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taken to be zero and e exp(Bs'r/kT) is ignored, then
Eq. (51) becomes Eq. (23) which is the equation for the
nearest-neighbor interaction.

VII. CONCLUSIONS AND SUMMARY

Divacancies and trivacancies in body-centered cubic
metals have been classified and discussed. For the
nearest-neighbor interaction, one type of divacancy and
three types of trivacancies are classified. These are 21'
trivacancies, 109' trivacancies, and 180'(I) trivacancies.
Divacancies have to be broken up into two single
vacancies to migrate. For thenext-nearest-neighbor in-
teraction there are two kinds of divacancies. Type I has
the vacant sites in the nearest-neighbor position and
type II has the vacant sites in the next-nearest-neighbor
position. There are three more kinds of trivacancies for
the next-nearest-neighbor interactions. These are 90'
trivacancies, 144' trivacancies, and 180'(II) trivacan-
cies. The general kinetic equations are discussed in detail

concerning these defects. The formation of divacancies
during quenching and annealing is discussed in great
detail. There exists a critical temperature T* above
which the temperature is high enough to maintain ther-
mal equilibrium but below which the motion of single
vacancies is too slow to maintain thermal equilibrium
in the quenching process. The situation at T*is frozen in

by quenching. After the quench more divacancies are
formed and the kinetic equations and the characteristic
times for the formation of divacancies are discussed.
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Determination of Anisotropic Momentum Distributions in
Positron Annihilation
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A theoretical method is presented which permits the experimental determination of the momentum
distribution of the photon pairs originating in positron annihilation in crystalline solids, as a function of
both the magnitude and the direction of that momentum. The distribution is expanded in a series of lattice
harmonics. It is shown how linear combinations of the two-quantum angular correlations, obtained from
measurements on a number of suitably oriented single crystals, may be unfolded to yield the momentum-
dependent coeKcients in that expansion, The method is illustrated by a model computation.

l. INTRODUCTION
" 'T is well known that the angular correlation of the
- - annihilation radiation from positrons stopped in
oriented single crystals' ' may provide information on
the electronic structure of the substance under study
and, in metals, on the shape of the Fermi surface. The
intensity of the two-quantum angular correlation X(p,),
measured with the long horizontal slit apparatus com-
monly used, ' is proportional to the probability that the
photon pair carries oG a momentum with a component

' S. Berko, R. E. Kelley, and J. S. Plaskett, Phys. Rev. 106'
824 (1957).

e S. Berko and J. S. Plaskett, Phys. Rev. 112, 1877 (1958).' A. T. Stewart, J. B. Shand, J. J. Donaghy, and J. H. Kusmiss,
Phys. Rev. 128, 118 (1962).

4 J. J. Donaghy, A. T. Stewart, D. M. Rockmore, and J. H.
Kusmiss, in: Proceegings of the IXth Interrtoteortal Colfereace oa
Low Temperature Physics, Columbus, Ohio, edited by J. G. Daunt,
D. O. Edwards, F. J. Milford, and M. Yaqub (Plenum Press, Inc. ,
New York, 1965), Part B, p. 835.

' 'B. Rozenfeld, 'W. Swiatkowski, and J. Wesolowski, Acta, 'Phys,
Pol. 29, 429 (1966).

along the s axis of the instrument between p, and

p,+dp, . This Probability is related to the probability
that the pair of annihilation quanta has a total mo-
mentum y, i.e., the photon-pair momentum distribution
p(n), by

fl'(p )" p(p) dp*&p'

In general, p(p) is anisotropic owing to the presence
of the lattice potential, ' while it is also influenced by
many-body effects like electron-electron and electron-
positron correlations. ' t The detailed behavior of p(p)
will therefore yield information concerning those effects.

The extraction of this information from the experi-
mental data is complicated by the fact that one does not
directly measure p(y) but rather its integrals over slices
of momentum space characterized by certain values
and orientations of p„asexpressed by Eq. (1). Of

e S. Kahana, Phys. Rev. 117, 123 (1960); 129, 1622 (1963).
2 C. K. Majumdar, Phys. Rev. 140, A227 (1965); 140, A237

(1965).
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p(p)"
all

electrons

~ "'4 (r)4(r)d'» (2)

where g+(r) and f(r) denote, respectively, the positron
and electron wave functions. Owing to the presence of
the periodic lattice potential, p(p) will not be spherically
syn~netric but will remain invariant under aQ opera-
tions of the point group of the crystal. p(y) may then
be expanded in lattice harmonics F~„(Q)of the proper
symmetry

(3)p(u) =Z p~.(P)Fi.(D)
E,v

' J. Melngailis and S. DeBenedetti, Phys. Rev. 145, 400 (1966).
9 A. M. Cormack, J. Appl. Phys. 34, 2722 (1963); 35, 2908

(1964).

course one may postulate a simple model and try to 6t
the angular correlations computed from this model to
the experimental data. ' However, the various eQects
mentioned above inhuence the angular correlations in
a far more complicated way than p(y), which makes it
dificult to disentangle them and to decide in which way
the model should be altered in order to obtain an im-
proved fit.

