schrodinger equation

Q2 d2

+V(x) Egzr, (x)=0, —
2m dX2

V(x) = Vg(x)+ V,„.(x),

exp(zl ii e)
4(r) = &~.(x),

(2.5a)

(2.5b)

(2.5c)

E= (h'k(('/2zn(()+E. (2.5d)

and 61ling all states (at zero temperature) below a
chemical potential, iz= Err, Askpr. s/2r—n, defi——ned such
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(2s+1) m&i
n, (x) =

Ig'

p

E,= A'k. '/2—mb,

(2.6a)

(*) I
'(b —E.)dE. , (2.6b)

(2.6c)

that Eq. (2.4) is satisfied. We use

n(x) =n.(x)+n, .(x),

3. General Calculation of the Charge Density

The eigenfunctions of a potential such as that shown
in Fig. 3 are calculated separately for the three regions
E& Vp 0&E&Vp, and E&0, respectively. The eigen-
values E=—E~ in the E&0 discrete spectrum are de-
termined by the normalizability criteria as x —++~,
and are discussed further in those special cases in which
they occur. The basic linearly independent solutions to
the Schrodinger equation are taken to be the one-
dimension analog of the Jost functions"" defined by
'the boundary conditions

(2s+ 1) m((
n-(*)= — 2 (I +Eb)14'~b(x) I'

2~ h'
(2.6d) 41+(x) - e+i~~ E &0p S~ e &L*; E,&0,

(2.8a)

P~, ('&(x)&E,('&(x)dx= 8(E, E~'), (2—.7a) Ee=A'kr, '/2mb E,&P (2.8b)

LooI

4~b(x)4~ b(x)«= &~b, ~ b (2.7b)

E = A'qi, '/2m„— E,&0; (2.8c)

(-'9a)

The ts, and e„label contributions to the electron density
from the continuum and bound-state eigenvalue spectra,
respectively of Eq. (2.5a). The source of these two types
of spectra is the potential shown in Fig. 3. As discussed
in the Introduction, our use of the bulk values for the
exchange-correlation potential V (x) constitutes the
major approximation of the analysis reported herein.
The removal of this restriction allowing both local
density expansion and momentum-dependent' ' po-
tentials will be described in a subsequent work. The
bound-state spectrum, which creates two-dimensional
bands of "surface states"" "arises from the dip in the
total potential on the left-hand side near x=p. For
E& Vp the continuum spectrum is doubly degenerate
and the (i) labels in (2.6) indicate the (two) linearly
independent eigenfunctions needed to specify the
density. Continuum normalization is used throughout
to avoid ambiguities which arise upon taking the
infinite-system limit of box-normalized wave functions.

The self-consistent determination of the V~(x) occur-
ring in both (2.1) and (2.5b) is achieved by the following
sequence of operations: (1) Select a model Vq(x) and
solve Schrodinger's equation (2.5a) to obtain the density
via Eqs. (2.6). (2) Parametrize the total density by a
model density n&b((x) which explicitly satisfies charge
neutrality, Eq. (2.4), and which gives a net step size
between the two m edia' of Vp= Ey J.—Egg,'

=A'kbp/2m. [See Fig. 3j. (3) Solve Eq. (2.1) for the
model charge density, n(x)—=nM(x) and (4) Use the
Vq(x) resulting from step (3) back in step (1) and repeat
the loop until the parameters in n»((x) change by less
then a prescribed amount upon successive iterations.
The remaining three parts of Sec. II are devoted to an
explanation of the details of step (1). A thorough dis-
cussion of steps (2)—(4) is given in Sec. III.

E, Vp A'k&———b'/2m„E, )Vp

Vp E,=A'q&b—'/2mb, E,& Vp.

(2.9b)

(2.9c)

vr, ——Akr, /mb,

v&b
——Ak &b/m, .

(2.11a)

(2.»b)

In all subsequent formulas we use spherical bands:
vs~~ =m&=m. Current conservation yields the unitarity
of the collision matrix u, given by

(2.12)

In our problem, with no spin splitting of the spin-
degenerate eigenstates, u is also symmetric. The electron
density is readily obtained from Eqs. (2.6b), (2.10),
and the unitarity of u, to be

n(+&(x) =nag(+&(x) O(x)+nr, (+&0( x), — (2.13a)

2s+ 1 bEB

na(+&(x) =
4m'

dka [k& &b' —k&b']

&&( ~p~ (x) ~'+Re[les@&by (x)j} (2.13b)

b~ See, e.g., R. G. Newton, J. Math. Phys. 1, 319 (1960).
~ See, e.g. , I. Adami, Phys. Rev. 146, 379 (1966).

