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The band structure of bismuth has been studied using the Shubnikov—de Haas effect. Oscillatory magneto-
resistance has been observed in crystals containing up to 0.06 at. 9, tellurium. The Fermi energy in the most
heavily doped crystals was about 95 meV above the bottom of the conduction band at the L point of the
Brillouin zone. Extremal values of the cross-sectional areas of the surface and the electron effective masses
were combined with measurements of the electron concentration to demonstrate the validity of the two-
band models of Lax and Cohen below about 65 meV. Above this energy there are significant deviations from
these models as regards both the cross sections and the effective masses. Thus in heavily doped bismuth,
where the Fermi energy is relatively large, the two-band models must be modified. The experimental data
reported here may be explained most simply in terms of a two-band model in whichthe mass at the band edge
increases with F'ermi energy. A distortion of the Fermi surface above about 70 meV is also reported. The
amount of distortion apparently increases more rapidly than predicted by the nonellipsoidal nonparabolic

model.

INTRODUCTION

HERE has been much experimental and theoreti-
cal effort directed toward a complete determina-
tion of the bismuth band structure. At the present
time, the following details are well established. The
conduction band edges are located at L, the centers of
the pseudohexagonal faces of the Brillouin zone, and
are characterized by a Fermi surface which is highly
elongated. The surface may'? or may not®* be ellip-
soidal. The band is highly nonparabolic at the Fermi
energy of pure bismuth.>® de Haas—van Alphen meas-
urements’ provide support for Cohen’s nonellipsoidal
nonparabolic (NENP) model® at energies slightly above
the Fermi energy in the pure semimetal, while
Shubnikov-de Haas data suggest a uniform decrease in
the dimensions of the Fermi surface below this energy.?
Such experiments indicate that the technique of varying
the Fermi level by impurity doping® 1 can lead to new
and important results. This has been recently confirmed
by the observation of additional electron bands in
tellurium doped bismuth.™! This approach has also been
adopted to investigate both conduction and valence
bands in tin-doped bismuth.??

The present paper reports the results of a study of the
bismuth conduction band using the Shubnikov—de Haas
technique. Tellurium was used as the dopant to in-
crease the electron concentration to 2.0 X 10¥ cm—2 before
the oscillatory component of the conductivity vanished
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below 30 kG. The effects of doping were measured by the
high-field (w7>>1) Hall coefficient which for a closed
surface is proportional to (z— p)~, where # and p are
the electron and hole concentrations, respectively. The
angular dependence of the oscillatory period was also
investigated, generally with the magnetic field H in the
binary plane. With this geometry, the shape of the
constant energy surfaces may be studied most directly.
At the higher doping levels, the interpretation of the
experimental data was simplified because the oscilla-
tions due to the principal ellipsoid were predominant.
The analysis of the low-field data was more straight-
forward than that taken at higher fields since a single
period could usually be isolated.

We may summarize the results of this study as
follows. Cohen’s NENP model® is found to provide a
good description of the energy dependence of the con-
duction-band structure below about 65 MeV. At higher
Fermi energies our results indicate that, if the band
structure is assumed to be unaffected by doping, the
two-band models®®® no longer provide an adequate
description of the conduction band. A pronounced
energy-dependent distortion of the quasiellipsoids may
also occur at these high Fermi energies.

EXPERIMENTAL

The single crystals from which the samples were cut
were grown from tellurium doped melts by the
Czochralski method. The maximum tellurium concen-
tration employed was 0.06 at. 9. There was no evidence
of any gross crystal distortion due to the impurity
content. It has been shown!? that the lattice parameters
of bismuth are unchanged by additions of 0.1 at. 9
tellurium. Representative slices of each ingot were
cleaved to determine the approximate direction of the
trigonal axis and the ingots were then oriented by back
reflection Laue photographs to an accuracy of =4=1°.
The dimensions of our samples were 10X2X1.5 mm,
which was sufficiently small compared to the size of the
ingot to assume that each was relatively homogeneous,
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TasBLE I. Characteristics of doped bismuth alloys.
Mobility (105 cm?/V sec) E; (meV)
=1
A—) =f
H
Sample us 3 (u1tu2) (10° G) m*[mo N (108 cm™3) From f  From m*/my  From f/m*
57 141 3.34 0.192 0.0110 0.70 33.3 32.2 33.7
48 1-1 2.88 0.256 0.0129 1.01 39.5 39.5 39
47 0-5 1.19 2.75
47 3-2 0.95 0.61 0.020 3.27 64.5 64.5 63
47 4-2 0.76 0.022 4.35 72.5 72 71.5
47 4-1 0.75 0.77 0.0225 5.00 78 85.5 74
05 1-1 0.91 0.0258 6.01
47 1-3 0.49 1.11 0.030 8.60 89.5 100 71.5
47 1-1 0.36 1.23 8.60 94
05 1-2 1.15 0.030 8.70 91 100 82
49 3-1 0.42 1.31 9.05 97.5
49 2-1 0.37 1.45 0.035 11.5 103 118 88
49 1-1 1.75 0.0405 14.2 113 138 92
53 1-0 0.14 32.0
53 2-0 0.085 41.5
53 3-0 0.083 46.0

