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field of frequency ¢/\), we expect to obtain a pretty
good approximate description by replacing all
periodic functions of the time (possessing the smaller
period 7¢=a/c) by their respective time averages over
any time interval of duration e/c. It should be em-
phasized, however, that this approximation will become
worse and worse as A — a.!1

In conclusion, we wish to reiterate that by making
the single approximation of replacing the coefficients
V(t)—V (x,y) and —i(e/m)(d/dx) Inux(x,y) in Eq. (21)
by their respective averages over any single lattice cell,
we have succeeded in reducing our original problem to
an ordinary second-order differential equation in the
single independent variable & and this differential
equation can now be easily solved to essentially any
desired degree of accuracy. On the other hand, more
conventional approaches to a theoretical description of
the interaction of laser radiation with electrons in
solids frequently resort to one or more of the following
approximations (in addition to the one-electron approxi-
mation which we assumed from the very beginning):

11 The well-known appearance of resonance phenomena in
similar situations when the driving frequency approaches the
natural frequency of the driven system suggests that interesting
new physical phenomena might be discovered if and when a
practical y-ray maser (producing relatively intense, coherent,

(1) The spatial variation of the electromagnetic field
is usually neglected, i.e., A(¥) is replaced by A(—4%).
This amounts to complete neglect of the linear momen-
tum associated with the electromagnetic field.

(2) The effects produced by Hin are calculated by
using ordinary time-dependent perturbation theory—
even though the effective coupling constant is not
necessarily small compared to unity.

(3) With regard to the use of time-dependent pertur-
bation theory, the unperturbed electron state is usually
assumed to be described by the effective mass approxi-
mation, ie., H, is replaced by (p%/2m*), where m*
denotes the so-called effective mass.

These three examples of typical approximations are
cited here mainly to suggest that in certain physical
situations (to be discussed more thoroughly in a sub-
sequent article) it may be more suitable to use the
formalism described here, whose validity is believed to
depend on the single restriction, X>>a.

The author wishes to thank Professor C. Lanczos
and Professor Y. Takahashi for helpful and enlightening
discussions of this work. Also he wishes to thank
Professor J. L. Synge for his kind hospitality at the
Dublin Institute for Advanced Studies.

and essentially monochromatic radiation of wavelength equal to
the crystal lattice spacing) is developed.
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An electron-gas model of a bimetallic interface is constructed by joining two semi-infinite half-planes of
unequal positive charge and adding electrons until a charge-neutral system is achieved. The electrostatic
(dipole) potential equalizes the Fermi energies of the high- and low-density components of the junction by
compensating for the difference in their (bulk) exchange and correlation separation energies. The model is
used to calculate self-consistently the charge density and one-electron (junction) potential in the region
near the interface. The barrier height V5 associated with the self-consistent potential is nof related to the
vacuum work functions ¢z, and ¢z of the two-component metals by Vy=¢r—d¢z. This result is due not to
either real or “virtual” surface states, but rather to the redistribution of the electronic charge at the bi-
metallic interface relative to the vacuum interfaces of the separate metals. Localized “surface states” can
occur for certain junction potentials on the high-density side of the interface. These states do not occur
in the self-consistent potential for the numerical example of #z,=1022 and nr=10%" cm=. In addition,
Vy#pr— g for these positive charge densities. Although the electron density exhibits Friedel oscillations
on both sides of the junction, only two of the oscillations on each side are explicitly incorporated into the
model charge density used in the self-consistent loops. A semiclassical (Schottky) model of the depletion

region on the low-density side of the interface is inadequate because of the presence of large evanescent
contributions to the electron density.

I. INTRODUCTION

DESPITE the extensive literature on semiphe-
nomenological models of bimetallic and metal-
semiconductor interfaces,! little attention has been

1 See, e.g., E. Spenke, Electronic Semiconductors (McGraw-Hill

devoted to the more fundamental problems of the
dynamical origin of the charge distribution near an
interface and the stability of this distribution. These
Book Company Inc., New York, 1958), Chaps. 4 and 10; D. V.

((}e%%t)ert, A. M. Cowley, and B. V. Dore, J. Appl. Phys. 37, 2458
1966).
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problems are the analogs at a surface of the calculation
of the cohesive energy of a self-binding system. The
many-body systems for which the cohesive energy has
been most extensively studied are the electron gas in
a uniform positive background and nuclear matter.
The analysis of the cohesion of a uniform electron gas
provides the foundation for the original models,** and
their later refinements,* of metallic interfaces. The
calculations?® of charge densities and one-electron
potentials at interfaces constitute a relatively simple
special case of the problem of determining the properties
of an inhomogeneous many-body system?” in which the
deviations from homogeneity are in general neither small
(i.e., linearizable) nor slowly varying. In order to utilize
the results of previous investigations of the uniform
electron gas and its vacuum interface, we adopt the
model of a bimetallic interface in which the interface
is specified by joining at x=0 two semi-infinite half-
planes of (unequal) uniform positive charge. Super-
posed on this positive charge is an electron gas of a
composition which guarantees electrical neutrality of
the final system. The eigenfunctions and eigenvalues of
the system are calculated self-consistently from the
Poisson and Schrodinger equations and used to evaluate
the charge density and one-electron (“junction”)
potential near the interface. The only parameters in the
model are the two semi-infinite positive-charge densities.
In particular, there are no phenomenological parameters
like work functions, electron affinities, or energy-band
gaps. Our primary interest lies in examining the quali-
tative character of the charge density and junction
potential predicted by this highly idealized but “first-
principles” model. The model can be extended easily
to give a description of the (often conflicting) experi-
mental data® on metal-semiconductor contacts only at
the expense of introducing at least two phenomeno-
logical parameters, the electron affinity and energy gap
of the semiconductor. The neglect of the periodic ionic
potential, which renders the model inadequate for the
description of low-energy electrons in a semiconductor
without the use of additional parameters characterizing
the bulk band structure, is rigorously justifiable in
bimetallic junctions only in the sense of a pseudopo-
tential® or extended effective-mass'® (Bethe-Sommer-
feld) approximation.

2 E. Wigner and J. Bardeen, Phys. Rev. 48, 84 (1935); J. Bar-
deen, zbzd 49, 653 (19306); Surface Sci. 2, 381 (1964).

SH. Y. I‘an, Phys. Rev 61, 365 (1942) 62, 388 (1942).

"H J. Juretschke, Phys. Rev. 92, 1140 (1953)
( 5 T. L. Loucks and P. H. Cutler, ] Phys. Chem. Solids 25, 105
1964).

6 M. Kaplit, in Proceedings of the Thirteenth Field-Emission
Symposium (Cornell University, Ithaca, New York, 1966), p. 5.