A better solution is to determine p(p) from the meas-
ured angular correlations. Expression (1), relating the
correlations to p(p), can be thought of as representing
the effect of the instrumental response to p(y). The in-
terpretation of a set of measured angular correlations
would then split up into two parts: Grstly, the purely
mathematical problem of solving the integral equation
(1) and thereby unfolding the angular correlations to
yield the momentum distribution p(p), and secondly
the physical problem of the interpretation of the p(p)
thus obtained. In this paper, a method is presented to
solve the 6rst problem, i.e., the determination of the
photon-pair momentum distribution, here considered
as a quantity of interest in its own right, from a set of
angular correlations, measured on a single crystal, which
successively is given different orientations with respect
to the z axis of the apparatus. A mathematically related
problem, encountered in radiology and involving the
determination of a function in a plane from its line in-
tegrals along a number of straight lines in that plane,
has recently been solved by Cormack. '

In the next two sections the mathematical details of
the method are given. In Sec. 2 it is shown how the
three-dimensional integral equation (1) may be replaced
by a set of independent one-dimensional integral equa-
tions. These equations are solved in Sec. 3 and from their
solutions the momentum distribution p(y) is built up.
In Sec. 4 the method is tested by applying it to a simple
model.

2. PRELIMINARY THEORY

If many-body effects are neglected, the probability
p(p) of two photons being emitted with momentum p is
proportional to

where the F~„(Q)are an orthonormal set of invariant
linear combinations of spherical harmonics of order l,
and 0 gives the orientation of p with respect to a suit-
ably chosen orthogonal coordinate system. The index
v is an arbitrary label to distinguish the various har-
monics of the same order and symmetry type. In the
case of cubic crystals, the appropriate lattice harmonics
are the Kubic harmonics of 0. type, given by Von der
Lage and Bethe, "for which l takes the values 0, 4, 6, 8,
10, 12 (twice), ~ . Corresponding harmonics for other
crystal systems may be derived in a simple manner.

Two orthogonal coordinate systems can now be de-
fined. The system R, with coordinates $, t), f is fixed to
the crystal and in orthogonal crystal systems coincides
with the three principal axes. In hexagonal crystals the
f axis is oriented along the c axis, while the ( and, ») axes
lie in the basal. plane. 0 gives the orientation of p with
respect to R,. The second coordinate system R, with
Cartesian coordinates x, y, z is connected to the appara-
tus, with the z axis along the direction of incidence of the
positrons and the x axis in the plane of rotation of the
movable detector. R, may be brought into coincidence
with R, by a rotation through the Euler angles ts, P, y (as
deftned by Rose").The angles P and cs are, respectively,
the polar and the azimuthal angle of the z axis with re-
spect to R,. The lattice harmonics have their simplest
form when expressed with respect to R,. As the integra-
tion in Eq. (1) has to be carried out in R„however, it
is necessary to express them in terms of spherical har-
monics with the z axis as polar axis. Remembering that
a lattice harmonic is a linear combination of spherical
harmonics

where D'(nPy) denotes the 2l+1-dimensional rotation
matrix representing the rotation transforming R, into
R„and () and P are, respectively, the polar and azi-
muthal angles of p in R,.