The two linearly-independent wave functions for
E,& Vp are taken to be
P("(x)=(27rAvt) ' '[P~(x)+Nttpr, (x)j; x&0 (2.10a)

= (2~Av&b)-"'usty&b+(x); x)0,
p(p&(x) = (2v'Avt, ) 1/2Nls(t&I (x—) x&0 (2.10b)

= (2 Avv) &'b"[(t&gg
—

(x)+tbsp(f»b+(x) j; x)0
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mr, &+'(x) =
2s+1 ky'g

4+2
dkr, [k,r,

'—kr, ']
For numerical computations, however, it is convenient
to use densities obtained from (2.15a) directly, i.e.,

X f [ez (x) ('+Re[»iver, -'(x)])
k harp'= 2m(p Vp—)/k'= k pl.' n—',

(2 13 ) ( + )
eg& '(x)=

(2.14a) 2' p

dqa [k,z+qz ]

u'= 2mvp/k'

(2.14b)

(2.14c)

Xkgqg[D'(q g)+IV'(qg)] '

X[~"( )/~"(0)], (2.»')
The twofold "orbital" degeneracy of the continuum
eigenstates for E,)Vp is reflected in Eqs. (2.13) by the
fact that we have used the equality of

( g+ (
' and

~ P (
'

to extract a common factor of 2 in the two terms of
(2.13b) and (2.13c).

In the energy region 0&E&Vp, the eigenvalue spec-
trum is continuous but nondegenerate. The normali-
zation condition (2.7a) gives for the wave function

f(x) = (2/sir, k)'~' Re[e"gr, (x)]; x(0 (2.15a)
=( 2~~~@)-'~' V„y,+( x); x)0

(2s+1)
eg&—

&(x) =
271 p

dki(k p~' —kz, ')

X [DP(k,)+illP(k, )]—i

X[D(k,) Re/, (x)+E(k,) Imp, (x)]' (2.21b)

in lieu of Eqs. (2.20). Finally, we find the expressions
for the collision matrix in terms of the Jost functions:

=L(k /k )"'4 +(0) —4~(0)]/0 -(o) (2 22 )

(2 15b)»p= [(k~/k, )'"4,-(0)»p —4,-(0)]/4,+(0), (2 22b)

in which 6 is a real phase shift of the reQected wave on
the left-hand side of the barrier. The phase shift is
determined from the equality of the logarithmic deriva-
tives at x= 0 to be

8= tan —'[X(E,)/D(E, )], (2.16a)

V(E,)=Re[/~'(0) —1(E,)$~(0)], (2.16b)

D(&*)= ~m[4 ~'(0)—1.%.)4 u-(0)], (2 16c)

1.(&.)= 4 ~+'(0)/4 ~+(0) . (2.16d)

The "negative-energy" transition amplitude V21 is given
by

Upi= 2[krqii]' '([E'+D']' 'yg~(0) } '. (2.17)

Equations (2.9), (2.16), and (2.17) permit the general
proof of the relation (written for a step potential by
Adawi"):

Vpi'(qz, kr, ) =
~
Upi(~qz, kr, ) ~

' (2.18)

—&2ir (E)
7 (2.19)

then we can write the continuum contribution to the
electron density as

n, (x) = [my&+&(x)+eg&—&(x)]0(x)

+[mr, '+i(x)+ez' i(x)]O(—x), (2.20a)

(2s+1)
ng& '(x)=

SX2

2$+1
er, & '(x)=

4~2 p

dq [k„'+q']
G

X
~
upi(iq, kr, ) ~

P
f g~'(x), (2.20b)

dkr. [kpr, '—kr, ']

X( ~P (x) ~'+Re[I P '(x)]). (2.20c)

for all potentials of the form shown in Fig. 3 when
0&E,& Vp. If we further define

2i(krak

g) '~'

112 121
4 ~+'(0)4 ~-(0)—4 ~+(0)4 ~-'(0)

(2.22c)

The use of Eqs. (2.21) and (2.22) reduces the problem
of calculating the continuum density N, (x) associated
with a given potential V(x) in (2.5b) to that of finding
the Jost functions (2.8) and (2.9).

Equations (2.13), (2.20), (2.21), and (2.22) completely
specify the local continuum density e,(x) as a functional
of a local potential V= Vq+ V„occurring in Eq. (2.5a)
and the chemical potential p, at zero temperature. The
important consequences of these results are best illus-
trated by example in special cases. The remaining two
parts of this section are devoted to this task.