7 See, e.g., P. Hohenberg and W. Kohn, Phys. Rev. 136, B864
(1964); W. Kohn and L. J. Sham, ¢bid. 140 A1133 (1965).

8See e.g., D. V. Geppert, A. M. Cowley, and B. V. Dore, J.
Appl. Phys 37 2458 (1966); A. M. Cowley and S. M. Sze, ibid.
36, 3212 (1965)

SW. A. Harrison, Pseudopotentials in the Theory of Metals
(W. A. Benjamin, Inc New York, 1966).

10D, J. BenDaniel and C, B, Duke Phys. Rev. 152, 683 (1966).
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From our study of this simple electron-gas model
emerge two major conclusions which are not properly
incorporated in current versions!:® of phenomenological
models of contacts. First, the redistribution of charge
near a bimetallic junction relative to its distribution
at the vacuum interface of either component metal
implies that to within energies ~0.5 eV there is no
general relation between the maximum height V' of
the junction potential and the difference in the vacuum
work functions ¢ and ¢z of the composite metals.
In particular, the failure of the equation

Vi=¢r—dr; or>ér (1.1)

is not in general due to conventional'! surface states
but rather is primarily a consequence of the tunneling
of electrons from the high- into the low-density electron
gas. Such evanescent contributions to the charge
density are the electron-gas analog of Heine’s “virtual”
surface states!? at a metal-semiconductor interface.
In our model these contributions to the charge density
are included in the self-consistent determination of the
junction potential and one-electron eigenstates. How-
ever, in Heine’s analysis the band bending induced
by the ‘“virtual”-surface-state contribution to the
charge density modifies his starting potential and conse-
quently invalidates conclusions based on the use of the
starting potential.’® Our second major result is that
bona fide ‘““localized” states near the interface can occur
for suitable junction potentials. These states are con-
centrated on the high-density side of the interface and
are the direct analog of quantized states in narrow ac-
cumulation or inversion channels at semiconductor
interfaces.!*18 Their presence is signalled not by the
failure of Eq. (1.1), but rather by the failure of charge
neutrality and by a qualitative change in the character
of the charge distribution near the interface if their con-
tribution to the charge density is ignored. However, we
have not found a set of parameters for which these
localized states occur in the final “self-consistent” junc-
tion potential.

The physical origin of the above conclusions can be
demonstrated easily without appeal to a detailed ana-
lysis.? Measuring energies in Hartrees, we recall that
for a uniform electron gas'® of density #, and Bohr
radius ap, the Fermi energy Ep, the average kinetic

11 See, e.g., A. Many, Y. Goldstein, and N. B. Grover, Semi-
conductor Surfaces (North-Holland Publishing Company, Amster-
dam, 1965), Chap. 5.

2V, Heine, Phys. Rev. 138, A1689 (1965).

1 This fact is recognized in Ref. 12, but no effort is made to
extend the considerations presented "therein to systematically
incorporate the effects of the band bending.

1 P, Handler and S. Eisenhour, Surface Sc1 2, 64 (1964).
(1156£‘) F. Fang and W. E. Howard Phys. Rev. Letters 16, 797

9

16 A, B. Fowler, F. F. Fang, W. E. Howard, and P. J. Stiles,
Phys. Rev. Letters 16, 901 (1966)

17 D. ] BenDaniel and C. B. Duke (to be published).

18 C, B. Duke (to be published).

(1195§§e, e.g., P. Nozieres and D. Pines, Phys. Rev. 111, 442

958).
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energy T.y, the exchange and correlation energy per
electron e, and the effective single-particle exchange
and correlation potential” V' are given by

Er=184/r2 Toy=0.6 Ey,
o= —0.458/r,—0.44/(r,+7.8) ,
0.610 0.44 0.337,
Vec= - [1+ ] ’ (120)
7s (rs+7.8) (rs+7.8)

re=(3/4mag*n)'/3.

(1.2a)
(1.2b)

(1.2d)

In Egs. (1.2b) and (1.2c) we use Wigner’s interpolation
formula?® for the correlation energy. The major con-
tribution? to the metal-vacuum work function for a
semi-infinite free-electron gas is the bulk separation
energy of the electron gas

on which is superposed an additional dipole contribution
due to that (evanescent) electron contribution to the
charge density which extends beyond the termination
of the positive background. The dependence on the bulk
electron density # of the energy Er=nag*(Tav+ €eo), Of

TaBiE I. Energies associated with electrically neutral uniform
electron gases of density 102 cm™ and 102 cm™®, respectively.

n=102 cm™3 n=102 cm™3

Er 1.70 eV 0.36 eV
Er/N —2.18 eV —1.46eV

e —4.10 eV —215eV
Sn —2.40 eV —1.79 eV

the binding energy per particle Er/nag?, and of the
separation energy is shown in Fig. 1. These curves de-
scribe a charge-neutral system, so that the electron
density # is determined by the uniform positive back-
ground rather than the saturation condition on Ep.
Several observations about Fig. 1 are significant. First,
we see that for n<10%22, |.S,| is a monotonically increas-
ing function of density. The values in electron volts
of the various energies are given in Table I for uniform
electron gases of densities 1022 and 102! cm™3; respec-
tively. For both systems S,~—2 eV and the additional
dipole contribution to the vacuum work function is
estimated® to be < —0.5 €V and therefore smaller than
the bulk contributions by a factor of 4. However, the
difference in S, between the two systems is only
AS,=—0.6 eV which is the same size as the dipole
contributions to each separately. Hence we anticipate
that dipole effects play a far more important role in
determining bimetallic junction potentials than they
do in determining vacuum work functions. This obser-
vation motivates the main approximation employed in
this paper: The bulk exchange-correlation potential

2 E. P. Wigner, Phys. Rev. 46, 1002 (1934).
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Fic. 1. The separation energy S,, total binding energy Er, and

binding energy per particle of a uniform electron gas as a function
of electron density.

Ve is used on each side of the interface with a con-
commitant discontinuous change at x=0. We evaluate
the self-consistent dipole potential which results from
this simple treatment of V. and in a subsequent paper
investigate the effect on this dipole field of various more
refined treatments*®7 of the exchange and correlation
energies.

