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The theory of electron scattering from a rigid rotator is applied to the case of low-energy scattering of
electrons from hydrogen molecules in ground electronic and vibrational states. The coupled equations are
solved numerically and the resulting S matrix is used to calculate elastic, rotational excitation, and rotational
de-excitation cross sections. The electron-molecule interaction potential is based on the approximate charge
distribution of H2 and includes the effects of polarization, which are shown to be important. Cross sections
are given for several rotational states, and it is pointed out that while the elastic and inelastic cross sections
are found to depend on the initial rotational angular momentum j of the molecule, their variation in j is
such that the total cross section remains independent of j. The effects of "back coupling" and coupling
with higher rotational states are illustrated by comparing the results of the close-coupling calculation with
those of the Born and distorted-wave methods; the distorted-wave and close-coupling results for rotational
excitation are found to agree within 20 percent for all energies.

I. INTRODUCTION

r iHE rotational excitation of diatomic molecules by..electron impact has been known for some time to
be the dominant energy-loss mechanism for slow elec-
trons in molecular gases. ' Early theoretical investi-
gations'' of the electron-molecule scattering problem
resulted in cross sections far too small to explain the
observed energy losses. This was due largely to the
neglect of the long-range electron-quadrupole inter-
action, 4 ' later shown to be primarily responsible for
the large rotational-excitation cross sections consistent
with the observations. ~' Another important contri-
bution to the long-range interaction potential is the
so-called polarization interaction, which arises from the
induced dipole moment of the molecule. The early
calculations were based on the Born approximation,
presumed to be valid because of the long-range nature
of the interactions. More recent treatments, '~" using
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the method of distorted waves, attempt to also include
the short-range electron-molecule interaction, and ap-
pear in most cases' ' to be in better agreement with
the results of the swarm experiments. ~ However, the
distorted-wave method is still a weak-coupling approxi-
mation and neglects, for example, changes in the elastic
scattering caused by inelastic processes, thus resulting
in violations of particle conservation. These can often
be serious, particularly in the heavier molecules, where
the interactions are stronger. "Another important un-
certainty in the electron-molecule scattering problem is
the manner of including the sects've polarization inter-
action. This is normally accomplished by cutting off
the asymptotic form of the potential at some value of r
determined by fitting the elastic cross section to either
low-energy momentum-transfer measurements, "or total
cross sections observed at higher energies. '4 The prin-
cipal objection to the first approach arises from the
fact that all partial waves are not affected by the
potential in the same way. Hence, adjusting the po-
tential to yield the correct low-energy elastic-scattering
cross section, which is primarily due to s-wave scatter-
ing, in no way guarantees the correctness of the resulting
p-wave scattering, which is found to be most important
for rotational excitation. It will, in fact, be shown in the
present paper that a change in the interaction potential
which gives rise to a 15oro change in the rotational-
excitation cross section can cause a factor-of-three
change in the low-energy elastic scattering. In adjusting
the potential to fit total-cross-section measurements at
higher energies, however, one must be careful to also
consider cross sections for inelastic processes which
must be included. Finally, the e6ect of exchange on the
rotational-excitation cross section is not yet known,
although it is found to be very important in the case
of low-energy elastic scattering. '

In the present paper we analyze in detail the scatter-
ing of electrons by hydrogen molecules without resorting
to the usual weak-coupling approximations. In this way

"H. S.W. Massey and R. O. Ridley, Proc. Phys. Soc. (London)
A69, 659 (1956).
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we can illustrate the influence of neighboring rotational
states on elastic and rotational-excitation cross sections
and, in so doing, comment on the reliability of the
distorted-wave method. Although we include the polari-
zation in the same rather arbitrary manner as other
authors, we are able to obtain good agreement with the
total scattering measurements above a few electron
volts. Because of the insensitivity of s-wave elastic
scattering to the polarization at these energies, we sug-
gest that the p-wave scattering, which is most important
to rotational excitation, is well determined within the
static-Geld approximation. In the region of very low
energies, the s-wave contribution to the elastic scatter-
ing is found to be too large. Massey and Ridley" also
obtained very large s-wave cross sections in the static-
field model which were considerably reduced when
exchange was considered, the difference becoming small
for energies above 6 eV. In an attempt to simulate the
effects of exchange, we rnodified the static field in the
center of the molecule by making it more attractive.
As a result, the s-wave cross sections could be reduced
to quite reasonable values without appreciably changing
the p-wave scattering and, hence, the rotational-exci-
tation cross sections. It is suggested that the effects of
exchange on p waves for energies below 5 eV might be
expected to be small. Total cross sections, which are
found to be relatively independent of the rotational
angular momentum, elastic cross sections, and inelastic
cross sections are given for several rotational states;
and comparisons are made with other theoretical results.

II. THEORY OF ELECTRON-DIATOMIC-
MOLECULE SCATTERING

Since the energies of primary interest lie we].1 below
the thresholds for electronic and vibrational excitation,
we deal only with the rotational structure of the mole-
cule. The polarization of the molecular electronic charge
distribution by the scattered electron is represented by
means of an effective polarization potential as in the
case of previous investigations. ' ' Only molecular
states for which the component of electronic angular
momentum along the internuclear axis vanishes, i.e., Z
states, are considered. We neglect the effect of exchange
between the scattered and bound electrons. Thus, the
molecule is represented by a rigid rotator carrying a
polarizable charge distribution. Transitions between
rotational states of this rotator are induced by the
incident electron through an effective interaction po-
tential which includes the effects of short-range at-
tractive interactions and polarization of the molecular
charge cloud, and which asymptotically depends only
on the value of the quadrupole moment of the molecule.
The complete theory of scattering of an electron by a
rigid rotator has been given by Arthurs and Dalgarno. '~

Only essential points in the development will be re-
peated for purposes of clarity.

» A. M. Arthurs and A. Dalgarno7 Proc. Roy. Soc. (London)
A2567 540 (,1960).

Consider a system consisting of an electron and a
diatomic molecule, which we are representing by a rigid
rotator having momenta of inertia I. The total Hamil-
tonian in the center-of-mass system Inay be written
(we shall use atomic units throughout):

II=IIrr —(1/2y) V '+ V(r, s),

where Bg is the rotational Hamiltonian of the molecule,
—(1/2p) V,r is the kinetic-energy operator for the
scattered electron, V(r, s) is the electron-molecule
effective interaction potential, and r and s denote
the coordinates of the electron and the orientation of
the internuclear axis, respectively. The wave functions
describing the rotational states of the molecule are, in
the rigid-rotator approximation, the familiar spherical
harmonics V;„,.(s) which satisfy

(2)

where j is the rotational angular momentum and m;,
its component along the s axis.