V(x) = Vpo(x),

Vp EFL EER ~

(2.23a)

(2.23b)

The electron distribution associated with this potential
has been studied by several authors" "with emphasis
on the asymptotic behavior as x —+~. The Jost func-
tions are given for all x by their asymptotic forms (2.8)

23 B. Dreyfus, R. Maynard, and A. Quattropani, Phys. Rev'
Letters 13, 342 (1964).

24 A. Bardasis, D. S.Falk, R. A. Ferrell, M; S.Fullenbaum, R. E.
Prange, and D. L. Mills, Phys. Rev. Letters 14, 298 (1965)."K. Yosida and A. Okiji, Phys. Rev. Letters 14, 301 (1965).

C. The Step Potential

Although the exchange-correlation energy potentials
play an important role in determining the interface
potential, we might inquire for pedagogical reasons into
the possibility of achieving a stable interface potential
neglecting them entirely by using an initial model
(step) potentia, l
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and (2.9) so that Eqs. (2.13) and (2.20) become
l.481 x IO

(2sg ]) &zz

Sg X =Kg Lki;~' —k~']dkg
IO'-

2s+1
XRejugg e""'*7+ dqg Lki-a'+qi~')

Sm' p

X [u2i(iqp, kz)
I

' e
—"~', (2.24a)

(2s+1)
ui, (x) = mr, + dkl. [kpr, ' kr. ']—

l.48l x 10

IO4—

m, =mR =m

=I
L R

n =IO cm
L

n„= 10 cm

n = IO22cm '
L

n = IO" cm'
R

u~ ——(2s+1)kpg'/67r2,

Nz (2—s—+1)kr I.'/6''.

XReLuii e "~~*j (2.24b)

(2.25a)

(2.25b)

22 -3—-—n = IO cm
L

n„=5.IO cm

INDICATES X =KFT

In (2.24) and (2.25) we have chosen the chemical po-
tential to be compatible with the bulk Fermi energies
of the two sides of the interface. This selection is a con-
sistent one due to (2.23b). As Eqs. (2.24) are valid for
any potential of the form shown in Fig. 3, at suKciently
large

I x~, we see that local charge neutrality at large
distances from the junction is ensured by the above
selection of chemical potential. For the step potential
we also find

u„= (k~—kl, )/(k~+kz),

uig ——2(kgkl ) '"/(kg+kl ),
uii ——(kl.—k~)/(kl. +kg); &)Vo

(2.26a)

(2.26b)

~L2 g R2 —2$PLg'g 0(E(Vo. (2.26c)
(kr, '+qg')

Using Eqs. (2.26) in (2.24) we can calculate the total
integrated charge in the system. The result indicates
that the tunneling charge N~& '(x) is exactly compen-
sated by a loss of mobile charge in ur, ( '(x). It is an
interesting fact that charge-neutrality is identically
satisfied, despite the fact that the states fbi(2) (kg=0, x)
and Pr, ("(kl,——0, x) are zero for the step-well potential
whereas they are unity for the respective infinite media.
Other contributions to the charge density compensate
for the loss of these states. These results demonstrate
that the identification of EI;g and EpL with the bulk
Fermi energies yields both over-all charge neutrality
as well as charge neutrality in the bulk of the two
metals. '

In contrast to previous authors, "" our primary
interest is in the charge density close to the interface,
not asymptotically far from it. We illustrate in Fig. 4
sample numerical evaluations of the integrals (2.24)
using the collision matrix (2.26). The initial excess of
negative charge on the low-density side of the junction
is due to the tunneling (or "evanescent") term in
(2.24a) whose integrand is proportional to exp (—2q~x).
This term dominates the charge distribution in the

INDICATES POSITIVE

I.48I x IO
' — BACKGROUND

IO-5
-2

I

KFL X/77
I

K FR X/7t

FzG. 4. The electron density in the nieghborhood of a bimetallic
junction as calculated from a step model of the total electron
potential chosen to equalize the Fermi energies of the two metals.

region 0&x&k~~ '= (4ki g/araki) ' ' near the interface.
The density in Fig. 4 is measured in units of a~ ' with
a~= (A'e/me') denoting the Bohr radius in the direction
normal to the junction. As a~ can become quite large
for small effective masses or large dielectric functions,
the evanescent contribution in semirnetals, degenerate
semiconductors, and associated with small pieces of a
Fermi surface in metals can extend over appreciable
distances ( 100 A).