This was confirmed by the observation of strong oscil-
latory conductivity from all samples.

A sensitive derivative recording technique® was used
to detect the small signals encountered in this study.
No dependence on the dc measuring current flowing in
the sample was observed for currents up to 500 mA.
Magnetic fields of up to 30 kG were provided by a super-
conducting solenoid. The samples were rotated in this
magnetic field by a gear arrangement in the helium

cryostat. Measurements were carried out mainly at
1.25°K.

RESULTS

The characteristics of the samples studied are listed
in Table I. As the tellurium content is increased, the
electron concentration increases while the mobility
drops due to the increase in both the effective mass and
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F16. 1. Typical magnetic field dependence of the Hall coefficient
for two directions of H and two different electron concentrations.
The high-field plateau was obtainable for all samples listed in
Table I.
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the amount of impurity scattering. It has been shown
that, provided the hole concentration is zero,”** one
tellurium atom produces one conduction electron.!s
The values of the mobility'® along the trigonal axis and
in the trigonal plane, denoted by us and % (uitus), re-
spectively, were measured by the quantity R.o, where
o is the appropriate conductivity. Figure 1 shows the
magnetic field dependence of R for two representative
samples and two directions of magnetic field. For all
our samples, the high-field plateau for the Hall coeffi-
cient could be obtained below 30 kG. It has been shown!!
that above about 55 meV, other electron bands are
populated to the extent of about 3%, of the total elec-
tron concentration. The mobility of such electrons is not
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F16. 2. Electron mobility as a function of the number of elec-
trons N in the conduction band centered at L. Experimental
values of 3 are denoted by O and values of 1/2 (u;+u2) by ®. The
solid line is based on the NENP model and the dashed line indi-
cates the decrease in mobility which would result from the

anomolous mass increase reported in the text.
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known exactly, although it must be relatively high,
since oscillatory effects due to these electrons have been
observed. We have assumed here that their mobility is
equal to that of the electrons in the conduction band.
In this case, R0 measures the carrier mobility exactly.
However, the electron concentration in the main conduc-
tion band must be reduced from the measured value of
R by 3%,. This concentration will be denoted by M.
The decrease in u; with increasing N (Fig. 2) shows that
both mobilities could be equally well described by a
relation of the form u;o< N=99, No oscillations were ob-
served for NV >2X 10 cm™ but the mobilities are shown
for these samples to indicate the trend. For all but the
most lightly doped sample, the hole concentration was
negligible. In this case, the electron concentration was
estimated from the NENP expression given in the
Appendix. This method will be justified in the following
section, where we show that this model is valid at low
energies. A relation of the form po«#™7 has been re-
ported, but we consider that this determination may
be based on insufficient experimental data to provide a
reliable value of the exponent. The significance of the
numerical value of this exponent will be discussed in
the following section.

The most important change brought about by tel-
lurium doping is the increase in the dimensions of the
Fermi surface. Earlier results’” suggest that this in-
crease occurs uniformly for additions up to 0.006 at. %
tellurium. Direct observation of each dimension of the
surface is very difficult or impossible in doped crystals
because of the heavy electron masses encountered as H
approaches the trigonal axis. The reciprocal of the
Shubnikov—de Haas period, f=(A1/H)™, is a direct
measure of the extremal cross section S of the Fermi
surface cut by a plane normal to the direction of H. In
the present investigation between five and ten conduc-
tivity minima were usually available to determine an
average value for each oscillatory period.