It is found convenient to couple the angular mo-
mentum j of the molecule with that of the projectile
electron 1 in order to form the total angular momentum
J=j+1 of the system and its component M=m, +m&
along the s axis. Total wave functions, which are also
eigenfunctions of J' and J„are found to satisfy

(3)

where j and l specify the initial angular momentum of
the molecule and electron, respectively, and where E;
is the total energy.

Constructing appropriate basis functions

the coefficients being the familiar Clebsch-Gordan or
vector-coupling coefficients, we expand in terms of this
set:

where the radial coefficients u7'7;~" (r) may be shown
to satisfy the set of coupled equations

where k =k72 —28o[j'(j'+1) j(j+1)], and B—a
1/2I is the molecular rotational constant in atomic
units.

The matrix elements appearing in the coupled equa-
tions are given by

(j'7'; J
~

7 ~7
7' ;J)=2 f'JJ;i ~~''777')i i ~~i77dii, (7)
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(7'~'; J
I
I'lj"J";J)=Z»(r)f~(jV, j"i" J)

V( r, tt) =Q»(r) Pg(r s),
where

where, upon expansion of the axially symmetric po- we obtain
tential as

f&( jV, j'V'; J) = ( —1)"+'" ~(2~+1) 'I (2j'+1) (21'+1)(2j"+1)(2P'+1) 5't'

X (Pl"00
I

JV')%0) ( j'j"00
I
j'j"XO) W(j '1j'"1";JP,), (10)

W being the familiar Racah coefFicient. "Since we are
considering the case of homonuclear diatomic molecules,
only even values of X will appear in the expansion of V.
The fq are known to vanish unless the following con-
ditions" are satisfied:

j'+j"+) and i'+i"+X, even,

(-1)"+"= (-1)"""'
The requirement that the functions tt; t.~t'(r) behave
asymptotically as

st; t.~tt(r) 3;;

hatt

expI i(k,»—lsr/2—) 5
—(kt/kt ) tt'S~(j V, 77) expLi(kt r —l'sr/2) 5, (11)

specifies the relationship between elements of the S
matrix and the cross sections for j—+j transitions aver-
aged over all m; and summed over all m,'. We obtain

where the E. matrix is real and symmetric. Fundamental
to this treatment of the scattering problem is the fact
that the S matrix is unitary and symmetric. " The
symmetry property of the S matrix is a statement of
detailed balancing and allows us to relate cross sections
for inverse processes by the relation

kj(2j+1)o( j', j) =kt'(2j'+1)o( j,j'). (16)

III. THE -METHOD OF CALCULATION

The problem of calculating cross sections for ro-
tational excitation and elastic scattering within the
framework set out in the previous discussions simply
reduces to that of solving the set of coupled Eqs. (6)
subject to the asymptotic conditions of Eq. (14). The
method follows generally that of Barnes, Lane, and
Lin. 'o

We rewrite the coupled equations as

o (j' j) =5'/(2j+1) kt'5g g g (2J+1)
I
r'( jV,jl) I'

J=O

(12)
where

T=l —S,

and where 1 and l' take on all values consistent with j,
j', and J. In writing Eqs. (11) and (12), we have made
use of the fact, which may be easily demonstrated, that
S is diagonal in J and independent of M. It is often
convenient, particularly in numerical treatments, to
deal only with real solutions of the coupled equations,
in which case it is well known that asymptotic con-
ditions of the form'o

I; t ~tt(r) b,t btt cos(k,r —Ar/2)

+(k;/k;. )'"8 (j V,jl) sin(k; r—1'sr/2) (14)

lead to a relation between the R and Smatrices given by

S=(I+iR) (I—iR) '

=I (I—R') +2iR5(I+R') ' (15)

"G. Racah, Phys. Rev. 62, 438 (1942); L. C. Biedenharn,
J. M. Blatt, and M. E. Rose, Rev. Mod. Phys. 24, 249 (1952).

'9 I. C. Percival and M. J. Seaton, Proc. Cambridge Phil. Soc.
53, 654 (1957).

~o L. L. Barnes, N. F. Lane, and C. C. Lin, Phys. Rev. 137,
A388 (1965).

(18)

(19)

and where p designates a component of the solution,
and v denotes one of the E. linearly independent so-
lutions which vanish at r =0 (Ã, being the total number
of channels). The equivalent matrix equation is

((d'/«') —G)y =0 (20)

where
~'y= (3r)+2LY'+3'(y") 5,

3 (y) =y~+y 2yo+y~ t, — —

8r =r„+l—r,
y"= (d'/«') y,

(21)

and where y„=y(r„), rt labeling a particular point in
the integration mesh. Combining Eqs. (20) and (21),

' J. M. Blatt and L. C. Biedenharn, Rev. Mod. Phys. 24, 258
(1952)."D. R. Hartree, The Catcutatiom of Atousic Structures (John
bailey R Sons, Inc. , ¹vvYork, 1957), p. 71.

To accomplish the numerical integration of this equa-
tion, we employ the Numerov method which is based on
the finite-difference relation"
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we obtain the generalized Numerov algorithm

y-+~=PI —,', (8~)'G„+&] 'I22I+ ,'(-8r)'G„]y„
—LI—A (~r) 'G--i]y--i},

where
(22)

G„=G(r„).
Thus, once the solution is specified at two points, it
may be extended to arbitrary values of r by means of
this formula.

It is clear from Eq. (22) that the second index of
the solution y remains untouched by the coupling.
Thus, we develop, simultaneously, E, separate vector
solutions of Eq. (20), each particular solution being
labeled by the second index. In order that we may
eventually combine these solutions to obtain those
appropriate to the physical problem, i.e., those having
the correct asymptotic form, we require that they be
linearly independent. To begin the integration, we
make use of the fact that for small values of r

G„, l„(l„+1)8„,/r', (23)
and therefore

gyp +P' & App (24)

where, in order to guarantee linearly independent so-
lutions, 0. is required to be nonsingular.

Because of the arbitrary choice for 0., the solutions

y will not be the u of Sec. II in that they will not have
the same asymptotic behavior. However, for r suffi-
ciently large, we may write

y BgA+BgB, (25)
where

(Bx)„.=8„,(k„r)j&,(k„r),
(Bg)„„=—b„„(k„r)e(„(k„r).

The functions j&„and e&„are spherical Bessel functions
of the 6rst and second kind, respectively, "and A and
B are constant matrices, which may be determined by
matching y to the asymptotic form of Eq. (25) at two
large values of r, say r, and r~. We obtain

A=D 'P(B2)py —(B2) yg] (26)
and

where
B= —D-'f(B&)&y.—(B,).y,], (27)

l-(B2) &(B&)0 (B2)&(B&)b]7 (2g)
and where (B~), represents the diagonal matrix Bq
evaluated at r=r, . Defining diagonal matrices for the
electron momenta, viz. ,

(29)
it may easily be shown that

R=K'"(BA ')K "' (3o)
the relation between the E and S matrices having been
de6ned in Sec. II.