Using the model in which ¥V, is taken to be its bulk
value, we can demonstrate easily the qualitative features
of the final self-consistent junction potential. From Fig.
1 we see that for metallic densities (7#>1022 cm™3) the
sign of the change in Ve, from the higher- to the lower-
density metal depends sensitively on the actual densi-
ties involved. In Fig. 2 is illustrated the case which
provides the most severe test of the model: A junction
in which the lower-density metal exhibits a smaller
bulk binding energy. The lower value of |S,| in the
low-density metal, combined with the requirement that
the Fermi levels equalize, leads to a dipole layer at the
interface in the opposite sense to that at the metal-
vacuum interface for the high-density metal. Evidently

PR —-—- F-
I \\\ A4Sy
Sn N\ l

I AL

EFL

t
| 7 it

X

F16. 2. A schematic representation of the positive background
charge density and a conventional energy-level diagram for two
metals separated by a thin vacuum layer. The figure is drawn for
the case in which the lower-density metal exhibits an electron
separation energy which is smaller in magnitude than that of the
higher-density metal.
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Vee(x)

Vec™ ~Sn. +Smm
+Er - Em

Vg (x)
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Vix)= Vg (x) +Vg (x)
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Vg® Sn- S
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F16. 3. A schematic representation of the bulk exchange and
correlation potential Ve, dipole potential Vg, and total potential
in the neighborhood of a bimetallic interface at which the lower-
density metal also exhibits a smaller magnitude |S»| of the elec-
tron separation energy than the higher-density metal.

a dipole potential of height V4= |AS.|=|Sur—Sxz]
must be generated near the interface. The details of
the junction potential depend upon how this potential
drop is divided between the two metals. Therefore all
that can be said, ¢ priori, about the maximum height
of the junction potential V, is that it probably satisfies

Ve<Va=Snz—SurL (1.4)

with the equality holding for a (Schottky) barrier in
which the entire voltage drop occurs across the low-
density metal. Even in this case it is the difference in
the bulk separation energies, not the observed work
functions, which appears in Eq. (1.4) as opposed to Eq.
(1.1). A schematic representation of the junction
potential is shown in Fig. 3. Evidently a (Schottky)
depletion region is probable if V' 4> Err and occurs only
if Vmax— Vo> Erz. The dip in the potential on the left-
hand side near x=0 can, in some cases, contain one or
more bound states which are the ‘“localized” states
referred to above. The occurrence of such states requires
simultaneously a large V 4 and a sufficiently long range
on the left-hand side (i.e., low-continuum charge
density). The density parameters, #z=10%2 cm~3 and
nr=1021 cm—3 (for which the results of detailed nu-
merical calculations are given in subsequent sections)
represent a limiting case of the model in which localized
states might be expected to occur on the high-density
side of the junction at actual metallic densities. Even
in this limit, however, such states do not occur in the
self-consistent potential.

From the above discussion we see that the general
features, although not the details, of our results are
self-evident from simple physical considerations.? The
body of this paper is devoted to making these consider-
ations quantitative. In Sec.II we outline the self-consist-
ent-field boundary-value problem and investigate the
quantum-theory charge density resulting from two
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model potentials ¥ (x) for which the Schrédinger equa-
tion can be solved analytically. From the characteristic
features of these model charge densities we select, in
Sec. II1, a four-region parametrized model of the charge
density for use in the full self-consistent-field calcu-
lation. The remainder of Sec. III is devoted to the
specification of the details of the self-consistent calcu-
lation, together with a presentation and discussion of
the results of this calculation.

II. CALCULATION OF THE CHARGE DENSITY
A. Definition of the Boundary-Value Problem

The boundary-value problem which we consider is
that of obtaining the (one-electron) dipole potential
V a(x) defined to be the solution of Poisson’s equation

d*V4 A4me?

=—n(x), (2.1a)
dx? €
n(x) =ny(x)—n.(x) (2.1b)

for a system of interacting electrons in a positive back-
ground given by

np(%)=nr0(—x)+nz0(x), (2.2)
O)=—+1; x>0
= 0; x<0. (2.3)

The electrons are taken to interact through Coulomb
interactions with the resultant exchange and corre-
lation energy for a uniform system given in the Intro-
duction. The Hartree Coulomb energy of the inhomo-
geneous system is obtained from the one-electron
potential V 4(x) specified by Eq. (2.1). The total system
is required to be electrically neutral in the sense that

o0
/ [125(x) —n¢(x) Jdx=0. (2.4)

The electron density #.(x) is obtained by solving the
Schrodinger equation

h2 d?
[~——~+V(x>—z~:z]m<x>=o, (2.50)

2m dx?

V(x)=Vax)+Velx), (2.5b)
.

=20, ), (2.5¢)

E=(#2k2/2my)+E- (2.5d)

and filling all states (at zero temperature) below a
chemical potential, u=Ep.=%%pr?/2m, defined such
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that Eq. (2.4) is satisfied. We use

n(x) =nc(x)+n4(x)

2s+1
nc(x)=( il )f_ﬂ_ﬂ (2.6a)
2 h2
XT /  ¥n O | *(u—E)AE., (2.6)
Eo=1k% 2m,, (2.6¢)
(254+1)
tar@) = N S B Wm @), 2.6d)
2r A% b
400
VE.O @, O)dn=0(EaEy), (2.72)
/ V(@)= bz, 5. (2.7b)

The #. and #,, label contributions to the electron density
from the continuum and bound-state eigenvalue spectra,
respectively of Eq. (2.5a). The source of these two types
of spectra is the potential shown in Fig. 3. As discussed
in the Introduction, our use of the bulk values for the
exchange-correlation potential Ve (x) constitutes the
major approximation of the analysis reported herein.
The removal of this restriction allowing both local
density expansion’ and momentum-dependent?=% po-
tentials will be described in a subsequent work. The
bound-state spectrum, which creates two-dimensional
bands of “surface states’!7:18 arises from the dip in the
total potential on the left-hand side near x=0. For
E>V, the continuum spectrum is doubly degenerate
and the (z) labels in (2.6) indicate the (two) linearly
independent eigenfunctions needed to specify the
density. Continuum normalization is used throughout
to avoid ambiguities which arise upon taking the
infinite-system limit of box-normalized wave functions.

The self-consistent determination of the V4(x) occur-
ring in both (2.1) and (2.5b) is achieved by the following
sequence of operations: (1) Select a model V 4(x) and
solve Schrédinger’s equation (2.5a) to obtain the density
via Egs. (2.6). (2) Parametrize the total density by a
model density #x(x) which explicitly satisfies charge
neutrality, Eq. (2.4), and which gives a net step size
between the two media® of Vo=Ep,—Ergr; Er;
=#%p/2m. [See Fig. 3]. (3) Solve Eq. (2.1) for the
model charge density, n(x)=#nx(x) and (4) Use the
Va(x) resulting from step (3) back in step (1) and repeat
the loop until the parameters in 7 (x) change by less
then a prescribed amount upon successive iterations.
The remaining three parts of Sec. II are devoted to an
explanation of the details of step (1). A thorough dis-
cussion of steps (2)-(4) is given in Sec. III.
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B. General Calculation of the Charge Density

The eigenfunctions of a potential such as that shown
in Fig. 3 are calculated separately for the three regions
E>V,, 0<KE<V,, and E<O, respectively. The eigen-
values E=—E; in the E<O0 discrete spectrum are de-
termined by the normalizability criteria as x —d=,
and are discussed further in those special cases in which
they occur. The basic linearly independent solutions to
the Schrédinger equation are taken to be the one-
dimension analog of the Jost functions?!?? defined by
the boundary conditions