Far from the barrier all potentials give Friedel oscil-
lations. " This result contrasts to the image-potential
limit of a vacuum-metal interface at the vacuum side, ' 4

and makes a fully self-consistent model of the Poisson
equation impossible in practice. From Fig. 4 we see
that relatively little charge is contained in any but the
first two regions of charge imbalance on either side of
the interface. For the step potential the dipole layers
in general yield a rising one-electron potential from the
high- into the low-density metal. Therefore this model,
incorporating direct Coulomb interactions alone, has
the potentiality of yielding a seH-consistent model of
the interface. As such a model is not self-binding, we
cannot use it to describe the dipole modifications of the
work functions near a vacuum interface because, as
discussed in the Introduction, the bulk separation ener-
gies dominate the work function. ' Therefore we do not
pursue this model potential any further.

D. The Step-Exponential Potential

An exactly solvable model potential of the general
form shown in Fig. 3, which is an exponential potential

26 J. Friedel, Advan. Phys. 3, 446 (1954); Nuovo Cimento
Suppl. 7, 287 (1958).
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like that obtained as the result of Fan's semiclassical
analyses, ' is given by (2.5b) with the selection

U„(x)=( S„—r+EFI. E—pit+S„g)O'(x), (2.27a)

d* lI'(Q, ', «„; P—„,*)i,

dx iF(—Qz', —kz„—pl., x) i'.

(2.30d)

(2.30e)

Vg(x) = 0(—x)

~
—hex

—V 1— 0(x), (2.27b)
1+r

(2.27c)

(2.27d)

Vg= S~g—S~L, )

r = h~/kl. =p(mg/~1. )"'.

yr~(x) =F(—Ql, ', —hz, &Pz, x),

y~~(x) =I (Qg', h~, spit, x),

(Q2 g
—kz) n

F(Q',k; p,x)=exp(pkx/2) P i

(2.28a)

(2.28b)

r(—P+1)X— (2.28c)
~!r(~—P+1)

(2.28d)

(2.28e)

(2.28f)

Q, '= 2mv. /[k'(1+r)),
Qr, '= 2mr Vq/Lh'(1+r)),

pr, = i2kz/ki—„E,&0
= 2gz/hz, E,&0

P~ t,2k'/h~—,
——E,& V.o (2.28g)

When P= 1, the ratio r between the decay constants on
the two sides of the interface is the ratio of their Fermi-
Thomas wave numbers.

For the potential specified by Eqs. (2.27) the Jost
functions are"

The continuum electron density is obtained by using
Eqs. (2.28) in Eqs. (2.22), (2.20), and (2.13).

From Eqs. (2.27) we see that as the width of the po-
tential on the high-density side (1/kl. ) increases, the
fraction of the total voltage drop V~ across the left-hand
side increases for fixed k~. Therefore by taking a fixed
value of h~ and increasing h~ we make the left-hand
potential wider and deeper while making the right-hand
potential more shallow. Taking the Fermi-Thomas
values for hl, and hg, the left-hand potential well does
not bind a state with &&0 for ~1.——].0 and gg ——iP"
cm '. The one-electron charge density, and the model
density with which it is approximated in the self-con-
sistent calculation, are shown in Fig. 5. Two aspects of
the figure are significant. First, in the absence of the
localized states, most of the deviations from charge
neutrality occur in the two oscillations of n, ( )xabout
e~ immediately adjacent to the boundary at x= 0. Thus
a "four-region" model of the charge density as shown
on the figure suffices to parametrize the calculated
density in the self-consistency calculation to be de-
scribed in the next section. The second important
feature of the 6gure is the concentration of the charge
in the positive-charge oscillation labeled I in the figure.
Most of the voltage drop Vd occurs across this region
which corresponds to the classical depletion region of a
Schottky-barrier model of the junction. However, the
semiclassical Schottky description of regions I and II

= 2qit/kg, E,& Vo.

The wave numbers k and q are defined in Eqs. (2.8) and
(2.9). From (2.27) we see that as r becomes large,
k~))hz, and Ql.))Qii so that the potential well on the
left-hand side becomes both deeper and wider. It may
then ultimately admit bound states (in the direction
normal to the interface) which are associated with two-
dimensional bands of states due to the continuum
motion parallel to the interface. ' "The wave function
of these states is

Pl, (x) =Cr,It r, (x)0(—x)+Cgyit+(x) 0(x) (2.29a)

and their eigenvalue equation is

~rl IO
O
C

XL2

hLOB = 667

5 lO — hROB 455

n, = io"cm'