A main program organizes the input information,

~ Handbook of Mathematica/ Functions, edited by M. Ambramo-
witz and I. A. Stegun, Appl. Math. Ser. 55 (U.S. Department of
Commerce, . National Bureau of Standards, Washington, D.C.,1964), p. 437.

initializes the subroutines, and calls on them indi-
vidually to assign values of j„,1„, and 0„' to each channel
p. The matrix elements U» are then calculated and
the coupled equations integrated to obtain the solutions

y». These solutions are then matched asymptotically
as in Eq. (25) and the matrices A and B determined.
These are used to calculate the R and S matrices which
yield cross sections for all possible processes involving
the rotational states considered. As part of the input
information, one specifies the short-range field of the
molecule in numerical form, the polarizabilities, quad-
rupole moment, rotational constant and various param-
eters which define the precise forms of the long-range
part of the interaction potential, that is, all information
characteristic of the particular molecule under investi-
gation. In addition, it is necessary to specify the total
number of rotational states S to be considered simul-
taneously. Except for the integration and boundary
matching data, the remainder of the input information
consists of the smallest rotational angular momentum

j& to be considered, the incident kinetic energy k&' of
the electron with the molecule in the rotational state
j&, the total angular momentum J of the system, and
the parity P. The coefficients f&, ( j„l„,j „l„;J), which
are entirely responsible for the coupling of channels p
and v, vanish unless j„+l„and j„+l„are of the same
parity, i.e.,

( 1)ip+&p (1)iv+~ v—

Thus, the original set of coupled equations splits into
two smaller sets, completely independent of one another,
which may conveniently be handled separately. We find
it convenient to include J in the definition of the parity,
viz. ,

p=0 (1) for even (odd) j„+l„+J. (31)

The total number of channels can be reduced signifi-
cantly by ignoring all values of l) 5; this is found to be
a very good approximation for energies in the range of
interest. As was mentioned previously, the rotational-
excitation cross sections for energies, of say less than
1 eV, are found to come mainly from p~p and to a
lesser extent from s—+d and d—+s transitions. Therefore
it follows from the properties of the fj, coeKcients that
for the rotational transition j=1~j'=3, only P=O
and J=1, 2, and 3 will contribute significantly; the
other values of J may generally be ignored within an
accuracy of 1 percent. Clearly, for the transition
j=3—&j'=5, the important total angular momentum
values are J=3, 4, and 5; and for transitions between
higher-rotational states, the important values of J are
correspondingly higher.

The numerical integration was performed over differ-
ent choices of step size depending on the energy.
Typical choices of the integration mesh are given by:
r=0.001 to 0.01 ap in steps of 0.001 and r=0.01 to
3.0 ap in steps of 0.02. The small step size in the latter
region was chosen to ensure proper handling of the
peaked behavior of v2(r) and v4(r) in the region r~s/2.
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Step sizes used in the region r&3.0 ao varied with the
energy, typical cases being 0.5 ao for k'&0.01 Ry,
0.2 ao for 0.01&0'&0.1 Ry, and 0.1 ao for k'&0.1 Ry.
Calculations have been made using a finer mesh for
checking purposes. The integration procedure was
checked directly by setting all e„(r) =0 and comparing
the results with appropriately scaled spherical Bessel
functions. For values of l(5 the error was completely
negligible, while for /=5 it was of the order of 1 percent.
For values of l&5 the errors were much greater; how-
ever, we did not find it necessary to include these larger
1 in any of the calculations reported below. In regard to
errors in the solutions of the coupled equations, we may
obtain a good measure of accuracy by observing the
symmetry of the R and S matrices resulting from the
boundary matching. This symmetry property, although
guaranteed theoretically, will be destroyed by errors in
the numerical integration or boundary matching. The
low-energy results tend to show less symmetry, since
one must integrate to large values of r in order to
determine the R and S matrices, and in doing so a
larger number of steps is involved. It should be empha-
sized that symmetry of the R matrix is only a measure
of the accuracy of the wave functions and does not
guarantee that the functions are in the asymptotic
region where the correct R and S matrices may be
determined. This is ascertained by matching at several
points and observing the convergence of the variable
R matrix, obtained in this way, toward a constant
value. In our calculations, the number of significant
figures of symmetry in the 5-matrix ranges from three
for k'=0.004 Ry to five for k'=0.09 Ry and more for
higher energies. The Racah coefficients calculated for
use in the f„and the spherical Bessel functions used in
the boundary matching were checked against existing
tables and formulas for a wide variety of parameters.

IV. ELECTRON SCATTERING WITH MOLECULAR
HYDROGEN

Hydrogen, being the simplest of neutral diatomic
molecules, is a particularly good choice to illustrate the
details of the close coupling calculation (since we are
able to represent the electron-molecule static interaction
potential with a greater degree of certainty than in the
case of the heavier molecules) . However, in the case of
H~, the neglect of exchange, which is inherent in our
calculation, is very likely to be important and in fact
could be critical in determining the correct scattering
length; we will discuss this point further in connection
with results of the calculations.

The simple H2 wave function of Wang' may be
written

P(rt, rs) =C{exp[—Z(rt, +rss) )+exp[—Z(rts+rs, ) )},
(32)

where the radial distances of the two e1ectrons from
one nucleus, say nucleus a, are given by r~ and r2„

'4 S. C. Wang, Phys. Rev. 31, 579 (1928).
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FIG. I. Comparison of spherical terms in the interaction poten-

tial resulting from the Wang function (W), used by Dalgarno
and Henry (DH), and calculated from the potential given by
Fisk (F).

and from the other nucleus by r» and r&b. The value of
the effective charge was determined variationally to
be Z=1.166, giving for the internuclear separation
s=1.406 ao and for the ground-state energy Eo ——

—2.278 Ry. Adopting this wave function and ignoring
the cross terms in

~
lf ~' in calculating the electron-mole-

cule interaction potential, we find that the electron-
moleculeinteraction averaged over the molecular ground-
state wave function becomes

where
V(r) =v(r, )+e(rs), (33)

e (r,) = —(1.166+1/r, ) exp (—2.332r,), (34)

and similarly for e(r&), r, and r& being the distances of
the scattered electron from the two nuclei. The cross
terms in

~
lf ~' would have the effect of increasing

slightly the value of e„(r) in the region between the
nuclei (see Fig. 1).However, we cannot hope to repre-
sent the potential accurately in this region, and the
small error introduced in this way is of little conse-
quence. Expanding V(r) in a series of Legendre poly-
nomials as in Eq. (8), one obtains the coefficient
functions vow(r), esw(r), and. e4w(r) illustrated in Figs.
1 and 2. Also given for comparison are the coeKcients
e„H(r) used by Dalgarno and Henry" in their dis-
torted-wave calculation of rotational excitation in H2.
They employed the one-center wave function of Hag-
strom and Shull, "which included several configurations,
and obtained analytic expressions for the e„nH(r). For
purposes of comparison, we have also included in Figs.
1 and 2, the coefficients eP(r) obtained by expanding
in a series of Legendre polynomials the potential func-