¢ri(x) —— exibre; E,>0 (2.8a)
—_ equz; Ez<0,
E.=%%:2/2m,;  E,>0 (2.8b)
E,=—#%%1*/2m,; E.<O0; (2.8¢)
$ry(x) —— ex*r=; E,>V (2.9a)
— e7wr®;,  E,<V,,
Eo—Vo=#2kz?/2my; Es> Vo (2.9b)
Vo—E.=h%gr*/2m,; E,<V,. (2.9¢)

The two linearly-independent wave functions for

E.>V, are taken to be

YO (%)= Qutivr) VY P ()t undr_(x)]; <0 (2.10a)
= (27!'%7)13)“”%4214)134.(90) 5 x>0 ,

YO @)= Quhvr) 2 urspr(x); <0 (2.10b)
= Q2nhvr) "V [ pr_(%)+u2dri(x)]; >0

v="hkr/my, (2.11a)

vr="Hkgr/m,. (2.11b)

In all subsequent formulas we use spherical bands:
my =my=m. Current conservation yields the unitarity
of the collision matrix u, given by

U Uiz
u= .

U2 Usge
In our problem, with no spin splitting of the spin-
degenerate eigenstates, u is also symmetric. The electron

density is readily obtained from Egs. (2.6b), (2.10),
and the unitarity of u, to be

(2.12)

n® () =ng® (x) O(x)+n, P O(—x), (2.13a)
1 pkrR
nr™ (x)= o / dkr [kmaz—kRﬂ
71"2 0
X{|pr—(x) |2+ Re[undri2(®)]}, (2.13b)

21 See, e.g., R. G. Newton, J. Math. Phys. 1, 319 (1960).
22 See, e.g., [. Adawi, Phys. Rev. 146, 379 (1966).
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2s+1 phrL
nL(+)(x)=—-——/ dkL [kFL2—/€L2]
4n? Jq

X{|pr—(x) |>+Re[unpr-2(x) ]}, (2.13¢)
kre?=2m(u—"Vo)/2=kr*—a?, (2.14a)
Brs=2mu/ %, (2.14b)

a?=2mV /%2, (2.14¢)

The twofold “orbital” degeneracy of the continuum
eigenstates for £,> V) is reflected in Egs. (2.13) by the
fact that we have used the equality of |¢.|% and |¢_]|?2
to extract a common factor of 2 in the two terms of
(2.13b) and (2.13c¢).

In the energy region 0< E<V,, the eigenvalue spec-
trum is continuous but nondegenerate. The normali-
zation condition (2.7a) gives for the wave function

Y(@) = (2/moh)"2 Re[e,_(x)]; x<0 (2.15a)
= 2mvph) 2V 016 r4 (%); x>0
vR="Hqr/m (2.15b)

in which 6 is a real phase shift of the reflected wave on
the left-hand side of the barrier. The phase shift is
determined from the equality of the logarithmic deriva-
tives at =0 to be

d=tan"'[N(E.)/D(E.)], (2.162)
N(E.)=Re[¢z+'(0)—L(E2)¢z+(0)], (2.16b)
D(E;)=Im[¢1+'(0)— L(E:)$2+(0)], (2.16¢)
L(Ez)=¢r+'(0)/¢r+(0). (2.16d)

The “negative-energy’” transition amplitude Vs, is given
by

Var=2Lkzgr ][N+ D], (0)) . (2.17)
Equations (2.9), (2.16), and (2.17) permit the general
proof of the relation (written for a step potential by
Adawi??):

Vai2(gr,kr)= luzl(iQR,kL) [ 2 (2.18)

for all potentials of the form shown in Fig. 3 when
0< E,<V, If we further define

= p210(E
un:eZzﬁ( )’

(2.19)

then we can write the continuum contribution to the
electron density as

#o(x)=[ne® (@) +neO(x) ]6(x)

F P (@) +n, () ]0(—x), (2.20a)
(2s+1) pe
nr(x)= o dq [krr?+q*]
X |uar(iq,kr) | *pri2(x), (2.20b)
<—>(x)=2s+1/adk Chrs?—Fr?]
nL 42 . L | RFL L
X{|pr—(x) |*+Re[unudr2(x)]}. (2.20c)
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For numerical computations, however, it is convenient
to use densities obtained from (2.15a) directly, i.e.,

(2s+1) pe
nr(x)= P / dgr [kre*+qr*]
Xkrgr[D*(gr)+N*gr) I
X[or(%)/or+(0) 2, (2.21a)
(2s+1) =
nL(_)(x)= o / dkL(/apLz—-kLz)

X[D*kr)+N*(kr) 1™
X[D(kL) Repr_(x)+N (kL) Imér_(x) ] (2.21b)

in lieu of Egs. (2.20). Finally, we find the expressions
for the collision matrix in terms of the Jost functions:

wn=[(kr/kr)"*¢r+(0)st21—$14+(0)1/¢1-(0),  (2.22a)

wne=[(kr/k1)*p1(0)t12—pr—(0)1/r+(0),  (2.22b)
2i(krkg)\?

U12= U21= (222C)

éry' (0)1_(0)—dri(0)pr_'(0)

The use of Egs. (2.21) and (2.22) reduces the problem
of calculating the continuum density #.(x) associated
with a given potential V(x) in (2.5b) to that of finding
the Jost functions (2.8) and (2.9).

Equations (2.13), (2.20), (2.21), and (2.22) completely
specify the local continuum density #.(x) as a functional
of a local potential V=V4+ V occurring in Eq. (2.5a)
and the chemical potential u at zero temperature. The
important consequences of these results are best illus-
trated by example in special cases. The remaining two
parts of this section are devoted to this task.

C. The Step Potential

Although the exchange-correlation energy potentials
play an important role in determining the interface
potential, we might inquire for pedagogical reasons into
the possibility of achieving a stable interface potential
neglecting them entirely by using an initial model
(step) potential

V(x)=Vo0(x),

V0= EFL'— EFR .

(2.23a)
(2.23b)

The electron distribution associated with this potential
has been studied by several authors??=?5 with emphasis
on the asymptotic behavior as x —w. The Jost func-
tions are given for all x by their asymptotic forms (2.8)

% B. Dreyfus, R. Maynard, and A. Quattropani, Phys. Rev
Letters 13, 342 (1964).

2 A. Bardasis, D. S. Falk, R. A. Ferrell, M. S. Fullenbaum, R. E.
Prange, and D. L. Mills, Phys. Rev. Letters 14, 298 (1965).

% K. Yosida and A. Okiji, Phys. Rev. Letters 14, 301 (1965).