~R
"- IO Cm

2l

lo-'—

The normalization criterion (2.7b) gives

Cl. =- yz, gee,
Cgp= fIi+yz g'I2)

wait= F(Qz', kz,' —Pz, 0)/

XF(—Qz' —k, ; —P, O),

(2.30a)

(2.30b)

(2.30c)

F'(—Qr. '—4, ; pI., 0) I"(Qz', k—z,' —Pii, o)
(2.29b)

F(—Qr. ', —kl. ;
—Pr, , 0) I'(Qg', kg), —P~, 0)

5 l0-&—

I I I I i I I I I I I I

- l 2 -9 -6 -3 3 6 9 l2 l5 I 8 2I

x/0 8

FIG. 5. The actual electron density and model electron density
in the neighborhood of a bimetallic junction as calculated from
the starting potential used in the iteration procedure. The total
electron potential vras taken equal to the sum of the bulk exchange-
correlation potential in each metal and an exponential dipole po-
tential )Eq. (2.27) g.
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'
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Fio. 6. The electron density in the neighborhood of a bimetallic
junction when a single surface state is present.

near the interface is completely inadequate because of
the evanescent contribution to the charge on the low-
density side. This contribution to e,(x), due to the
tunneling of electrons into the low-density side of the
junction, causes the negative-charge excess in region II
as well as the fact that the positive-charge excess never
exceeds one-third of its maximum possible (i.e., classical)
value. In the self-consistent potential described in the
next section the positive-charge excess reaches four-
fifths of its classical value.

The inhuence of a bound state with E,&0 is shown in
Fig. 6. The parameters associated with the potential
leading to the illustrated charge density are chosen to
give a single bound state at Pr, ——i(0.377) which is almost
the maximum binding possible before a second bound-
state appears. For less tightly bound states the as-
sociated charge density is less well localized near the
interface. This bound state for motion normal to the
interface gives rise to a two-dimensional band of states
due to the continuum motion parallel to the interface.
Such bound states may have been observed in tunnel-
ing" experiments in semimetals and in transport'~"
and optical absorption" experiments in degenerate
surface layers on semiconductors. These states, while
not directly analogous to the Tamm or Shockley states, "
because they are not associated with the breaking of the
translational symmetry of a crystal lattice, are calcu-
lated by matching wave functions in a manner which is
equivalent to the use of the effective-mass approxi-
mation" in Heine's" method of finding "virtual" sur-
face states. However, we emphasize that if such states
occur for a particular set of parameters in our model,
they must be dynamically stable in that their charge is
explicitly incorporated in calculating the potential in
which they are bound. This requirement stands in
contrast to the conventional calculations"" in which
Ailing the surface states with electrons leads to a
modified potential in which the states may no longer
exist.

Summarizing the results of our two model calcula-
tions of the electron density, we have shown that in
the absence of surface states a four-region model of the
charge fluctuations near the interface adequately ap-
proximates the calculated density. Surface two-dimen-
sional energy bands can occur, and are associated with
rather extended charge distributions even for "metallic"
bulk electron densities. A Schottky-barrier model of
the junction is inadequate because it neglects the evanes-
cent contribution to the charge density caused by
electrons tunneling into the low-density electron gas.
The full self-consistent determination of the junction
potential is discussed in the next section.

III. SELF-CONSISTENT CALCULATION OF
THE JUNCTION POTENTIAL

A. The Model Charge Density

As indicated in Sec. IIA, the major task in a self-
consistent treatment of the interface is the establishment
of a model of the charge density which guarantees
charge neutrality and the proper dipole potential V~ at
each step of the self-consistent iteration process. These
requirements dictate use of a model expression to ap-
proximate the numerical charge density because the
accuracy required to obtain reliable asymptotic values
for the Friedel oscillations necessitates excessive com-
puting time on the electronic computer (GE 235) which
we used. Poisson's equation (2.1) need not be analy-
tically solvable for the model charge density, but for
convenience in determining the proper V d we use models
for which Vq(x) can be obtained in closed form in terms
of the parameters of the model density function.

For the charge density either with or without surface-
state bands we use a four-region model charge density
given by

e~(x)=—e,(x)—n, (x)
+L2) —xL2(x( —xL1

'+L1(1+x/xL1) xr 1

=—esp(1 —x/xgg); 0&x&xsam (3.1)
@+2) xg1&x&xg2

=0; otherwise.