"S.Hagstrom and H. Shull, J. Chem. Phys. 30, 1314 (1959).
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v„w(r), the long-range (LR) electron quadrupole inter-
action, and effective polarization interactions given
together by

vzap(r) = —(4r/2r ) C(r), (36)

vLas(r) = —(n'/2r4+Q/rs) C(r), (37)

where the spherical and nonspherical polarizabilities
are taken to be +=5.5 ao' and a =1.38 ao respec-
tively, ""where the quadrupole moment is Q=0.49e
ao',"and where the function

C(r) =1—expl —(r/E) &7 (38)

removes these long-range forms near the molecule.
The value p=6, which we use throughout the investi-
gation, results in a rather sharp cutoff for r &E.Typical
values of E. range from 1.4 to 2.0 ao. Thus we assume
for the interaction potential of Eq. (8), the form

V(r, s) =Q v„(r)P„(r s), (39)

L.O

.r (go)

X«X~
2.0

Fro. 2. Comparison of the vs(r) and v4(r) coeKcients in the
interaction potential resulting from the Wang function (W),
used by Dalgarno and Henry (DH), and calculated from the
potential given by Fisk (F).

tion used by Fisk" in calculating elastic scattering of
electrons by diatomic molecules. These coeScients have
been used more recently by Oksyuk'7 in connection
with the "adiabatic approximation" to calculate ro-
ta, tional- and vibrational-excitation cross sections of
diatomic molecules. The Fisk potential was not calcu-
lated by using actual molecular wave functions, but
rather was constructed in a manner similar to that of
Allis and Morse in the case of atoms. "We shall discuss
this work again later in this section. The agreement
between the e„w and e„H suggests that the average
electron-molecule interaction potential is not very sensi-
tive to the choice of molecular wave function. The
v„DH(r) possess the advantage that for large separations

v DH(r)~ Q/rs (35)

which is the correct asymptotic behavior for the sta, tic
field. LDalgarno and Henry" used the value Q=0.473
instead of the value Q=0.49 adopted by us. Thus,
in Fig. 2, their values for vsDH(r) should for comparison
be increased slightly by a variable factor approaching
0.49/0. 473=—1.04 for r—& ~ 118,119.7 Our choice of molec-
ular wave function, however, results in exponential be-
havior for all the v„(r) asymptotically. In order, then, to
guarantee the correct asymptotic behavior of our inter-
action potential, we add to the short-range potentials

'6 J. B. Fisk, Phys. Rev. 49, 167 (1936).
27 Y. D, Oksyuk, Zh. Eksperim. i Teor. I'iz. 49, 1261 {1966).

LEnglish transl. : Soviet Phys. —JETP 22, 873 (1966)j.~ W. P. Allis and P. M. Morse, Z. Physik 7'0, 567 (1931).

where

and

vo(r) =vow(r) +vLap(r),

vs(r) =vs (r)+vLas(r),

v4(r) = v4w (r) .

(40)

The quadrupole moment and nonspherical polarizability
are both positive in the case of H2 and come into the
interaction potential with the same symmetry. Hence,
their effects on the contribution to elastic and inelastic
scattering coming from intermediate values of r, i.e.,
r &R, will be much the same. Since the polarization
interaction must be truncated at small r in a rather
arbitrary manner, the similar treatment of the quad-
rupole interaction, although somewhat undesirable, is
not a serious limitation. We will see, in comparing
calculated and observed total cross sections, that rea-
sonable values of E may be chosen to give agreement
over a good portion of the energy range of measure-
ment.

In order to illustrate several features of the problem,
we arbitrarily choose a value of E=s=1.40 ao, which
is quite reasonable, since E=1.4 ao is outside the region
in which the short-range interactions are seen to be
large (see Figs. 1 and 2). The effect on elastic and
inelastic cross sections of coupling between different
rotational states as well as the convergence of these
cross sections when the number of states considered is
increased can be deduced from the results given in
Table I. The j=1—+3 inelastic and j=1 elastic cross
sections, denoted, respectively, by o (3, 1) and o (1, 1),
are given for several energies and several choices of X,
the number of rotational states included in the expan-
sion of the total wave function in Eq. (5) . The greatest
change in o (1, 1) is seen to occur in going from %=1

' N. J. Bridge and A. D. Buckingham, J. Chem. Phys. 40,
2733 (1964).
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TAnr. E I. Convergence of Hs elastic o (1, 1) and inelastic o (3, 1) cross sections, in units of ao, in Ã
(the number of states) for the case R=1.4 ao.

(Ry) 0.03
0.(3, 1) 0.(1, 1)

~ ~ 55 80
0.541 50.21
0.580 49.72
0.582 49.72

0.06
a(3, 1) o (1, 1)

~ ~ ~ 59 30
1.511 56.04
1.661 55.76
1.667 55.77

0.09
o (3, 1) o (1, 1)

~ ~ ~ 62 43
3.077 62.22
3.452 62. 25
3.468 62. 26

0.3
~(3, 1) ~ (1, 1)

~ ~ ~ 73 59
10.07 73.27
10.82 72. 67
10.84 72.64

0.6
o. (3, 1) o.(l, 1)

~ ~ ~ 58 03
5.123 52.53
5.350 52.21
5.357 52. 19

to %=2, as is expected, since here an inelastic channel
is introduced which is expected to have a considerable
effect on the amount of outgoing Aux in the elastic
channel. Examining the partial cross sections, we have
found that at the lower energies the elastic scattering
is primarily s wave (1=0—+l'=0), the P-wave (/=1~
l,
' = 1) contribution becoming comparable for k' &0.3 Ry.

Both the s- and p-wave scattering are considerably
influenced by the coupling with d- and P-wave channels,
respectively, in the j=3 rotational state. Partial cross
sections for l&2 are quite insensitive to the coupling.
The convergence of a (3, 1) and o-(1, 1) with increasing
X is clearly demonstrated by comparing the %=2, 3,
and 4 results.

The low-energy electron-molecule scattering problem
has the inherent advantage that each additional ro-
tational state considered has associated with it a corre-
spondingly larger angular momentum j. Thus, for ex-
ample, in the case of o.(3, 1) the P~p transition is the
dominant contributor and occurs for a total angular
momentum J=2. The further inclusion of states j=5
and 7 gives rise to coupling with l=3 and 5 channels,
respectively, resulting in only small changes in the cross
section. Higher-rotational states are associated with
correspondingly larger values of l for J=2, and the
effect of including them becomes negligible. In order to
check the previous remark, cross sections were calcu-
lated in the /=2 and X=3 schemes while leaving
out the 1=5 channels; the differences for all partial
cross sections and for all energies considered were less
than 1%.