160

and (2.9) so that Egs. (2.13) and (2.20) become

(2s41) phre
nR(x)an—}- / [kFRZ—kR2:|dkR
m 0
] 2s+1 pe
X Re[ 1, e2ikra]4 / dgr [krr*+gr*]
871'2 0
X |un(igr,ker)|? €297 (2.24a)
(2s41) plrz
nL(x)=nL+ / dkL [kFL2—-kL2]
™ 0
XRe[#1 e 24227 (2.24b)
nr=2s+1)kpg®/ 672, (2.252)
nr=2s+1)kpr?/6m2. (2.25b)

In (2.24) and (2.25) we have chosen the chemical po-
tential to be compatible with the bulk Fermi energies
of the two sides of the interface. This selection is a con-
sistent one due to (2.23b). As Eqs. (2.24) are valid for
any potential of the form shown in Fig. 3, at sufficiently
large |x|, we see that local charge neutrality at large
distances from the junction is ensured by the above
selection of chemical potential. For the step potential
we also find

seo=(kr—kr)/(kr+kL), (2.26a)
wiz=2(k 1)V (katkz), (2.26b)
un=(kr—kg)/(krtkzr); E>V,
k12— qr*—2ik
=—M; 0<E<V,y. (2.26c)

(kz*+qr?)

Using Egs. (2.26) in (2.24) we can calculate the total
integrated charge in the system. The result indicates
that the tunneling charge nz(x) is exactly compen-
sated by a loss of mobile charge in 7, (x). It is an
interesting fact that charge-neutrality is identically
satisfied, despite the fact that the states ¢y z® (kg=0, x)
and ¢V (k,=0, x) are zero for the step-well potential
whereas they are unity for the respective infinite media.
Other contributions to the charge density compensate
for the loss of these states. These results demonstrate
that the identification of Epgr and Erz with the bulk
Fermi energies yields both over-all charge neutrality
as well as charge neutrality in the bulk of the two
metals.?

In contrast to previous authors,?*=% our primary
interest is in the charge density close to the interface,
not asymptotically far from it. We illustrate in Fig. 4
sample numerical evaluations of the integrals (2.24)
using the collision matrix (2.26). The initial excess of
negative charge on the low-density side of the junction
is due to the tunneling (or “evanescent”) term in
(2.24a) whose integrand is proportional to exp (— 2¢gx).
This term dominates the charge distribution in the
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junction as calculated from a step model of the total electron
potential chosen to equalize the Fermi energies of the two metals.

region 0< oS kpr = (4krr/map)~1/2 near the interface.
The density in Fig. 4 is measured in units of az~® with
ap=(%%/me?) denoting the Bohr radius in the direction
normal to the junction. As a¢g can become quite large
for small effective masses or large dielectric functions,
the evanescent contribution in semimetals, degenerate
semiconductors, and associated with small pieces of a
Fermi surface in metals can extend over appreciable
distances (~100 A).

Far from the barrier all potentials give Friedel oscil-
lations.?¢ This result contrasts to the image-potential
limit of a vacuum-metal interface at the vacuum side, 4
and makes a fully self-consistent model of the Poisson
equation impossible in practice. From Fig. 4 we see
that relatively little charge is contained in any but the
first two regions of charge imbalance on either side of
the interface. For the step potential the dipole layers
in general yield a rising one-electron potential from the
high- into the low-density metal. Therefore this model,
incorporating direct Coulomb interactions alone, has
the potentiality of yielding a self-consistent model of
the interface. As such a model is not self-binding, we
cannot use it to describe the dipole modifications of the
work functions near a vacuum interface because, as
discussed in the Introduction, the bulk separation ener-
gies dominate the work function.? Therefore we do not
pursue this model potential any further.

D. The Step-Exponential Potential

An exactly solvable model potential of the general
form shown in Fig. 3, which is an exponential potential

26 J. Friedel, Advan. Phys. 3, 446 (1954); Nuovo Cimento
Suppl. 7, 287 (1958).
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like that obtained as the result of Fan’s semiclassical
analyses,? is given by (2.5b) with the selection

Vee(®)=(—Snz+Er.—Err+Snr)O(x), (2.27a)

— 7V geht®
V() =——0(—x)
1+

e~—hR.v
"‘le:l_< )]@(m), (2.27b)

1+7
Vd=SnR'—SnL, (2.27C)
r=hr/hL=B(ng/n)"°. (2.274)

When 8=1, the ratio  between the decay constants on
the two sides of the interface is the ratio of their Fermi-
Thomas wave numbers.

For the potential specified by Egs. (2.27) the Jost
functions are!®

¢r+()=F(—Qr% —hy; *pr, %), (2.28a)
or:(¥)=F(Qr% hr; Fpr, %), (2.28b)
0 2 p—ha\ n
F(Q%h; px)=exp(phx/2) 3. (Q ‘ )
n=0 h?
r'(—p+1
S P
nIT(n—p+1)
Qr2=2mVq/[#*(1+r)], (2.28d)
O12=2mrVo/[12(147)], (2.28¢)
pr=—12kr/hr; E.>0 (2.28f)
=2q1/hv; E.<0
pr=—12kr/hr; E.>V, (2.282)
=2qR/}ZR; EI< Vo.

The wave numbers & and ¢ are defined in Egs. (2.8) and
(2.9). From (2.27) we see that as 7 becomes large,
hg>>hy, and Q. >>Qr so that the potential well on the
left-hand side becomes both deeper and wider. It may
then ultimately admit bound states (in the direction
normal to the interface) which are associated with two-
dimensional bands of states due to the continuum
motion parallel to the interface.!’-*¥ The wave function
of these states is

Y (#) = Cror— (%) O(—x)+Crory (%) O(x) (2.292)
and their eigenvalue equation is
F(=Qr’—he; —p5, 0) _F'Qx’ hz; —pr, 0) . (2.29)
F(—Qc% —hr; —p1,0)  F(Qz% hr; —pr, 0)
The normalization criterion (2.7b) gives
Cr=v1&Cr, (2.30a)
Cr?=[Ii+vyrr¥:], (2.30b)
Yer=F(Qz* hr; —pr, 0)/
XF(—Qr2—hr; —p1,0), (2.30c)
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I= / dx |F(Qw?, i — pm )|, (2.30d)

0

0
]2=[ dx IF("—QLZ, —hr; —p1, .’)C)]2 (2306)

The continuum electron density is obtained by using
Egs. (2.28) in Egs. (2.22), (2.20), and (2.13).

