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Divacancies and trivacancies in body-centered-cubic metals are classified and discussed for the nearest-
neighbor and the next-nearest-neighbor interaction. The general kinetic equations are given. The formation
of divancancies during quenching and annealingis discussed in detail.

I. INTRODUCTION

ACANCIES play an important role in the motion
of atoms in face-centered cubic metals. Hunting-
ton and Seitz! first proposed that the self-diffusion in fcc
metals is conducted by a vacancy mechanism. This
mechanism is verified by quenching experiments.? In
recent years experimental techniques®~5 have been de-
veloped to quench the metals which oxidize upon heat-
ing in air. Schultz* quenched tungsten in liquid-helium
IT and has shown that the self-diffusion in tungsten, a
body-centered cubic metal, is probably also conducted
by a vacancy mechanism. He found that the formation
energy of a vacancy in tungsten to be 3.30 eV. He also
cold-worked tungsten and obtained the activation
energy in Stage III to be 1.70-1.95 eV.% The activation
energy for the self-diffusion in tungsten is reported to be
5.23 eV.% He obtained the activation energy for the
motion of a vacancy in tungsten to be 1.93 eV assuming
that the self-diffusion is conducted by a vacancy
mechanism. Recently Galligan measured the activation
energy for the motion of a vacancy in tungsten using a
field ion microscope and determined the activation
energy for the motion of a vacancy to be 2.0 €V in
tungsten.” In a fcc metal, most of the point defects pres-
ent at high temperatures are vacancies because the
energy to form an interstitial is rather high. In bec
metals on the other hand, the energy to form an
interstitial is probably not as high as in fcc metals be-
cause the bec lattice is not as closely packed and has
more vacant space. It is, however, clear that vacancies
play an important role for the motion of atoms in bcc
metals.

Divacancies in fcc metals are commonly observed
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and are always more mobile than single vacancies in
fcc metals. Seitz® first suggested that there may exist a
positive attractive binding energy between two vacan-
cies. Bartlett and Dienes® estimated that the binding
energy of a divacancy is between 0.23 and 0.59 eV in
copper. The binding energy of divacancies in certain
metals is summarized in Table I1.9-22

When a metal is quenched from a high temperature,
divacancies are formed during quenching even in a high-
speed quench. The formation and breakup of divacan-
cies during the quench was first treated analytically by
Koehler, Seitz, and Bauerle.2® There exists a critical
temperature 7* above which single vacancies and di-
vacancies are still in thermal equilibrium with each
other. Below T* the single vacancies do not move fast
enough to maintain the thermal equilibrium between
single vacancies and divacancies. Fujiwara® calculated
the formation of divacancies during a quench using a
digital computer. Cotterill?>_used an analog computer
and plotted these reactions. Mori, Meshii, and Kauff-
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497



498 MASAO
TasiE I. Binding energy of a divacancy.
Metal eV References

Au 0.1 (E)» 2,14
0.1~0.2 (E) 15

0.3 (BE) 10, 11

12,13
Ag 0.38 (E) 3
0.19 (E) 16
Al 0.17 (E) 17
Cu 0.23-0.59 D) 9
0.64 @)} 18
0 19

0.1~0.2 ()] 20, 21
Fe 0.20 (¢)) 22

a (E) means an experimental and T a theoretical value.

man'® carried out systematic experiments to study the
effect of the quenching rate on quenched-in vacancies.
This work was carefully reexamined by Flynn, Bass,
and Lazarus?®* Kimura, Maddin, and Kuhlmann-
Wilsdorf?” also examined the process. Koehler, de Jong,
and Seitz? calculated the critical temperature 7* for a
linear and exponential quench. Doyama?® extended this
treatment to a general quenching. Much work remains
to be done in this important field of vacancies and
vacancy clusters in bec metals. In this paper the forma-
tion of divacancies in bcc metals during quenching and
annealing is discussed in detail.