In this same model, viz. , E=1.4 ao, the j dependence
of the elastic a ( j,j), inelastic a (j,j), and total oz ( j)
cross sections was examined. We define the total cross
section by the relation

~(i) =&(i i )+&(i+2' )+&(i —»I ) (41)

the last term being zero for j=0 and 1; we are tempo-
rarily ignoring cross sections for j—+j&4 transitions,
which are found to be quite small. In Table II cross
sections are given for several values ofj.It is interesting
to note that while the inelastic cross sections con-
sistently decrease with increasing j, the elastic cross
sections increase in going from j=0 to j=1 and then
appear to approach a constant value for larger values
of j where the superelastic cross sections begin to con-
tribute. The net result is that the total cross section
remains rather insensitive to the value of j considered.
Insensitivity of the elastic cross section to j has been
discussed in some detail by Arthurs and Dalgarno, '~

who show that in cases where the nonspherical part of
the interaction may be taken. as a perturbation to the
spherical part, the first-order contribution of these
"orientation-dependent" terms to the elastic cross sec-
tion vanishes for all values of l with the result that the
elastic cross section remains quite insensitive to j. In
our case the nonspherical part of the interaction is not
particularly small compared to the spherical part (see
Figs. 1 and 2), and the elastic cross section does show
some j dependence. The insensitivity of the total cross
section to j is, however, somewhat striking. Oksyuk, "in
his application of the adiabatic approximation to the

TABTE II. Comparison of H& elastic o ( j,j), inelastic o (j,j), and total or( j) cross sections in units of ao calculated with R=1.4 ao
and %=3. The total cross section or(3) includes the superelastic cross section o (1, 3).

(Ry) 0.03 0.06 0.09 0.3 0.6 0.9 1.2 1.5

0, 0
11
3. 3

2, 0
31
5, 3
13
-.(0)
T(1}

~r(3)

49.24
49.72
49.92

1.062
0.580
0.354
0.368

50.30
50.30
50.64

54.50
55.76
55.55

2.920
1.661
1.093
0.901

57.42
57.42
57.54

59.72
62.25
61.39

5.956
3.452
2.307
1.747

65.68
65.70
65.44

65.43
72.67
70.72

18.050
10.815
8.024
4.670

83.48
83.48
83.41

48.66
52.21
51.32

8 ~ 908
5.350
4.093
2.284

57.57
57.56
57.70

38.44
40.43
39.88

5.000
3.003
2.304
1.282

43.44
43.43
43.47

31.52
32.84
32.43

3.303
1.984
1.520
0.846

34.82
34.82
34.80

26.70
27.68
27.33

2.445
i.469
1.124
0.627

29.15
29.15
29.08
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FIG. 3. Calculated values of the total cross section (in uo')
versus the initial electron energy (in rydberg units) for values of
the long-range cutoff radius (in u0): R=1.4, 1.6, 1.8, 2.0, 1.4
(a=n'=0) and 0o (o.=a'=0); recent measurements by Golden,
Bandel, and Salerno (GBS) of the total electron-Hr cross section.

electron-molecule scattering, has obtained the result

g o ( j', j) =const, (42)

30 D. E. Golden, H. W'. Handel, and J. A. Salerno, Phys. Rev.
146, 40 (1966)."G. J. Schulz, Phys. Rev. 135, A988 (1964) .

which is in agreement with our observations.
The previous discussion has been in reference to a

particular model in which the cutoff radius for the
long-range Geld R was taken to be 1.4 ao. In carrying
out similar calculations with other values of R, it is
found, however, that the general behavior of the cross
sections as regards their dependence on the number of
states included and on the particular j values con-
sidered is the same. In Fig. 3 calculated total cross
sections for several values of R are compared with the
most recent total cross-section measurements of Golden
et a/. 30 Also given for reference are cross sections calcu-
lated with the polarization completely neglected; in
this case the effect of R is simply to cut off the quad-
rupole interaction, and the dependence is seen to be
weak. In comparing our calculated total cross sections
with the experimental results, we make use of the fact
that cross sections for vibrational and electronic exci-
tation are observed to be small throughout the range of
energies considered. ' " It is clear from Fig. 3 that for
energies above a few electron volts, it is necessary to
include a certain amount of the polarization interaction
in order to obtain total cross sections in reasonable

agreement with experiment. The values of the cutoff
parameter R=1.8 ao and R=2.0 ao seem to yield the
most reasonable results for these larger energies. For
smaller energies, however, the partial cross section
corresponding to l =0—+l'=0 becomes large. This occurs
also in the cases where O. =n'=0, corresponding to use
of the short-range static field alone (E= ~), or in
cases with the quadrupole tail (8=1.4 as). Since, in
the latter case, our interaction is in such close agreement
with that of Dalgarno and Henry (see Figs. 1 and 2),
we would expect the curve corresponding to O. =n'=0
and R=1.4 ao to represent a total cross section ap-
propriate to their calculations. The failure to obtain
reasonable low-energy cross sections is not surprising
when one considers the sensitivity of the s-wave
scattering at low energies to changes in the interaction
potential in the region of the center of the molecule, as
will be discussed below. However, this inability to
represent s-wave scattering correctly does not neces-
sarily imply that the calculated rotational excitation
cross sections are also poorly defined. The variation in
R of partial cross sections contributing to the elastic
cross section for j=0 is illustrated in Fig. 4. For
energies greater than a few electron volts, the s~s
contribution o, (0, 0) is seen to be rather insensitive to
changes in R, while the corresponding p—+p contribution
oi(0, 0) changes appreciably with variations in E and
is responsible for the R sensitivity felt in the total cross
section. This property is found to hold for other values
ofj as well.