From Egs. (2.27) we see that as the width of the po-
tential on the high-density side (1/k.) increases, the
fraction of the total voltage drop Vg across the left-hand
side increases for fixed %g. Therefore by taking a fixed
value of #r and increasing 4#; we make the left-hand
potential wider and deeper while making the right-hand
potential more shallow. Taking the Fermi-Thomas
values for %z, and kg, the left-hand potential well does
not bind a state with £<0 for #,=10? and nr=10*
cm™3. The one-electron charge density, and the model
density with which it is approximated in the self-con-
sistent calculation, are shown in Fig. 5. Two aspects of
the figure are significant. First, in the absence of the
localized states, most of the deviations from charge
neutrality occur in the two oscillations of #.(x) about
n, immediately adjacent to the boundary at x=0. Thus
a “four-region” model of the charge density as shown
on the figure suffices to parametrize the calculated
density in the self-consistency calculation to be de-
scribed in the next section. The second important
feature of the figure is the concentration of the charge
in the positive-charge oscillation labeled I in the figure.
Most of the voltage drop Vg4 occurs across this region
which corresponds to the classical depletion region of a
Schottky-barrier model of the junction. However, the
semiclassical Schottky description of regions I and 11
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F16. 5. The actual electron density and model electron density
in the neighborhood of a bimetallic junction as calculated from
the starting potential used in the iteration procedure. The total
electron potential was taken equal to the sum of the bulk exchange-
correlation potential in each metal and an exponential dipole po-
tential [Eq. (2.27)].
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Fr1c. 6. The electron density in the neighborhood of a bimetallic
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near the interface is completely inadequate because of
the evanescent contribution to the charge on the low-
density side. This contribution to #.(x), due to the
tunneling of electrons into the low-density side of the
junction, causes the negative-charge excess in region 11
as well as the fact that the positive-charge excess never
exceeds one-third of its maximum possible (i.e., classical)
value. In the self-consistent potential described in the
next section the positive-charge excess reaches four-
fifths of its classical value.

The influence of a bound state with £,<0 is shown in
Fig. 6. The parameters associated with the potential
leading to the illustrated charge density are chosen to
give a single bound state at p;,=14(0.377) which is almost
the maximum binding possible before a second bound-
state appears. For less tightly bound states the as-
sociated charge density is less well localized near the
interface. This bound state for motion normal to the
interface gives rise to a two-dimensional band of states
due to the continuum motion parallel to the interface.
Such bound states may have been observed in tunnel-
ing!” experiments in semimetals and in transport!4-16
and optical absorption'® experiments in degenerate
surface layers on semiconductors. These states, while
not directly analogous to the Tamm or Shockley states,
because they are not associated with the breaking of the
translational symmetry of a crystal lattice, are calcu-
lated by matching wave functions in a manner which is
equivalent to the use of the effective-mass approxi-
mation’® in Heine’s'? method of finding “virtual” sur-
face states. However, we emphasize that if such states
occur for a particular set of parameters in our model,
they must be dynamically stable in that their charge is
explicitly incorporated in calculating the potential in
which they are bound. This requirement stands in
contrast to the conventional calculations? in which
filling the surface states with electrons leads to a
modified potential in which the states may no longer
exist.
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Summarizing the results of our two model calcula-
tions of the electron density, we have shown that in
the absence of surface states a four-region model of the
charge fluctuations near the interface adequately ap-
proximates the calculated density. Surface two-dimen-
sional energy bands can occur, and are associated with
rather extended charge distributions even for “metallic”
bulk electron densities. A Schottky-barrier model of
the junction is inadequate because it neglects the evanes-
cent contribution to the charge density caused by
electrons tunneling into the low-density electron gas.
The full self-consistent determination of the junction
potential is discussed in the next section.

III. SELF-CONSISTENT CALCULATION OF
THE JUNCTION POTENTIAL

A. The Model Charge Density

As indicated in Sec. ITA, the major task in a self-
consistent treatment of the interface is the establishment
of a model of the charge density which guarantees
charge neutrality and the proper dipole potential V, at
each step of the self-consistent iteration process. These
requirements dictate use of a model expression to ap-
proximate the numerical charge density because the
accuracy required to obtain reliable asymptotic values
for the Friedel oscillations necessitates excessive com-
puting time on the electronic computer (GE 235) which
we used. Poisson’s equation (2.1) need not be analy-
tically solvable for the model charge density, but for
convenience in determining the proper V 5 we use models
for which V4(x) can be obtained in closed form in terms
of the parameters of the model density function.

For the charge density either with or without surface-
state bands we use a four-region model charge density
given by

() =1(2) —1mo(x)

=-—MnLe, — X< — X1
=nL1(1+x/xL1)§ =41 <2<0
=—npi(l—x/xp1); 0<x<xp1 3.1)
=MNR2; rr<a<%pe

=0; otherwise.

This model contains eight parameters {nr:, *5i, %,
%rs; 1=1, 2} of which only six are independent due to
the requirements that the total dipole potential is Vg4
and that both V4(x) and V,/(x) be continuous. The
solution to Poisson’s equation (2.1) using the model
charge density (3.1) is

Va(x)= =V ®(1+4x/x12)?%; —xre<x<—xp1

2x
=— VLd(2)[1+——]
(xr1t+xr2)

17 x2\? x\? X 1
oA
3\xr1 XLy xr/ 3

el xL1_<_ xSO (3.2&)
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2x
=—Vat VRd(2)[1_"——]
(xr1t2R2)

17 x2\?3 x \2 X 1
e (-
3\xr1 XR1 xr1/ 3
0<a<«xp

x 2
=—Vat+ VR‘”[——— 1:' i 2K a<xps;
XRr1

VL(1)= 27rnL1 ezxm?/eL 5

Vi®=2mnrs e¥rro?/er, (3.20)
Via®=2mnrs eX(x12*—x11%)/€x;

VeW=2nng 2xpi?/er,

Ve®=2mngs e%cr2?/€r, (3.2c)

VRd(2) = 27rnm ez(xmz—ngﬁ)/eg .

The continuity of V4 and V4 at x=0 gives the two
constraints

Vi=—=5(VeO4VO)+VeaP+V15a®), (3.32)
2V ga® (xR1+xR2)_1'* 2V 1a® (xL1+xL2)_l
= VR(Dfo‘l'— VL(I)D(}L1~1. (33b)

We further constrain the parameters by the require-
ments that (a) 72 and xz, are chosen to be at the half
drop-off values of the charge deviations from the maxi-
mum deviations of regions IV and I (Fig. 5). (b) The
four model charge densities # z1, % g, %1, and %2 are ob-
tained from the calculated charge density n(x) by the
procedure of: (1) Select 11 and xz:1 to be the smallest
values of |x| on either side of the junction at which
n(x)=0, (2) using these values, and those of x;, and
%ge given by constraint (a), calculate the values of #,
so that in each of the four regions of the model charge
density, the integrated charge density equals the inte-
grated charge density of the corresponding region in
n(x), and (3) after the model #; are chosen, treat xp;
and xz; as variable parameters which are determined
from the two conditions (3.3) for charge neutrality and
the proper dipole voltage drop across the interface.