Equations (3) and (5) are now inserted into Eq. (1)
and after transition to the cylindrical coordinates h, P, s
the integration over P can be carried out, yielding

&~,-(P*) 2~ Z Z «-D-s"(~P0)

&& p~ (P)»'9' 0)pdp

for the angular correlation Xp, (p,) measured, with p,
along an axis in the direction (P,a) with respect to the
crystalline coordinate system R,. Since

D s"(nPO) = $4s./(21+1)g'~'J'P(P ts)

'J F. C. Von der Lage and H. A. Bethe, Phys. Rev. 71, 612
(1947)."M. E. Rose, ElemerItary Theory of Angular 3IIomeetum I'Joohn

Wiley R Sons, Inc., New York, 1957), p. 50.
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Yis(9,0)= L(23+ 1)/4s.j'"Pi(cos8)
be dropped from now on) and the Hankel transform of
p"'pi(p):

(cf. Ref. 11, p. 60), one fmally obtains, using Eq. (4)

&s.-(p.) "2~2 Z ~i-I'i "(P,~)gi.(p.)
l, v es

(2s-)—'~s e '**gi(z)dz= (—i)'x—'is

"2~Z Pi.(P,~)gi. (P*) (6)
X P,(PP„„,(P.)pdp. (9)

with

gi.(z) =

1,v

1 Zi

pi. (p)Pi(z/P)PdP (7)

Thus the radial part pi„(p)of the /th contribution to the
total momentum distribution p(p) is connected with the
function g&„(p,) by the one-dimensional integral Eq.
(7)

The angular correlation can be measured with the s
axis along a number of different directions in a single
crystal, providing a number of linear relations between
these angular correlations and the unknown functions

gi.(P.)

In order to avoid mathematical difhculties it is assumed
in this section that pi(p) falls off faster than p-'~' for
sufliciently large p, and that gt(z) and its first derivative
are continuous functions of s. The last condition, al-
though quite severe in theory, does not present diKcul-
ties in practice, since the finite instrumental resolution
will smooth eventual kinks in the angular correlations.

To prove Eq. (9) one takes the Fourier transform of
both sides of Eq. (7) and changes the order of integration
on the right-hand side:

(2s.) "' e * *gi(z)dz'

&'(P*)=Z~ F'~g (P*) (8) =(2s.) "' sszdg p~(p)Pi(z/P)PdP
Here the indices i and j form a shorthand notation for
the pairs of labels P, ts and l, i. For practical reasons the
number of orientations, for which the angular correla-
tion is measured, will be small. On the other hand the
expansion in Eq. (8) is infinite. To solve the system of
Eq. (8), in practice one assumes that the series con-
verges and truncates it at a certain point. If the number
of terms retained is less than the number of angular
correlations measured one by conventional matrix in-
version techniques" makes a least-squares fit of the
truncated series Eq. (8) to the angular correlations. If on
the other hand as many terms are retained as there are
angular correlations available, the method to obtain an
approximate solution of Eq. (8) is known as Houston's
method. "In-both cases a new system of linear equations
is obtained expressing the various gi„(p,) in terms of the
measured angular correlations. gi„(p,) is related to pi„(p)
by the integral Eq. (7), which will be solved in the next
section.

The present method can in principle also be applied
to point slit measurements, " giving rise to a slightly
different set of one-dimensional integral equations. How-
ever, the convenient reduction of the rotation matrices
to lattice harmonics does not take place and the compu-
tations become considerably more involved.

IZI

= (2s)-'is '**P (/p)d (10)

The integration with respect to s can be carried out,
yielding"

e '*'Pi(z/P)dz= (—i)'(27r/x)'isP"'Ji+„s(Px), (11)

f(1)J„(x&)tdh

from which Eq. (9) immediately follows. By inversion of
either the Fourier or the Hankel transform, Eq. (9) per-
mits in principle the computation of one of the functions
g~ and p~ if the other one is known.

From here on one may proceed in various ways to
find a solution of Eq. (7). The method described in this
paper consists of inversion of the Hankel transform and
performance of one of the integrations in the double
integral obtained for p&(p). An alternative solution by
expansion of pi(p) and g&(p) in series of, respectively,
Laguerre and Hermite polynomials will not be treated
here since the convergence of these series is poor when
p~ and g~ are not smooth functions.

The Hankel transform

3. SOLUTION OF THE INTEGRAL EQUATION of a function Jt'tj is inverted by"
As a first step an auxiliary formula will be derived,

relating the Fourier transform of gi(z) (the label s will

"C. Lanczos, A pplied Arlalysis {Sir Isaac Pitman R Sons, Ltd. ,
London, 1964), Chap. II.

"W. V. Houston, Rev. Mod. Phys. 20, 161 (1948l; M. Miasek,
J. Math. Phys. 7, 139 {1966).