The symmetry of the interaction potential, as given

90

80

70

60

a)

o
O

40
bw

I/

0 I I I I I I I I I. I I I I I I

0 0.2 0.4 0.6 0.8 I.O l.2 l.4

IT

l.6

FIG. 4. Comparison of the sensitivity of the elastic s- and p-
wave partial cross sections (in a0') to the long-range cutoff
radius R (R=1.4, 1.6, and 1.8 a0) for scattering in the j=0
rotational state.
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in Eq. (g), is such that 3 =0—+I'=0 offers no coupling
and, hence, makes no contribution to the cross section
for transitions between diGerent rotational states. Of
the transitions contributing, viz. l=0—+l'=2, l=2—+

l'=0, 1=2~i'=2 and 1=1—+l'=1, only two are im-

portant at the energies of interest here. Very close to
threshold the energy in the outgoing channel is so
small as to allow only outgoing s waves, with the
result that the d—+s contribution is dominant for ener-
gies of say up to 0.02 eV above threshold. At slightly
higher energies the p—+p contribution takes over and
remains the principal contributor throughout the entire
energy range considered here, i.e., up to about 20 eV.
The p-wave functions, because of the presence of an
effective potential barrier 2/r', are of course much less

penetrating than s-wave functions and are sensitive
to changes in the intermediate and long-range part of
the interaction potential. The long-range character is
more important at low energies where sensitivities are
refiected in the rotational-excitation cross sections as
illustrated in Fig. 5. Here the inelastic cross section
o (2, 0) corresponding to the j=0—+j =2 transition is
given as a function of energy for several choices of the
long-range part of the interaction. As one would expect,
the quadrupole moment is extremely important at low

energies and in fact determines the threshold behavior
completely. It is interesting to note, in addition, that
its effects are also felt at energies approaching 20 eV.
The polarization interaction, which is also seen to be
important, introduces into the cross section most of

B(r) =expL —B(s/2 —r) j, r&-', s,

r&-', s. (43)

Hence, the modified interaction potential is given by

(44)

where

t's (&) =» (&)B(&)+»»(&)~

s2 (~) =es (r) B(~)+eLR2(~)

the dependence on the cutoff radius R. The differences,
however, in the cross sections resulting from the two
most reasonable choices of R=i.8 and 2.0 ap are less
than 12% for energies less than 0.4 ev and are never
larger than about 40%. The larger differences occur at
intermediate energies where the p-wave functions have
their maximum overlap with the interaction potential
in the region of the long-range cutoff. At the higher
energies the cross sections become somewhat inde-
pendent of the choice of R as the p-wave functions
begin to penetrate the short-range field.

In order to investigate the sensitivity of the cross
sections to changes in the short-range part of the po-
tential, we modified the short-range potential by a
multiplicative factor of the form

vs(r) =n4w(r) B(r), (45)

~ I I I II
R"-1.4

40

O
OJ

b I.O

I ) I I I I I III t I I I I'I I III I e

'
0.04 O.I 4.0

Fro. S. The rotational excitation cross section 0 (2, 0) versus
energy (in rydberg units) calculated for several choices 8=1.4,
1.6, 1.8, and 2.0 of the long-range cutoff radius (in ao) and o.=
n'=0, 8=1.4, 1.8, and ~.

which of course reduces to Eq. (39) when B=0. Cross
sections for several choices of 8 have been calculated,
and it is found that positive values of 8 yield total
cross sections which are even larger at low energies.
On the other hand, negative values of 8, which have
the effect of deepening the potential in the region
r(-,'s, result in smaller s-wave elastic cross sections
and, hence, smaller total cross sections at low energies.
The cross sections are only slightly changed at higher
energies. In Fig. 6, total cross sections for j=0 are
illustrated for R=1.8 ap, 8=0, —2.0, —2.5, and
—3 0 ap and R=2.0 ap, 8=0, —2.5& and —3.0 ap

Considering the partial cross sections oi(0, 0), which
are illustrated in Fig. 7, we 6nd that the s—+s contri-
bution os(0, 0), which dominates the elastic cross sec-
tion at low energies, is quite sensitive to 8 in this
low-energy region and becomes independent of 8 at
higher energies. The p—&p contribution oi(0, 0), how-

ever, is rather insensitive to 8 for all energies considered.
This insensitivity is reQected in the inelastic cross
section, which for the transition 0—+2 is given in Fig. 8
for the two values of R=1.8 and 2.0 ap and choices of
8=0 and —3.0 ap '. For a given value of R, the cross
sections for 8= —2.0 ap ' and 8= —2.5 ap ' are found
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scattering can be varied considerably without aGecting
the rotational excitation; and we recall that in varying
R we are adjusting the p-wave scattering to ftt the total
observed cross section. Since the s-wave scattering is
insensitive to R at energies above a few electron volts,
it is quite reasonable to conclude that values of R in
the neighborhood of 1.8 to 2.0 cp best determine the
potential as seen by the p-wave function and hence
yield the most reliable rotational-excitation cross sec-
tions which can be obtained from such a static-field
treatment. We have in this investigation examined the
sensitivity of the low-energy elastic-scattering cross
section to variations in the short-range part of the
interaction potential finding that negative values of 8,
which enhance the interaction in the region 2s, are
required in order to obtain reasonable low-energy re-
sults. Such a distortion of the short-range static field is

1 I

0.2 0.4 0.6 0.8 I.O I.2
t

l.4 I.6 IO I I I I I I

8=0

FIG. 6. Comparison of the measured total cross section of
Golden, Bandel, and Salerno (GBS) with the calculated j=0
total cross section using the unmodified interaction (B=O ao ',
R=1.8, 2.0 op) and the modiimd interaction (8= —2.0, —2.5,—3.0 ap ~' R= 1.8 ap and 8= —2.5, —3.0 ap ' R =2.0 ap) . OJ 0a

to lie between the 0 and —3.0 curves, as is expected.
Clearly, the e6ect on the rotational excitation of shifting
the low-energy elastic cross section up and down in the
manner discussed above is negligible.

We have established, then, that the low-energy elastic

I.O
N

b

"O.ol 0.1 I.O

s I p I I I I I I II p I a I I I. I I I II p I ~

FIG. 8. Calculated values of the rotational excitation cross
section p. (2, 0) versus energy (in rydberg units) for the cases
B=O (R=1.8, 2,0, and R=1.4, o.=n =0) and B=—3.0 (R=1.8,
2.0), (B in ap ' and R in op).

~so 50
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Fzc. 7. Comparison of the sensitivity of the j=0 elastic s-
and p-wave partial cross sections (in uo') to the parameter
B in ao ~ (B=0, —2.0, —2.5, —3.0, l=0 and B=0, —3,0; l=1)
jntroduced in the modified interaction potential.

probably rather unrealistic. More likely, this is an
attempt, with a static-field model, to compensate for
the effects of exchange with the bound electrons.

Massey and Ridley, " in their variational treatment
of s-wave elastic scattering of electrons from hydrogen
molecules, found exchange to be extremely important
at energies below 5 or 6 eV, the static-field results
being much too large for these low energies. The effect
of exchange on p-wave scattering in Hs has not yet been
investigated. However, for all the energies considered
in the present static-field investigation, we 6nd that
the p-wave elastic cross sections are dominated by the
long-range quadrupole and polarization interactions, the
short. -range interactions playing only a minor role t we
have compared values of the partial cross section
ar(0, 0) for R= po with the results given in Fig. 4$.
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FIG. 9. Calculated values of the inelastic cross section o (2, 0),
a (0, 2), o (3, 1), 0 (1, 3), 0 (4, 2), and 0 (5, 3) versus energy (in
rydberg units) for the case B= —2.5 as ' and R=1.8 as.