The above fitting procedure is carried out in each
step of the self-consistent iteration procedure.

B. Application of the Self-Consistency Criteria

In Sec. ITA we found that a self-consistent-field
calculation required the solution of two differential
equations [Poisson’s Eq. (2.1) and Schrédinger’s Eq.
(2.5)] and the performance of one quadrature to obtain
the electron density from the solutions to the Schrédin-
ger equation. The numerical performance of the quadra-
ture seems unavoidable although by use of an appro-
priate model charge density in the model approximation
to the numerical result one can analytically solve both
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of the differential equations [e.g., an array of step
functions for #(x) and Weber-function wavefunctions!¢].
Unfortunately, the charge densities of Figs. 5 and 6
cannot be accurately parametrized by model charge
densities for which the solution V.(x) to Poisson’s
equation (2.1) leads to an analytically solvable Schro-
dinger equation (2.5). However, the discussion in
Sec. ITT A indicates that although the charge densities
must be parametrized by charge-neutral model densi-
ties, models for which Poisson’s equation is solvable
are adequate for our purposes. Therefore the numerical
analysis is reduced to the solution of Schrédinger’s
equation (2.5) and the superposition of these solutions
to compute the electron densities via Eq. (2.6) and its
subsequent extensions (2.13), (2.21), and (2.22).

The computer program used to perform the numerical
work is described in Appendix A. Numerical calculations
were performed first for a system in which the high-
density metal was characterized by #;=10% cm~3 and
the low-density metal by #ng=10% cm~3. The starting
potential V4(x) is taken to be the step exponential
(discussed in Section IT D) with decay lengths #p and %,
given by their Thomas-Fermi values. Figure 5 shows the
calculated charge density and the model charge density
determined as described in the preceding section. The
potential due to the model charge density was used in
the first iteration. The resulting charge density together
with the fitted-model charge density is shown in Fig. 7.
The charge densities found in the third and fourth steps
of the iteration together with their associated model
charge densities, are shown in Figs. 8 and 9, respectively.
Since the difference in the calculated charge densities
shown in these two figures is reasonably small, i.e.,
as compared to the difference in the densities of Figs.
7 and 9, the iteration was terminated. One consequence
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F16. 7. The actual electron density and model electron density
in the neighborhood of a bimetallic junction as calculated in the
first iteration (Sec. III B).
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of our simplified four-region model is that the final
model charge density is not a particularly good repre-
sentation of the calculated charge distribution. How-
ever, the general character of the potentials associated
with the two distributions is similar. Figure 10 shows the
potentials used to calculate the densities found in first,
second, fourth, and fifth steps of the iteration. The
figures indicate that the size of the depletion region in
the low-density metal increases significantly as self-
consistency is approached, so that the self-consistent
potential gives a depletion region more like a Schottky
barrier than the starting potential.

The most important aspect of the above results is
that the self-consistent procedure does “converge” to
give a final potential shown in Fig. 10 of the form illus-
trated in Fig. 3. A self-consistent procedure is essential
to determine the details of the junction potential because
only such a procedure determines the ‘“decomposition”
of the voltage drop V4 between the two sides of the inter-
face. An interesting feature of the final potential is
the attainment of its maximum value to the right of the
junction. Because of this fact, the final barrier height
satisfies Eq. (1.4) in which the equality is almost
relevant: V=2V, The shift in the maximum of V4(x)
for the four-region model to %,>0 is the cause of
the comment above Eq. (1.4) that this relation was
‘“‘probably” satisfied. It is possible, although we have
not found such a case, that V>V, for a dipole potential
Va(x) of the final forms shown in Fig. 10.

We recall from the Introduction that the case
nr=10% cm~3 and #,=10?* cm—? is typical of electron
densities below 10?2 cm™3 in that the lower-density
electron gas exhibits a smaller magnitude |S#u| of the
separation energy. The range of values of »n for the
Group-I metals, which are most nearly free-electron
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third iteration (Sec. III B).
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in the neighborhood of a bimetallic junction as calculated in the
fourth (last) iteration (Sec. III B).

metals, is from #=0.85X1022 cm—3 (Cs) to 8.5X1022
cm™® (Cu). Therefore to the extent that the free-elec-
tron gas model correctly gives the bulk metallic sepa-
ration energies, most bimetallic junctions are composed
of metals for which the higher-electron-density metal
exhibits a smaller magnitude |Su| of the separation
energy. For such junctions the sign of the dipole po-
tential step across the interface is reversed from that
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shown in Figs. 2 and 3. A two-region model of the charge
density presumably can describe adequately the dipole
effects at these junctions. In the four-region model,
regions IT and III, rather than I and IV as in Figs.
7-9, dominate the dipole potential. We have performed
a set of calculations parallel to those illustrated in Figs.
7-10 for 7,=5X102 cm—2 and #g=10% cm3, Self con-
sistency in our rough sense can be achieved also in this
case using the four-region-model charge density. The
case of nz,=10% cm™® and nr=10% cm~® provides a
more stringent test of the model, however, and hence
has been discussed in more detail. Although the dipole
contribution to the junction potential exhibits a net
sign difference in the two cases, the total junction po-
tentials are qualitatively similar.

C. Discussion

Our primary objectives in this study were the con-
struction of a “first-principles” model of a bimetallic
interface and its subsequent application to explore the
role of the electrostatic charge density in determining
the one-electron (“‘junction”) potential at the interface.
Although often mentioned in passing, the contribution
to the junction potential of the modification of the bulk
electrostatic charge densities of the two components at
their common interface has not been investigated in
detail prior to this analysis. For what appear to be
historical reasons,1!:12 the phenomenological approach
to junction potentials,!:3:1! especially at metal-semi-
conductor contacts, has emphasized constructs employ-
ing entirely ad hoc distributions of localized surface
charge introduced for the sole purpose of making the
experimental data compatible with Eq. (1.1), and the
observed insensitivity of the barrier height Vi to a
(constant) bias applied across the junction. The in-
applicability of such constructs for the description of
intimate metal-semiconductor contracts was recognized
by Heine!'? who applied the nearly-free-electron model
to describe both the metal and semiconductor and em-
phasized the role of the evanescent electron density as
the proper quantum-theory replacement for the phe-
nomenological construct of surface charge. We have
added two new considerations to those of Heine.?
First, we have shown that the difference in the bulk
cohesive energies of the two components of the junction
dictates the qualitative features of the junction po-
tential and thereby the general character of the charge
distribution near the interface. Second, by adopting a
model in which the bulk cohesive energy is calculable,
we have been able to explore in detail the role of the
electrostatic charge redistribution near the interface
in determining a self-consistent junction potential from
which the charge distribution is itself determined.