SAMPLE 492-1
T=1.3°K

HII BISECTRIX

FIRST HARMONIC

| 1 | ] 1 ] |
8 10 12 14 16 18 20

MAGNETIC FIELD (kG)

Fi1G. 3. Photograph of an x-y recording of the first derivative of
sample resistance with respect to H. Here H is || to a bisectrix
axis. Electron concentration 1.15X 10 cm™3. An increase in sensi-
tivity of about 10X is available to accentuate low-field oscillations.
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Fic. 4. Increase of the “waist” cross section of the Fermi
surface measured by the Shubnikov-de Haas frequency f with
increasing electron concentration. H||bisectrix axis. Theoretical
curves for the ENP and the NENP (me=m," and mas=1.2m,’) are
indicated.

For H parallel to the bisectrix axis, the minimum
value of both the extremal cross section and effective
mass of a “principal” ellipsoid is obtained. In this
orientation the remaining two ellipsoids are equiva-
lent. A photograph of a typical x-y recording for H in
this orientation is given in Fig. 3. These oscillations are
not visible above the monotonic background if the mag-
netoresistance is measured directly. At low fields, the
oscillations (Fig. 3) are due only to the principal surface
allowing a unique determination of the period. At
higher fields the secondary ellipsoids contribute a
period very close to twice that due to the light mass
electrons. With H parallel to the bisectrix axis, the fre-
quencies due to the principal surface are given in
Table I and shown as a function of NV in Fig. 4. Values of
electron effective mass m* with H parallel to the bisec-
trix axis were measured by observing the variation of
the oscillatory amplitude at constant H as a function
of temperature below 4.2°K. The temperature enters
the theoretical expression for the amplitude!’
through a term which is of the form u/sinhu, where
w=2mw%T/hw.. The cyclotron frequency w,=eH/m*c.
Values of m* for the principal surface are listed in
Table I and are shown in Fig. 5. No effects which could
be attributed to heavy electron oscillations were ob-
served during the determination of »* from the low-
field data. The solid curves in Figs. 4 and 5 have been
calculated from the ENP and NENP expressions given
in the Appendix [Eqgs. (A3)-(A7)]. It has been as-
sumed that E,=15 meV'® and that the Fermi energy
in pure bismuth is 25 meV.!® The cyclotron masses in
pure bismuth are those measured by Kao.”® Also shown
in Figs. 4 and 5 are the theoretical curves predicted by
the NENP model with m.=1.20m,’. The significance

7 E. N. Adams and T. D. Holstein, J. Phys. Chem. Solids 10,
254 (1959).

18 R. N. Brown, J. G. Mavroides, and B. Lax, Phys. Rev. 129,
2055 (1963).

¥Y. H. Kao, Phys. Rev. 129, 1122 (1963).
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Fic. 5. Increase of electron effective mass m* /mo with increasing
electron concentration. The theoretical curves for the NENP
model with ms=m," and with m,=1.2 ms" are nearly coincident
in this figure.

of m,’ is explained in the Appendix and is discussed in
the next section. It is sufficient to observe here that
below some critical electron concentration, which is
about 3X10'8 cm™3, our results are in good agreement
with the two band models. Cohen’s NENP formula-
tion, however, provides a slightly superior description
of the data. We cannot determine which value of .’
provides the better fit to our results because of the
small difference in the theoretical volume enclosed by
the surfaces in each case. Above the critical concentra-
tion mentioned above, significant deviations from the
predicted behavior are observed. Brandt and
Lyubutina® have briefly reported de Haas—van Alphen
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Fic. 6. Angular variation of f due to principle ellipsoid (A) and
two equivalent secondary ellipsoids (B) as H is rotated in a
binary plane. Electron concentration 5.0X 1018 cm™. The solid
lines represent the theoretical variation predicted by the NENP
model with ma=m,’ or ma=1.2 m,'. Also shown are the principal
axes in relation to the crystallographic axes and a sketch of the
proposed distortion of the surface near the 2-3 plane, which is dis-
cussed in the text.

2 N. B. Brandt and L. G. Lyubutina, in Proceedings of the
Tenth International Conference on Low Temperature Physics (to
be published).
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measurements of #* in bismuth doped with up to 0.04
at. 9 tellurium. Their results are presented only as a
function of tellurium concentration and so cannot be
directly compared with the present data.