~4 P. Colombino, S. Fiscella, and L. Trossi, Nuovo Cimento 27,
589 {1963).

f(P) = J„(Px)xdx f(&)J„(xt)ddt. (12)
0 0

"A. Erdblyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi,
TaMes of Integral Trarrsforms {McGraw-Hill Book Company, Inc. ,
New York, 1954), Vols. 1 and 2.' A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi,
EIigher TrarIscerIdental' FurlcHons {McGraw-Hill Book Company,
Inc., New York, 1953), Vol. 2, p. 73,
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[o~oj
TABLE I. Orientations phkt7 of p, for the angular correlations

used in the reconstruction of p(p), shown in Figs. 2 and 3.

Figs. 2(b) and 3(b)
h~k~l

Figs. 2(c) and 3(c)
h k l

Figs. 2(d) and 3(d)
h k l

4J

44
A I

how to expand such a multicentered distribution in
cubic harmonics. The angular correlations, a few of
which have been plotted in Fig. 1, consist of sets of in-
verted parabolas. A program was developed for use on
an Klectrologica X-8 digital computer. A variable num-
ber of crystal orientations was introduced, and the pro-
gram computed either a least-squares or the Houston
solution of Eq. (8). The cubic harmonics were taken
from recent work of MueBer and Priestley. ' The result-
ing gI functions were introduced into Eq. (19) and from
the computed p~'s the momentum distribution was re-
constructed as described in Sec. 3. A separate program
computed the standard deviation of each computed

p(p) value, which would be due to the counting statistics
in an actual experiment.

The erst results showed a number of sharp peaks and
troughs in the reconstructed p(p) distribution. This is to
be expected as the parabolic angular correlations for this
model show sharp kinks at the various cutoB angles,
such that the di6erentiability condition on the g~ func-
tions is not fulfilled. This problem was circumvented by
making the surface of the spheres somewhat disuse, thus
simulating a finite instrumental resolution. Mathe-
matically, such a diffuse sphere of average radius pp,
centered at q, may be described by

p(y)=As Erfc)(ip —qi —pp),

where ) is a constant large compared with 1/ps, deter-
rnining the thickness of the diGuse shell, Ao is the value
of p(p) at the center of the sphere, and

Erfc(x) = s='I' exp( —t')dt.

The angular correlations remain parabolic except for
narrow regions having a width of the order of 1/)I,
around the cuto6 points, where some rounding off takes
place (dashed curves in Fig. 1).For most computations,

' F. M. Mueller and M. G. Priestley, Phys. Rev. 148, 638
(1966).

P 02 0.4 0.6 09 ).0 ).2
MOMENTUM p

IN (ATOMIC UNITS}

Fro. 1. Calculated angular correlations for p, along the $100$,
L110$, and L111)directions of a fictive bcc crystal having a proba-
bility distribution as shown in the inset. Dashed curves indicate
the eR'ect of making the surface of the spheres somewhat diA'use.

I 0 0
I I 0
I I I

I 0 0
1 I 0
I I I
2 I 0
I I 2
2 2 I

I 0 0
I I 0

I
2 I 0
I I 2
2 2 I

I 4
I 3 4
3 3 4
4 I 0
I 2 4
4 3 0

a value of X=20 a.u. was used, corresponding to a resolu-
tion of about 0.6 mrad. A large number of cases was

computed in which the number of correlations, the di-
rections of p„and the number of terms retained in Eq.
(8) were varied. As soon as the number of angular corre-
lations became larger than about four, the Houston
method started to produce wildly fluctuating results for
p(p). This is not unexpected because it is always possible
to 6t a function containing n disposable parameters to
n prescribed values, but in the intervals between the
points at which the function is 6tted, there are no re-
straints on its behavior.

The least-squares inversion of Eq. (8), on the other
hand, gave useful results provided the number of terms
retained was equal to about half the number of angular
correlations. Figures 2 and 3 show some results for cases
in which the correlations were computed with p, in di-
rections with low Miller indices, listed in Table I. The
dashed straight lines indicate the Brillouin zone bound-
aries. The central Fermi sphere, represented by the 50
units contour, is well reproduced in all cases. Further-
more, it is clear that the representation of details in the
neighboring Brillouin zones, such as the higher momen-
tum spheres, rapidly improves when more angular cor-
relations are available. The distribution shown in Fig.
2b, obtained from three angular correlations with p,
respectively, along the [100], [110],and [111]axes,
is rather unsatisfactory. It can be improved [Fig. 2(c)]
by adding three more correlations and making a least-
squares Gt of go, g4, and g6. The additional information
contributed by the extra three correlations results in
smaller troughs on the [100]axes and between the cen-
tral and the secondary spheres, and in smaller Quctua-
tions within the secondary spheres. On the other hand,
it will also be clear from these plots that the number of
correlations required to obtain a major improvement in
the reproduction of the higher momentum spheres be-
comes impractically large. In practice, a certain amount
of distortion due to termination errors will therefore be
unavoidable.