The most significant results of our analysis are: (a)
The determination that the charge distribution near
the junction has the “four-region” character shown in
Figs. 5-9, and (b) the verification that using such a
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“four-region” model of the charge density a rough self-
consistency between the charge-density and its con-
commitant junction potential can be achieved in the
sense of Sec. ITI B. Surface states, either conventionall
or of the “localized-state” variety discussed in Sec. II,
are conspicuous by their absence in the final self-con-
sistent charge density for our example of #=10% and
ng=101 cm™3. As these values of #; and np were
chosen to give a large dipole potential difference Vg4
in the opposite sense to that caused by a simple two-
region charge density, the absence of surface states
for this special example strongly suggests that their
absence is the rule and their presence is the exception.
If, following Heine,> we were to take a free-electron
model of the semiconductor at a metal-semiconductor
contact, the density difference between the electron
fluid in the metal and semiconductor would almost
always be less than the factors of 10 and 5, respectively,
used in the calculations described in the previous section.
In this respect our analysis strengthens Heine’s con-
clusion that conventional surface states do not occur in
the absence of band bending to the much stronger
result that in our model localized states are dynamically
unstable for the (limiting) cases of large Az and V.
Therefore, the introduction of localized states in a
phenomenological description of the junction potential
would be both unnecessary and incorrect. The burden
of determining the junction potential is absorbed en-
tirely by the local modifications of the electronic density.
In particular, the considerable band bending evident in
Fig. 10 does not require the introduction of localized
“surface” states.

In conclusion, we reiterate the limitations of the
analysis and give our assessment of the significance of
these limitations. Independent of questions concerning
the validity of the model, in this paper we have not
fully explored its consequences because of our neglect
of the spatial and momentum (energy) dependence of
the exchange and correlation potential. Self-consistent
calculations of the junction potential using the local-
density (Fermi-Thomas) approximation’ for the ex-
change-correlation potential have been carried out.
They lead to qualitatively the same results but with
larger depletion regions and will be reported on else-
where.?” As the local-density approximation overesti-
mates the effects of the exchange-correlation energy,*
we believe that the qualitative features of the results
given in this paper accurately characterize the predic-
tions of our jellium model of the junction.

The major limitation of the model itself is its failure
to incorporate the background of positive charge as an
appropriate array of positive-ion cores rather than a
uniform charge density. Furthermore, the inclusion of
the ion-core effects must be done in such a way as to
yield reasonable results for the bulk cohesive energy of
the composite materials of the junction. This require-

27 A. J. Bennett and C. B. Duke (to be published).
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ment already eliminates the systematic use of a simple
nearly-free-electron model as a “first-principles” model
of a metal-semiconductor contact due to the difficulty
in calculating the cohesive energy of the semiconductor.®
Thus in applying an extended version of the model to
semiconductors, a phenomenological energy shift prob-
ably must be introduced in order to give the bulk
cohesive energy. As we do not yet have experience
in dealing with such an extended model, we can only
conjecture that as a high-energy electron in a semi-
conductor can be described by a nearly-free-electron
model, the photoemission or thermionic-emission barrier
heights at metal-semiconductor contacts may be ade-
quately predicted by the jellium model with appropriate
adjustments to give the observed bulk cohesive energy
of the semiconductor. The description of the properties
of low-energy electrons (e.g., Ohmic-contact tunneling
experiments) obviously requires at least a two-band
treatment of the periodic potential in the semiconductor.

A second limitation of the model is its suitability only
for the description of the equilibrium junction potential
at the interface. The validity of the (nearly-) free-elec-
tron model to describe the interface rests fundamentally
on the invariance of the partition function of the total
system on the selection of eigenfunction representation
used to evaluate it.!2 If, for example, a bias is imposed
across the junction, then current begins to flow and a
detailed consideration of the scattering mechanisms
limiting this flow becomes necessary in order to es-
tablish the junction potential. At a bimetallic interface
between nearly-equal-density metals, no space-charge
depletion region occurs in the low-density metal and
bulk transport effects materially alter the character of
the junction potential. If a depletion region occurs on
the low-density (right-hand) side, then, for example,
when a bias eV<<V,—Epg, is applied to the junction,
the current flow is limited by tunneling through the
space-charge barrier so that the alterations in the charge
density, and hence junction potential, are small (but
not necessarily negligible).10

Summarizing, we have constructed a “first-principles”
jellium model of a bimetallic interface and demonstrated
the model’s prediction that the self-consistent junction
potential is usually due to redistribution of the (con-
tinuum) electron density and not to localized surface
charge. The model is applicable for the calculation only
of the equilibrium junction potential. Quantitative ex-
pressions for nonequilibrium corrections to the junction
potential are not derived.

ACKNOWLEDGMENTS

One of us (CBD) would like to thank Dr. P. L. Read
for a series of stimulating discussions on interface

INTERFACES 553
potentials during which the problem solved in this paper
originally was formulated.

APPENDIX A: NUMERICAL EVALUATION
OF THE ELECTRON DENSITY

The numerical evaluation of the electronic density
consists of solving the Schridinger equation and then
integrating [Eqgs. (2.6)] over the densities associated
with the various filled electronic states. The particular
solutions which are required in Egs. (2.6) are those
whose asymptotic behavior is given by Egs. (2.10) and
(2.15). The limits of integration of the Schrodinger
equation, x= L, and x= — L,, are chosen such that the
potential at those points is flat (in the case of the model
parabolic potential) or negligibly varying (in the case
of the model exponential potential). The different
energy regions are treated as follows:

Case (a): 0<KE<V,. The integration of the wave
equation (2.5) is begun at x= L, where it is assumed
that

Y(Lo) =rys(Ls), (A1)

and continued to x=—L;, where the wave function
obtained is given by

Y(—Ly)=A Re[e?¢pr (—Ly)].

A and 6 are determined from the derivative and value of
the calculated function which is then multiplied by
(2/mv#)124 to give the correct asymptotic forms
(2.15).

Case (b): Vo<E<Ep. The function ¢y (x) is de-
termined by assuming a starting value at x= L, of

YO (Lo)=r(L2)
and integrating to x= — L;, where ¢ W (— L) is given by
YO (= L)=A[¢rs(— L) +undr(—L1)]. (A4)

The quantities #1; and 4 are determined from the
derivative and value of the calculated function which
is then renormalized to give the correct asymptotic
forms (2.10).

The function ¢ ®(x) is obtained in a similar way; the
integration being begun at = —L; and continuing to
Xx= Lz.

The accuracy of the numerical integration of the
Schrodinger equation was checked by comparing the
calculated wave function with those obtained analyti-
cally for the two solvable potentials of Secs. IT C. and
IT D. The convergence of the integral (2.6) was at all
times better than 19,. In addition, the asymptotic
values of the electronic density associated with the
step potential agreed with those obtained analytically.

(A2)

(A3)