Although it is not possible to determine each dimen-
sion of the surface, a careful study of the angular varia-
tion of the extremal cross sections has revealed a non-
uniform expansion of the quasiellipsoids. For most of
our samples, oscillations were observed with the direc-
tion of H up to about 65° from the 2-3 plane toward
the 2 axis. The principal axis system for each ellipsoid
is shown in Fig. 6 in relation to the crystallographic
axes which are slightly tilted with respect to them.
Figure 6 shows the angular variation of f for both the
principal and the remaining two equivalent surfaces
with H in a binary plane. Linearity on such a polar plot
implies that the cross sections are typical of a cylindri-
cal surface extended along the 2 axis. For pure bismuth
this is true up to about 75° either side of the 1-3 plane
of the surface. For NV less than about 3.0X10'® cm™ we
obtain a similar angular variation to that observed in
pure bismuth. At higher concentrations as illustrated
by Fig. 5, there is an apparent distortion of the surface
at angles greater than about 50° from the 1-3 plane.
An example of the experimental data which is analyzed
at large angles 0 is given in Fig. 7. For positive 6, the
mass of the carriers on the nonprincipal surfaces is large
enough so that oscillations due only to the principal
ellipsoid are observed. For negative #, beating between
the two branches (Fig. 6) occurs, so that in this region
the analysis for each period is subject to some un-
certainty. It was not possible to determine with any
certainty the rate of increase of this distortion with in-
creasing electron concentration, although the same
qualitative behavior was observed in several samples.
The tilt of the constant energy surfaces was 6°41° in
all cases.

A number of measurements were taken with H in the
trigonal plane, and a representative set of results are
shown in Fig. 8. We always observed that the ratio of
the two periods observed with H parallel to a bisectrix
axis was very close to 2:1, as is the case in pure bismuth.
Since two periods always contribute to the data taken
with H in the trigonal plane, analysis is not straight-
forward. However no significant deviations (cf. H in
binary plane) from the ENP model were observed. The
ENP and NENP models are equivalent over this par-
ticular angular range but the former provides more
tractable theoretical expressions. We may reconcile
these observations by postulating that the distortion
occurring near the extremities of the surface along the
2 axis is more pronounced near the 2-3 axis. We have
sketched in Fig. 6 a cross section of the surface in a 1-3
plane which makes clear the proposed effect. It may be
noted that single, beatlike minima in our experimental
recordings were often observed when H was close to the
bisectrix axis. It was never possible to determine a
period from the beat since insufficient minima were ob-
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F16. 7. Photograph of an x-y recording of dR/9H with the direc-
tion of H making an angle 6 with a bisectrix axis in a binary plane
(sign convention as in Fig. 6). For positive 8 a single period pre-
dominates (a) while for negative  beating occurs between the two
branches shown (b) in Fig. 6.

served. The effect can, however, be explained in a quali-
tative way by supposing that the distortion gives rise
to two extremal areas which can then give rise to a
(long period) beat. We also have evidence from meas-
urements of the volume enclosed by the surfaces, that
there may be considerable distortion at high electron
concentrations near the extremities of the surfaces along
the 2 axis.

Although it is not possible to determine m* for a
general direction of H in the trigonal plane, values were
found for a number of samples with H parallel to a
binary axis. In this orientation only a single oscillatory
period is observed below 30 kG. To a very good
approximation'®

Myis™/Mpin* & COSO ,

where 6 is the angle between a binary and a bisectrix
axis, viz., 30°. For all samples studied, this relation was
found to be valid to within 59,.
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F16. 8. Angular variation of f with H rotated in the trigonal
plane. The solid lines are theoretical curves derived from the ENP
or the NENP model. Electron concentration 1.2X10%® cm™3,
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DISCUSSION

In order to discuss the apparent deviations shown in
Figs. 4 and 5, it is very desirable to present the data so
as to show both f and m* as functions of the Fermi
energy. However, we cannot determine E; directly from
our results without the assumption of a particular band
model. Values of E; calculated from Egs. (A3)-(A5)
are shown in Table I and only below about 65 meV are
they seen to be consistent within the experimental un-
certainty. Because of the success of the NENP formula-
tion at low energies, we have attempted to describe our
results by using a modification of Cohen’s model which
will be described in the following paragraph. We find
that this approach leads to satisfactory agreement with
experiment while introducing a minimum of complexity.
For example, we have considered more complex dis-
persion relations, 2 but we believe that this approach
is not justified at present.