The question may be asked whether crystal orienta-
tions other than the chosen ones might not give better
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FIG. 2. Reconstructed photon-pair
momentum distributions p(p) in the
(001) plane using various numbers of
angular correlations (AC's). (a) Theo-
retical distribution; (b) reconstructed
distribution using 3 terms obtained
from 3 AC's (Houston's method); (c)
same, using 3 terms obtained from a
least-squares fit to 6 AC's; (d) same,
using 6 terms from a least-squares fit
to 12 AC's. The orientations of p„
for which the AC's have been deter-
mined, are listed in Table I.

le&

results. ln order to get an impression of this, a few cases
were computed with a set of crystal orientations given
in Table II and described by Miller indices hk/ with /= 1
and h and k arbitrary (but not simple) fractions. Figure
4 shows the result of two of these computations, in
which three and six correlations, respectively, were used
to determine the ftrst three terms of the series Eq. (3).
Comparison with Figs. 2 (b) and (c) shows that especially
the three-correlation case yieMs far better results than
the corresponding one starting from correlations with
p, in directions of high symmetry. The explanation of
this fact can be found in the expression t Eq. (18)) for
the p~ functions. The integrand has pronounced maxima
at the points of maximum curvature of the angular cor-
relations, i.e., in the narrow intervals around the cuto6
points of the inverted parabolas. If p, is chosen along an
axis of high symmetry, the projections on that axis of
a large number of secondary spheres coincide. As a result
the integrand of Eq. (18) will show a small number of
very pronounced maxima, and the pg function will
exhibit a few slow oscillations of a large amplitude
around its proper value. If, on the other hand, the an-
gular correlations are computed for p, lying in directions
of low symmetry as in Fig. 4, the projections of the
secondary spheres on these directions will not coincide.
The p~ functions will then rapidly fluctuate with a small
amplitude around their proper values, and the resulting

TABLE II. Orientations Phkl j of P, for the angular correlations
used in the reconstruction of p(p), shown in Fig. 4.

Fig. 4{a)
k l

Fig. 4{b)
l

0.15 0.09 1.00
0.65 0.85 1.00
0.16 0.79 1.00

0.15
0.65
0.16
0.14
0.33
0.42

0.09
0.85
0.79
0.44
0.81
0.61

1.00
1.00
1.00
1.00
1.00
1.00,"

p(p) distribution will be a closer approximation of the
theoretical one. Thus it is found that the common prac-
tice of measuring only a few angular correlations for p,
oriented along the axes of highest symmetry is un-
favorable for the accurate determination of the p(p)
distribution.

It was furthermore noted that peaks in the model dis-
tribution were well reproduced only when not too sharp.
A few computations were made in which the secondary
spheres were replaced by Gaussian peaks centered at
the nearest neighbor sites. The width of these Gaussians
could be varied. Broad peaks presented no problems,
but when their width was gradually decreased a broad-
ening occurred, first of all in the tangential directions.
Only for very sharp peaks some broadening in radial
direction was noticeable, but long before that many
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FrG. 3. Same as Fig. 2, but in the
(110) plane.

LO

MOMENTUM lN (A.U)
LO

I

R.O

FrG. 4. Reconstructed photon-pair momentum distributions
p(p) in the (001) plane starting from AC's with P. along directions
of no particular symmetry. (a) 3 terms obtained from 3 AC's; (b)
3 terms obtained from 6 AC's. Table II gives the orientations of
p, used to determine the AC's.

parasitic peaks and troughs had started to appear at".

various positions, increasing in amplitude and sharp-
ness as the Gaussians were narrowed, and rendering the
result useless.

The question of how far the systematic errors de-

scribed above are acceptable is closely connected to the
extent to which the uncertainty due to counting statis-
tics manifests itself in the final p(y) distribution. Equa-
tion (19) has the property of strongly amplifying varia-
tions in the g~ functions, especially if / becomes large.

Incorporation of more terms into the series Eq. (3) will

therefore cause a rapid increase of the statistical uncer-
tainty in Io(p), which after a certain point will offset the
improved reproduction. Thus if the total duration of
a measurement to determine p(p) is assumed to be fixed
there exists an optimum between the distortion by sys-
tematic errors and the uncertainty stemming from sta-
tistical errors.