This model contains eight parameters (el„, xr,;, Ns„
xz;, i= 1, 2) of which only six are independent due to
the requirements that the total dipole potential is V~
and that both Vd(x) and Vd'(x) be continuous. The
solution to Poisson's equation (2.1) using the model
charge density (3.1) is

Vd(x) = —Vr~(')(1+x/xr~)'; —xr2&x& —xr~

= —Vl.g(2) 1+-
&L1 XL2

—xrg(x&0 (3.2a)
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= —Vd+Vnd"& 1—
&Rl &R2—

0&x&xRg

= —Vd+ V~I2& —1; xgr&x&xg2,.
-XR1

Vr, I'& = 27m z, e',xr, r'/er, ,

Vr, I'& = 27rnr, 2 e'xr, 2'/er, ,

VLd = 2% nL2 e (xL2 xjl )/eI, '

Vn "&= 27rnr&r e'x~&'/en,

V~ I'& = 2~ng2 e'x~2'/en,

Vnd "&= 2~nz~ e'(xz2' —xz&')/ez.

(3.2b)

(3.2c)

The continuity of Vd and Vd' at @=0 gives the two
constraints

V'd ——1(V (&&+ V (&&)+ (V&d(&&+ V' (&&) (3 3a)

2VBd (xnl+xB2) 2VLd (xjl+xLR)
= VgI'&x~& '—Ur, I'&xgr ' (3 3b)

%e further constrain the parameters by the require-
ments that (a) x1.2 and x~2 are chosen to be at the half
drop-oR values of the charge deviations from the maxi-
mum deviations of regions IV and I (Fig. 5). (b) The
four model charge densities eR~, eR~, e~~, and mL, ~ are ob-
tained from the calculated charge density n(x) by the
procedure of: (1) Select xr, r and x~& to be the smallest
values of lxl on either side of the junction at which
n(x)=0, (2) using these values, and those of xr, ~ and
x~~ given by constraint (a), calculate the values of n;
so that in each of the four regions of the model charge
density, the integrated charge density equals the inte-
grated charge density of the corresponding region in
n(x), and (3) after the model n; are chosen, treat x~&

and xl.~ as variable parameters which are determined
from the two conditions (3.3) for charge neutrality and
the proper dipole voltage drop across the interface.

The above fitting procedure is carried out in each
step of the self-consistent iteration procedure.

K

t
X„I X

1O-'—
nL- 10 cm

TIII
= lo cm

5 10 "

"EXACT

M IQ
C3

of the differential equations [e.g. , an array of step
functions for n(x) and Weber-function wavefunctions'07.
Unfortunately, the charge densities of Figs. 5 and 6
cannot be accurately parametrized by model charge
densities for which the solution V„(x) to Poisson s
equation (2.1) leads to an analytically solvable Schro-
dinger equation (2.5). However, the discussion in
Sec. III A indicates that although the charge densities
must be parametrized by charge-neutral model densi-

ties, models for which Poisson's equation is solvable
are adequate for our purposes. Therefore the numerical
analysis is reduced to the solution of Schrodinger's
equation (2.5) and the superposition of these solutions
to compute the electron densities via Eq. (2.6) and its
subsequent extensions (2.13), (2.21), and (2.22).

The computer program used to perform the numerical
work is described in Appendix A. Numerical calculations
were performed first for a system in which the high-
density metal was characterized by eJ.=10"cm ' and
the low-density metal by eR=10" cm '. The starting
potential Vd(x) is taken to be the step exponential
(discussed in Section II D) with decay lengths h~ and hr,

given by their Thomas-Fermi values. Figure 5 shows the
calculated charge density and the model charge density
determined as described in the preceding section. The
potential due to the model charge density was used in
the first iteration. The resulting charge density together
with the fitted-model. charge density is shown in Fig. 7.
The charge densities found in the third and fourth steps
of the iteration together with their associated model
charge densities, are shown in Figs. 8 and 9, respectively.
Since the difference in the calculated charge densities
shown in these two 6gures is reasonably small, i.e.,
as compared to the difference in the densities of Figs.
7 and 9, the iteration was terminated. One consequence

B. Ayylication of the Self-Consistency Criteria

In Sec. IIA we found that a self-consistent-6eld
calculation required the solution of two diRerential
equations [Poisson's Eq. (2.1) and Schrodinger's Eq.
(2.5)7 and the performance of one quadrature to obtain
the electron density from the solutions to the Schrodin-
ger equation. The numerical performance of the quadra-
ture seems unavoidable although by use of an appro-
priate model charge density in the model approximation
to the numerical result one can analytically solve both