Now, since exchange is also expected to behave some-
what like a short-range interaction„we might expect its
effect on the p-wave elastic cross section and the ro-
tational excitation cross section to be small. There is
some similarity between the short-range character of
the electron-H~ scattering problem and the electron-
helium case, where exchange is found to be important
to P-wave scattering. ss However, even with exchange
included, the p-wave partial cross sections for helium
are found to be an order of magnitude smaller than
our (static ffeld) results for Hs. Therefore, if we wish
to estimate the exchange correction for H& by consider-
ing the helium analogy, we must still conclude that the
effect is small.

In Tables III and IV are given all cross sections
associated with the j=0, 1, 2, and 3 states for the two
values 8=1.8 and 2.0 ao and 8=—2.5 ao '. The in-
elastic cross sections" for j—+j&2 are illustrated in Fig.
9 and those for jr+4 in Fig. 10, along with curves
for other E values in the latter case.

Note added its proof. It should be pointed out that a
relatively large discrepancy still exists between the
theoretical rotational-excitation cross sections a(2, 0)
and the results of swarm experiments of Engelhardt
and Phelps' at liquid-nitrogen temperatures. However,
a recent comparison of theoretical and experimental
cross sections o(2, 0) carried out by Crompton and
McIntosh LR. W. Crompton and A. I. McIntosh,
Phys. Rev. Letters, 18, 527 (1967), and private com-
munication) using their accurate measurements of D/IJ, ,

-2 :I I I I I IIIIIJ I I II I IIIII) I I II I III''

IP"3

Ol O
O

IP-4

IP-' =

indicates that the theoretical cross sections presented
in this paper agree with the measurements within the
experimental error.

The j—+j+4 cross sections were found to be quite
insensitive to changes in B. The relative contributions
of diferent cross sections to the total electron-scattering
cross section for the j=0 rotational state are given in
Fig. 11.The rotational-excitation cross section o (2, 0)
is seen to contribute less than 10%%u~ to the total, while
o (4, 0) is completely negligible by comparison and is
not included.

We have also obtained elastic and rotational-exci-
tation cross sections for D~. In Table V are given cross
sections" associated with the rotational states j=0, 2, 4
for 8=1.8 and 2.0 ao and 8= —2.5 ao '. The calcu-
lations for D~ di8er from those of H~ only in the value
of the rotational constant. We have used for Bs (in
atomic units, a.u.), the values 2.7)&10 ' and 1.4X10 '
for H& and D&, respectively.

Since all previous calculations' ""of electron scat-
tering from diatomic molecules have involved weak-
coupling techniques such as the method of distorted
waves or the Born approximation, it is instructive to
consider the reliability of such methods in the H&

problem. By setting certain matrix elements to zero,
one can calculate distorted-wave (DW) and Born-
approximation (B) results within the framework of

'P. M. Morse and W. P, Allis, Phys. Rev. 44, 269 (1933).~ For energies much below k~=0.01, the rotational excitation
cross sections given here may be expected to be somewhat
too small due to our inability to carry the solutions out to
values of r large enough to obtain the entire contribution to the
R matrix. This accounts for the fact that in Fig. 13 our results
seem to lie below the Dalgarno-MoGett curve just above thres-
hold.

IO
'I I I I I I IIIIII I I II I lillll I I II I IIIII
O.OI O.l I.O I

Fro. 10. Calculated values of the inelastic cross sections n(4, 0),
using 13=—2.5 a0 ', R=1.4, 1.8, and 2.0 g0, and a(5, 1) using8= —2.5 a0 ', R=1.8 and 2.0 afi versus the energy (in rydberg
units).
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the coupled equations. Such calculations for the ro-
tational-excitation cross section o (2, 0) are compared
in Fig. 12 with results of the close-coupling calculation
(CC) for the case R=1.8 as and 8= —2.5 as ', these
cross sections are all calculated using the same inter-
action potentiaL Just above threshold (not shown) the
3, DW, and CC results agree quite well; this is simply
an illustration of the fact that at low energies the
principal contribution to the rotational-excitation cross
section comes from regions far removed from the strong,
short-range interaction. At slightly higher energies the
distortion of the wave function in the field of the
molecule begins to be important. This has the e6ect
of altering the trajectory of the electron, causing it to
come closer to the molecule where it can exert a greater
torque and hence have an increased probability of
causing a change in the angular momentum. Anal-
ogously, one can say that taking distortion into account
has the eGect of drawing the continuum wave functions
in closer to the molecule, where they can overlap more
strongly with the anisotropic part of the interaction
potential, thereby giving rise to a larger cross section
for rotational excitation. The eGect of including the
"back coupling" and coupling to higher states is seen
to be considerably smaller, the difference being (10%%uo

for energies below k'=0.03 Ry (0.4 eV) and (20%%uo for
all energies considered. (By back coupling we mean the
influence of the inelastic channel on the elastic channel. )
In comparing the DW results with those obtained in
the close-coupling calculation with X=2 and X=3,
we conclude that the back coupling and the coupling
to higher rotational states are of about equal importance
for all energies. We did find, however, that the elastic
cross section for energies below a few electron volts
was quite sensitive to the presence of coupling with an
inelastic channel. For example, we found for the case
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FIG. 12. Calculated values of the rotational excitation cross
section 0(2, 0) using the close-coupling (CC), distorted-wave
(DW), and Born approximation (B) methods for the case B=
—2.5 up ' and R = 1.8 ap.

E= i.8 ao and 8= —2.5, that the s-wave elastic cross
section for scattering in the j=0 state was reduced from
60.7 ao to 47.1 ao at P =0.03 Ry by including coupling
with the j=2 state. Thus, it is clear that for energies
above the threshold for rotational excitation, a one-state
calculation of the elastic cross section may be very
misleading. Similarly, a potential obtained by fitting
such a cross section to observed low-energy results may
be poorly determined.

In Fig. 13 we have compared our results (LG) for
the j=0—+2 rotational-excitation cross section" (8=
—2.5) with the results of other authors. We recall that
the Gerjuoy and Stein (GS) cross sections' ' are calcu-
lated by applying the Born approximation to the pure
quadrupole interaction. Dalgarno and Moffett (DM)s
include the effects of polarization and obtain a some-
what larger cross section. The effects of distortion are
included in the calculations of Dalgarno and Henry
(DH),"Mjolsness and Sampson (MS),"and Geltman
and Taka, na, yagi ( GT) .'s '4 Dalgarno and Henry, 's using
the molecular wave functions of Hagstrom and Shull,
obtain analytic expressions for the appropriate inter-
action matrix elements and calculate rotational-exci-
tation cross sections by the method of distorted waves.
%bile their interaction matrix elements do include the
long-range effect of the quadrupole moment, no allow-
ance is made for the effective polarization interaction,
which is thought to be important.