It is now assumed that the quantities m;, the so-
called masses at the band edge, may change with
doping. Normally the m; are constants, predicted by the
particular band model. In our model, then, the value of
the Fermi energy should be given only by the ratio of
f/m* which is independent of the m; [see Eq. (A5)].
The same assumption has been used recently to provide
a consistent explanation of additional electron bands in
bismuth.! The results of Figs. 4 and 5 are replotted in
Figs. 9 and 10, indicating their dependence on energy
measured from the band edge. The solid curves are cal-
culated from Egs. (A3) and (A4). Note that both f and
m* are underestimated by approximately the same
amount. In the k-p band theory which was applied to
bismuth by Lax and Cohen, the quantities #; may be
written®

mi < Ea/ P2 )

where E, is the energy gap at L and P? is a momentum
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F16. 9. Frequency f as a function of Fermi energy s deter-
mined by experimental values of f/m* Our modification to the
simple NENP theory (dashed curve) is to allow the value of
(myms3)2 to increase with Fy as indicated.

# J. O. Dimmock, MIT Lincoln Laboratory Quarterly Report
No. 1, 1964, p. 41 (unpublished).

2 G. A. Baraff, Phys. Rev. 137, A842 (1965).

Z E. O. Kane, J. Phys. Chem. Solids 1, 249 (1957).
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F1c. 10. Effective mass as a function of E; determined by ex-
perimental values of f/m*. Our modified NENP theory (dashed
curve) is obtained by allowing (m.m3)!/2 to increase with [y as
indicated. The variation of (#:m3)2 is the same as used in Fig. 9.

matrix element. It is not possible to determine values of
both P? and E, which would give a unique explanation
of our data. If E, is taken as 15 meV at all Fermi
energies, we obtain the modified curves of Figs. 9 and
10 by allowing P? to decrease. The resulting increase in
m; [in this case (mam3)'?] with E; is shown also in
Figs. 9 and 10. Note that the same variation of (mm3)!/?
is used to fit both the f and m* results. If P? is assumed
invariant, it is not possible to account simultaneously
for the discrepancy in both f and m™* by increasing E,
with increasing Fermi energy.

We can only speculate at present concerning the
mechanism which is responsible for the increase in the
m;. Possibly the occupancy of the higher lying electron
bands' is important. Cohen ef al?* have advanced
arguments which suggest that the energy bands at the
L and T points of the zone may be determined, at least
in part, by the electron density available in the crystal.
In this case the m; should be regarded as a function of
the Fermi energy and this Fermi energy is determined
by the electron density. The value of m; to be used in
equations such as (A3) and (A4) must be determined
at each Fermi energy before the equations may be
applied to deduce the Fermi surface parameters at that
energy, that is,

S= 21r(m1m3)1/2| E=E’f><E(1+E/E9) ) (1)

ad
m*=9S/0E= (myms)'/* | E=E;X£[E(1+E/Ea):|- (2)

It is obvious from these equations that a given change
in (mams)'/? will be reflected equally in both f and m*.
Recent magneto-optical experiments carried out by
Maltz? indicate that the NENP model is valid in pure
bismuth up to Fermi energies of about 300 meV. This
observation does not contradict our proposal that the
anomalous behavior described above results from the

2¢ M. H. Cohen, L. M. Falicov and S. Golin, IBM J. Res.

Develop. 8, 215 (1964). o
26 M. Maltz (private communication).
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Fic. 11. Variation of electron concentration N with Fermi
energy. Theoretical curves for the ENP and NENP (m.=1.2 m,’)
models are shown. Curve 1 includes the anomolous increase in
and m3 in the NENP model. Curve 2 assumes an equal increase
m ms.

increased electron concentration. We have also at-
tempted to explain the behavior reported above by
taking m; as a function of energy, viz.,

mo(F) =mo(0)[ 1+ 7(£)].

Equations analogous to (1) and (2) may be written as

S=2mm(0)X EQA+E/E )1+ f(E)], (3)

m*=mf1(0):§iIE<1+§>[1+J’(E)]}- @

‘g

We may note that these values of S and »™* will not be
changed equally by a given change in [14 f(E)]. Our
results, therefore, cannot be explained by Eqgs. (3) and
(4) using any reasonable function f(E).