lO-'—

5 lo-'—

I I I I

-12 -9 -6
I I I I I I I

3 6 9 12 15 18 21

X/0 II

FIG. 7. The actual electron density and model electron densit~
in the neighborhood of a bimetallic junction as calculated in the
first iteration (Sec. III 3).
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shown in Figs. 2 and 3.A two-region model of the charge
density presumably can describe adequately the dipole
eQects at these junctions. In the four-region model,
regions II and III, rather than I and IV as in Figs.
7—9, dominate the dipole potential. 1A'e have performed
a set of calculations parallel to those illustrated in I'igs.
7—10 for Nr, =5&&10"cm ' and eg=10" cm '. Self con-
sistency in our rough sense can be achieved also in this
case using the four-region-model charge density. The
case of eL,=10" cm ' and ng=10" cm ' provides a
more stringent test of the model, however, and hence
has been discussed in more detail. Although the dipole
contribution to the junction potential exhibits a net
sign di6erence in the two cases, the total junction po-
tentials are qualitatively similar.

C. Discussion

Our primary objectives in this study were the con-
struction of a "first-principles" model of a bimetallic
interface and its subsequent application to explore the
role of the electrostatic charge density in determining
the one-electron ("junction") potential at the interface.
Although often mentioned in passing, the contribution
to the junction potential of the modification of the bulk
electrostatic charge densities of the two components at
their cornrnon interface has not been investigated in
detail prior to this analysis. For what appear to be
historical reasons, ' ""the phenomenological approach
to junction potentials, ' especially at metal-semi-
conductor contacts, has emphasized constructs employ-
ing entirely ad hoc distributions of localized surface
charge introduced for the sole purpose of making the
experimental data compatible with Kq. (1.1), and the
observed insensitivity of the barrier height V~ to a
(constant) bias applied across the junction. The in-

applicability of such constructs for the description of
intimate metal-semiconductor contracts was recognized
by Heine" who applied the nearly-free-electron model
to describe both the metal and semiconductor and em-
phasized the role of the evanescent electron density as
the proper quantum-theory replacement for the phe-
nomenological construct of surface charge. We have
added two new considerations to those of Heine. "
First, we have shown that the difference in the bulk
cohesive energies of the two components of the junction
dictates the qualitative features of the junction po-
tential and thereby the general character of the charge
distribution near the interface. Second, by adopting a
model in which the bulk cohesive energy is calculable,
we have been able to explore in detail the role of the
electrostatic charge redistribution near the interface
in determining a self-consistent junction potential from
which the charge distribution is itself determined.

The most significant results of our analysis are: (a)
The determination that the charge distribution near
the junction has the "four-region" character shown in
Figs. 5—9, and (b) the verification that using such a

"four-region" model of the charge density a rough self-
consistency between the charge-density and its con-
commitant junction potential can be achieved in the
sense of Sec. III B.Surface states, either conventional"
or of the "localized-state" variety discussed in Sec. II,
are conspicuous by their absence in the 6nal self-con-
sistent charge density for our example of zl.——10" and
eg ——10" cm '. As these values of nl, and eg were
chosen to give a large dipole potential difference Vd
in the opposite sense to that caused by a simple two-
region charge density, the absence of surface states
for this special example strongly suggests that their
absence is the rule and their presence is the exception.
If, following Heine, " we were to take a free-electron
model of the semiconductor at a metal-semiconductor
contact, the density difference between the electron
Quid in the metal and semiconductor would almost
always be less than the factors of 10 and 5, respectively,
used in the calculations described in the previous section.
In this respect our analysis strengthens Heine's con-
clusion that conventional surface states do not occur in
the absence of band bending to the much stronger
result that in our model localized states are dynamically
unstable for the (limiting) cases of large An and Vd.
Therefore, the introduction of localized states in a
phenomenological description of the junction potential
would be both unnecessary and incorrect. The burden
of determining the junction potential is absorbed en-
tirely by the local modifications of the electronic density.
In particular, the considerable band bending evident in
Fig. 10 does not require the introduction of localized
"surface" states.

In conclusion, we reiterate the limitations of the
analysis and give our assessment of the significance of
these limitations. Independent of questions concerning
the validity of the model, in this paper we have not
fully explored its consequences because of our neglect
of the spatial and momentum (energy) dependence of
the exchange and correlation potential. Self-consistent
calculations of the junction potential using the local-
density (Fermi-Thomas) approximation' for the ex-
change-correlation potential have been carried out.
They lead to qualitatively the same results but with
larger depletion regions and will be reported on else-
where. "As the local-density approximation overesti-
mates the effects of the exchange-correlation energy,
we believe that the qualitative features of the results
given in this paper accurately characterize the predic-
tions of our jellium model of the junction.