Mjolsness and Sampson" do not attempt to accu-
rately represent the short-range field, but rather rely
on the importance of the long-range held at low energies.
They include polarization by cutting off the asymptotic
potential by means of an exponential cutoff (MS a)
similar to our C(r) of Eq. (38), or a nonexponential
cutoff (MS b) which corresponds to replacing r4 by
(r'+R')' in the polarization part of Eqs. (36) and (37).
They also include the quadrupole interaction by cutting
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FIG. 13. Comparison of the rotational excitation cross section
0.(2, 0) calculated in this work (for the case 8= —2.5 ap ', R=
1.8 and 2.0 ap) with the results of other authors (see Ref. 33):
(LG) present work, (GT) Geltman and Takayanagi, Ref. 14,
(MS) Sampson and Mjolsness, Ref. 11, (DM) Dalgarno and
MoGett, Ref. 9, (GS) Gerjuoy and Stein, Refs. 5, 6, (DH)
Dalgarno and Henry, Ref. 15, (0) Oksyuk, Ref. (27).

off the quadrupole part of Eq. (3"/) sharply at r, (we
have included, in Fig. 13, their results for the choice
of r, =as). An appropriate value of E is then obtained
by fitting the calculated momentum-transfer cross
section to the results of swarm experiments for energies
up to 1 eV. The principal objection to this approach,
as was discussed in Sec. I, is the fact that s-wave
scattering, which dominates the elastic and momentum-
transfer cross sections at low energies, is sensitive to
variations in the interaction potential which have very
little effect on the p-wave functions, which principally
determine the rotational-excitation cross section. Thus,
an adjustment of the interaction potential in regions
which do influnece p-wave scattering, in order to make
up, possibly, for a failure to accurately represent the
short-range fields or to allow for the effects of exchange,
appears to be somewhat unreliable.

In the work of Geltman and Takayanagi, " the non-
spherical part of the short-range field ss(r) is calculated
by representing the molecular charge distribution by
that of two hydrogen atoms placed a distance s apart.
The resulting potential is not very much different
from those potentials in Fig. 2. The long-range polari-
zation and quadrupole interactions are similarly in-
cluded by cutting off the asymptotic form of Eqs. (36)
and (37) Lwith C(r) =1) at r=It, The nonspherical
part is then smoothly taken to zero, while the spherical
part is assigned the value —cr/2R' for r(R. The cutoff
parameter R is then determined by 6tting the calculated
elastic cross section to observed total scattering cross
sections out to 7 eV or so. In attempting to fit observed
total cross sections above the thresholds for rotational
and vibrational excitation, one must be careful to
consider the inelastic cross sections which also con-
tribute. In the case of hydrogen, however, these cross
sections are thought to be small relative to the elastic
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cross section. ssr The curve (GT) given in Fig. 13
results from a choice' of E.=1.2 ao and corresponds to
a.n elastic cross section given in Fig. 3 of Ref. 13. In
attempting to keep the elastic cross section down to
reasonable values for lower energies, Geltman and
Takayanagi chose the value of 8=1.2 ao which includes
more polarization than in our calculation (LG), and
which results in a somewhat larger rotational-excitation
cross section.

Oksyuk (0)"applied the adiaba, tic approximation to
rotational and vibrational excitation of diatomic mole-
cules, using the interaction potential derived by Fisk,"
which ignores the polarization and quadrupole long-
range interactions. Comparing this curve with our
result for the case n =cr' =0 and R = oo (Fig. 5) suggests
quite similar behavior for energies k &1.0 Ry. For
larger energies, however, the Oksyuk cross section be-
comes larger than any of our results. Comparing the
interaction potentials given in Figs. 1 and 2, we are
inclined to conclude that this difference in the high-

energy behavior of the cross sections is due not to
differences in the short-range interaction potentials,
but rather to differences in the methods of determining

the cross sections. In any case, we feel that the failure
to include the long-range interactions results in ro-
tational-excitation cross sections much too small for
all energies below k'=1.0 Ry.

For heavier molecules such as O~ and X2, which are
of great interest in connection with swarm experiments,
the electron-molecule interaction potentials are much
larger than in the case of H2, and we expect the weak-

coupling methods to be correspondingly poorer. The
breakdown of the method of distorted waves, for in-
instance, is apparent in the work of Geltman and
Takayanagi. '4 In such cases, the approach illustrated

by the present work must be used.

ACKNOWLEDGMENTS

The authors would like to thank Mrs. Joni Sue
Lane for her assistance in writing all the computer
codes used in the calculations. One of us (N.F.L.)
wishes to express his gratitude to Dr. Roy H. Garstang
and the other staff members of the Joint Institute for
Laboratory Astrophysics for their hospitality during
his stay as a visiting fellow.

Experimental Evidence for Xes Molecules*t

SHARDANANDt
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Using the standard absorption-measurement technique, we have measured the attenuation cross sections
at Lyman-a (1215.7 3.) for xenon. The attenuation does not follow Beer's law. The observed linear increase
in attenuation cross section with rise in gas pressure, and the related decrease in attenuation cross section
with increase in temperature, are ascribed to the formation of Xe~ molecules. From consideration of diatomic
molecules, methods are presented for deriving the photon scattering cross section for atomic species, the
equilibrium constant for the reaction Xe+Xe Xe&, the absorption cross section, and the heat of dissociation
for Xe2. Their respective values were found to be 5&(10 "cm', 2.16X10 "cm'/molecule, 1.85)&10 ' cm',
and 0.03~0.001 eV.

I. INTRODUCTION

EASUREMENTS of the relative scattering cross" . . sections for He, Ne, H2, Ar, and N2, by observing
the right-angle scattering have been previously reported
by Shardanand and Mikawa. ' These investigations have

*This work was supported by the National Aeronautics and
Space Administration while the author was with GCA Corpora-
tion, Bedford, Massachusetts.

t This work was supported in part by the National Aeronautics
and Space Administration (Contract No. NAS12-436) while the
author was at the Research Laboratory of Electronics, M.I.T.

f. Present address: NASA Electronics Research Center, Cam-
bridge, Massachusetts.' Shardanand and Y. Mikawa, J. Quant. Spectry. Radiative
Transfer (to be published); see especially Eq. (2).

been extended by the present author for Xe and Kr by
measuring C/C values as a function of pressure. ' These
preliminary unpublished measurements have estab-
lished the fact that the derived relative cross sections
for Xe and Kr are at least one order of magnitude less
than similar results of Gill and Heddle. ' It may be
recalled that Gill and Heddle have pointed out that
since the resonance lines for Xe and Kr lie within the
sensitive wave band of their photon counter, their
measured values for these two gases could be too high.
In our investigation, the sensitive wave band was
defined by the oxygen filter that reduced the error re-

s P. Gill and D. W. O. Heddle, J. Opt. Soc. Am. 53, 847 (1963).