In order to gain some insight into the latter source of
error, the standard deviation o(p) of each value p(p),
caused by the statistical uncertainty in the angular
correlations, was computed separately and plotted in
the same way as p(p). A striking feature is its pro-
nounced anisotropy, with strong maxima in the $100],
L110j, and L111]directions. In many cases o was found
to vary with angle by a factor of 2 or more. The choice
of the crystal orientations, for which the angular corre-
lations are determined, is also of importance. The arbi-
trarily chosen orientations used in Fig. 4 yield a standard
deviation o (y), which consistently lies 10 to 40% higher
than the corresponding quantity for the distribution of
Figs. 2 (b) and (c), obtained from crystal orientations of
high symmetry. The reason for this increased sensitivity
to the statistics of the angular correlations is not im-
mediately apparent, nor has it become clear whether
the directions of high symmetry are the most favorable
ones from the point of view of statistics.
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Quantitatively, all these results are, of course, strictly
valid for the chosen model only. It is felt, however, that
in a qualitative sense the observations described in this
section will have a more general validity, irrespective of
the model. The mode1 chosen here is a rather severe test
of the method, as real metals, especially those of cubic
symmetry, are often considerably less anisotropic, so a
better reproduction of the actual probability distribu-
tion may be expected. The next step therefore ought to
be a real, high-accuracy experiment on a metal with a
well-known Fermi surface in order to see how well the
shape of the Fermi surface can be derived from positron
annihilation measurements. Such an experiment is pres-
ently being set up at this institute.

5. SUMMARY

In the present paper, a method has been developed to
reconstruct the two-quantum momentum distribution
from a number of angular correlations, measured for
various orientations of a single crystal. In order to ob-
tain a reliable picture of the momentum distribution, a
considerably larger than usual number of correlations
may be required. Moreover, if only a few correlations

are measured, the common practice of choosing p, along
axes of highest symmetry is unfavorable for an accurate
determination of the momentum distribution, Distri-
butions with a smoothly varying angular dependence
are expected to be reproduced rather well, but diKcul-
ties may be experienced with distributions showing

sharp peaks in certain directions. If the total measuring
time is kept fixed, there exists an optimum between the
effects of systematic and statistical errors. The position
of this optimum depends on the choice of the set of crys-
tal orientations for which the angular correlations are
determined.
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The electro-optic effect in crystals can be separated into two types of microscopic interaction: an electron-
lattice contribution in which the applied Geld produces a lattice displacement, which in turn modiGes the
electronic polarizability (or refractive index), and a direct electron-Geld contribution in which the applied
Geld modifies the electronic polarizability in the absence of lattice displacements. The latter contribution
in LiNbO& and LiTaO3 can be estimated from second-harmonic-generation experiments by Miller and

Savage, and accounts for less than 10% of the refractive-index change. Each polar-lattice optic mode in

LiNbO& and LiTaO& (4A&+9E) contributes separately to the electro-optic effect an amount proportional
to the product of its Raman-scattering efficiency and infrared oscillator strength. We have measured the
absolute scattering efIiciencies for LiNbO~ and LiTa03. The oscillator strengths for LiNb03 have been
measured by Barker and Loudon. We Gnd that the dominant contribution to the electro-optic coefBcients

r33 and r» comes from the lowest-frequency A & mode; and to r4& and r» from the next lowest E mode. These
same modes dominate the low-frequency dielectric constant. The absolute values of r», r», r42, and r»
calculated from the combined Raman, infrared, and second-harmonic-generation data are in excellent
agreement with the electro-optic coefIicients measured directly by Turner. In addition to the absolute
scattering efhciencies for all the transverse and longitudinal modes in LiTa03 and LiNbO3, we have also
determined the mode frequencies and linewidths, which are important in calculating Raman gain.

PONTAXKOUS Raman scattering is a form of light

~

~

modulation that is produced by thermally excited
lattice modes. In a piezoelectric crystal, some of these

same modes can be excited by an externally applied
electric field to produce light modulation by means of

the linear electro-optic effect. %e derive' a simple rela-
tionship between an electro-optic coeKcient measured at

'I. P. Kaminow, in Ferroelectricity: Proceedings of the Sym
posigm on Ferroelectrm~ty, General Motors Research Laboratories,
Warren, Michigan, 1966 (Elsevier Publishing Company, Inc. ,
Houston, Texas, to be published).