The major limitation of the model itself is its failure
to incorporate the background of positive charge as an
appropriate array of positive-ion cores rather than a
uniform charge density. Furthermore, the inclusion of
the ion-core effects must be done in such a way as to
yield reasonable results for the bulk cohesive energy of
the composite materials of the junction. This require-

"A. J. Bennett and C. B. Duke (to be published).
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ment already eliminates the systematic use of a simple
nearly-free-electron model as a "6rst-principles" model
of a metal-semiconductor contact due to the difliculty
in calculating the cohesive energy of the semiconductor. '
Thus in applying an extended version of the model to
semiconductors, a phenomenological energy shift prob-
ably must be introduced in order to give the bulk
cohesive energy. As we do not yet have experience
in dealing with such an extended model, we can only
conjecture that as a high-energy electron in a semi-
conductor can be described by a nearly-free-electron
model, the photoemission or thermionic-emission barrier
heights at metal-semiconductor contacts may be ade-
quately predicted by the jellium model with appropriate
adjustments to give the observed bulk cohesive energy
of the semiconductor. The description of the properties
of low-energy electrons (e.g., Ohmic-contact tunneling
experiments) obviously requires at least a two-band
treatment of the periodic potential in the semiconductor.

A second limitation of the model is its suitability only
for the description of the equilibrium junction potential
at the interface. The validity of the (nearly-) free-elec-
tron model to describe the interface rests fundamentally
on the invariance of the partition function of the total
system on the selection of eigenfunction representation
used to evaluate it."If, for example, a bias is imposed
across the junction, then current begins to Qow and a
detailed consideration of the scattering mechanisms
limiting this Qow becomes necessary in order to es-
tablish the junction potential. At a bimetallic interface
between nearly-equal-density metals, no space-charge
depletion region occurs in the low-density metal and
bulk transport effects materially alter the character of
the junction potential. If a depletion region occurs on
the low-density (right-hand) side, then, for example,
when a bias eV«V~ —E,pg, is applied to the junction,
the current Bow is limited by tunneling through the
space-charge barrier so that the alterations in the charge
density, and hence junction potential, are small (but
not necessarily negligible). '0

Summarizing, we have constructed a "first-principles"
jellium model of a bimetallic interface and demonstrated
the model s prediction that the self-consistent junction
potential is usually due to redistribution of the (con-
tinuum) electron density and not to localized surface
charge. The model is applicable for the calculation only
of the equilibrium junction potential. Quantitative ex-
pressions for nonequilibrium corrections to the junction
potential are not derived.
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APPENDIX A: NUMERICAL EVALUATION
OF THE ELECTRON DENSITY

0(L~)=4~+(L2), (A1)

and continued to x= —L~, where the wave function
obtained is given by

P( L,)=A R—e/e"Pl, ( L,)j— (A2)

3 and 6 are determined from the derivative and value of
the calculated function which is then multiplied by
(2/~vzA)'~'A ' to give the correct asymptotic forms
(2.15).

Case (0): Vo(L'(Es. The function f&"(x) is de-
termined by assuming a starting value at x=L2 of

4'"'(L~) =4 ~+(L2) (A3)

and integrating to x= L&, where P~"—(—L&) is given by

4"'(—Li) =~[4~(—L~)+N»4i-( —L~)3 (A4)

The quantities N~~ and 2 are determined from the
derivative and value of the calculated function which
is then renormalized to give the correct asymptotic
forms (2.10).

The function P "&(x) is obtained in a similar way; the
integration being begun at x= —L~ and continuing to
x L2 ~

The accuracy of the numerical integration of the
Schrodinger equation was checked by comparing the
calculated wave function with those obtained analyti-
cally for the two solvable potentials of Secs. II C. and
II D. The convergence of the integral (2.6) was at all
times better than 1%. In addition, the asymptotic
values of the electronic density associated with the
step potential agreed with those obtained analytically.

The numerical evaluation of the electronic density
consists of solving the Schrodinger equation and then
integrating $Eqs. (2.6)J over the densities associated
with the various 611ed electronic states. The particular
solutions which are required in Eqs. (2.6) are those
whose asymptotic behavior is given by Eqs. (2.10) and
(2.15). The limits of integration of the Schrodinger
equation, x= L2 and x= —L~, are chosen such that the
potential at those points is flat (in the case of the model
parabolic potential) or negligibly varying (in the case
of the model exponential potential). The different
energy regions are treated as follows:

Case (a): 0(E(Vo. The integration of the wave
equation (2.5) is bemn at x= L~, where it is assumed
that