From Eq. (A2) and the observation that distortion
occurs above about 70 meV, we find that my>1.2m,.
For the general case where mes<m,’ the volume enclosed
by the three equivalent surfaces has been computed
numerically. For m,=1.2m,’, the NENP seriously
underestimates the volume (Fig. 11). Curve 1 in this
figure is obtained by taking into account the anomalous
increase in m; and ms reported above. Curve 2 includes
the effect of an increase in 7, which is assumed to be of
the same magnitude as the experimentally observed
change in (mms)*2. However, a significant discrepancy
still remains. It is possible to remove this discrepancy
by allowing a much larger increase in m or alternatively
to allow an increase in the ratio mq/ms" above about 65
meV. This latter implies that distortion sets in more
rapidly than predicted by Cohen. Because of the un-
certainty associated with the quantitative change in
g, we cannot determine a unique change in mo/m, .
We can say, however, that at £,=95 meV, the value of
ms/my’ may be as large as 3.5. The angular variation of
the area of intersection of the surface described by
Eq. (A1) with a plane through the 1 axis (see Fig. 6) has
been calculated with my/m," as a parameter using an
IBM 7044 computer. Although a detailed comparison
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of the distortion predicted for ms/ms >1 and that re-
ported above is not possible, we find that over the
angular range where measurements are possible there is
essentially no difference between the cases ms/my’ =1.00
and 1.20. To account for the magnitude of the distortion
shown in Fig. 4, the value of my/my’ must be 3.54-0.5.
Several authors?®:?” have recently reported results which
imply mse/ms>>1. These measurements were made by
the Shubnikov-de Haas technique applied to Bi-Sb
alloys and dilute Bi-Sn. It is difficult to reconcile these
results completely with those described in this paper
and elsewhere” which imply meo~m,’. Possibly the im-
purity concentration required to probe the valence
band at L in these two alloy systems is sufficient to
cause a drastic change in the band itself. A more
reasonable explanation of these recent experiments may
well be that the Cohen model is just not sufficiently
general to describe simultaneously both the conduction
and valence band at L.

Finally, we show that the decreasing electron mo-
bility in our doped samples is consistent with the pro-
posed modifications to the NENP model. For ellipsoid
surfaces, in the notation of Ref. 29, the mobility is given

by
1dE/1 1 dE 1
v s R
kdk \N i dk |M()|*/ gz,

Since p will be determined by the low mass carriers, this
equation should apply to both the ENP and NENP
models. Above about 6X10'7 electrons cm™3, the NENP
formulation predicts that pwe N8 A line of slope
—0.6 is shown in Fig. 2 and it is seen that the fit to ex-
periment is not good. However, the anomalous increase
in mass reported above will act to decrease the mobility
more rapidly than would be predicted. The dashed line
in Fig. 2 shows the theoretical curve including this
effect and we see that the agreement with experiment
is now satisfactory.
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APPENDIX

We list here the relevant theoretical expressions which
have been proposed to describe the bismuth conduction
band. In his pioneering measurements, Shoenberg?® used
a three-ellipsoidal model with parabolic energy bands.
Because of the small energy gap at the L point of the
zone, the conduction band should be highly nonpara-
bolic® (ENP model). The high value of m, derived ex-
perimentally may imply that the ellipsoids are distorted?
(NENP model).

The general form of the Fermi surface in Cohen’s
notation® for a band centered at L is given by an expres-
sion of the form

Pl2 P32 E pzz E P22
2mE, 2moE, ¢ 2moE, E, 2m)E, N
1

where m; are the so-called masses at the bottom of the
conduction band and ;" are the corresponding quanti-
ties at the top of the valence band at L. E, is the energy
gap at L. The term in p4* acts to distort the surface at
large p, values. The areas of the normal sections may
increase with p, near p,=0 if the following condition is
fulfilled

ma/ms’>1; E,/E<(ms/ms—1). (A2)

This is therefore a condition for the surface to become
reentrant.

The cross sectional area and effective mass with H
parallel to a bisectrix axis is given in the NENP and
ENP model by equations of the form

S'=2r(mum;)"*E(1+E/E,) (A3)
m*=098S/d0E= (mumy)'?(14+2E/E,). (A4)
Therefore
S/Zvrm*=£(1+—E/~l—€”—) . (AS)
1+2E/E,

The total volume enclosed by the three ellipsoids is

ENP; N =16/ 2my"my" ms 2B (14 E/ E,)*",
(A6)

167 6 E
NENP; N= ——(2m1m2m3)1/2E3/2<1+— —) . (A7)
V5 SE

g

The values of m;" are derived from the ENP model.
However, my=m,"" and mz=m,".

The volume predicted by the NENP model with
ms>~my has been numerically evaluated from Eq. (A1)
using an IBM 7044 computer.

® D. Shoenberg, Proc. Roy. Soc. (London) A170, 341 (1939);
Phil. Trans. Roy. Soc. London A245, 1 (1952).