II. SINGLE VACANCIES IN BODY-
CENTERED-CUBIC METALS

In Fig. 1(a) site A represents a single vacancy in a
body-centered cubic metal. When atom B moves to
vacant site A, atom B has to squeeze through the hole
at N, the center of triangle CDE and M, the center of
triangle FGH. There are two peaks in the energy of the
system when atom B moves to site A [Fig. 1(b)].
Activation energy for the motion of a single vacancy is
represented by E¥ in Fig. 1(b). At I, which is the
middle point of sites A and B, the energy of the crystal
has a local minimum. There are two half vacancies at
sites A and B and an interstitial atom at I for this
configuration. This configuration will be called “acti-
vated single vacancy.” This configuration is metastable.
Let the energy at I be E; higher than the energy at a

% C. P. Flynn, J. Bass, and D. Lazarus, in Latlice Defects in
Quenched Metals, edited by R. M. ]. Cotterill, M. Doyama, J. J.
Jackson, and M. Meshii (Academic Press Inc., New York, 1965),
p. 639.

27 H. Kimura, R. Maddin, and D. Kuhlmann-Wilsdorf, Acta
Met. 7, 154 (1959).

28 J. S. Koehler, M. de Jong, and F. Seitz, Proceedings of the
International Conference on Crystal Lattice Defects, 1962 (un-
published) ; J. Phys. Soc. Japan 18, Suppl. 3, 1 (1963).

» M. Doyama, in Laitice Defects in Quenched Metals, edited by
R. M. J. Cotterill, M. Doyama, J. J. Jackson, and M. Meshii
(Academic Press Inc. New York, 1965), p. 167
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F16. 1. (a) Site A represents a single vacancy in a body-centered
cubic metal. When atom A moves to vacant site A, atom B
squeezes through the hole at N; the center of triangle CDE and M,
the center of triangle GFH. (b) Schematic diagram for the motion
of vacancy in a body-centered metal. There are two peaks in the
energy of the system. At I, which is the middle point of sites A
and B, the system has metastable state.

position where the vacancy is stable. Let the fractional
concentrations of single vacancies and activated single
vacancies be C; and Cr. At thermal equilibrium the
following relation is obtained.

CI/Cx=A exp(—-El’/kT) y

where 4 is a constant.

1

III. DIVACANCIES IN BODY-CENTERED
CUBIC-METALS

A divacancy in a face-centered cubic metal is shown in
Fig. 2(a). It has four common nearest-neighbor atoms
to two vacant sites and fourteen nearest-neighbor
atoms to one vacant site. In a body-centered cubic
metal, the type-I divacancy has no common nearest-
neighbor atoms to two vacant sites but all fourteen
nearest-neighbor atoms are at least one nearest neighbor
to one vacant site. The type-II divacancy shown in
Fig. 2 has two vacant sites in the next-nearest neighbor-
positions. This configuration has four common neigh-
bors. Let the radius of an atom in a bcc metal be 7,
which is half of the nearest-neighbor distance. For the
motion of a single vacancy, dotted lines in Fig. 3(a)
show the planes of two saddle points ({111} planes) as
described in Sec. II. At the saddle points the radius of
the hole for the motion of a single vacancy in a hard-
sphere model is (4v2/3—1)7o=0.8857¢. For the motion
of type-I divacancies, the divacancy has to be broken up
into (1) type-II divacancy or (2) two isolated vacancies
which are more than next-neighbor distance apart. The
motion from type I to type II is shown in Fig. 3(a). One
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(a)

Type I Type I

(b) (c)

F16. 2. Divacancies. (a) a divacancy in a face-centered cubic
metal. Four black points are the positions of the four common
nearest-neighbor atoms for the divacancy. (b) Type-I divacancy in
a body-centered cubic metal. Two vacant sites are nearest
neighbor- each other. (c) Type-II divacancy in a body-centered
cubic metal. Two vacant sites are next-nearest neighbor.

of the locking atoms on one of the two saddle-point
planes is missing. Atom A can squeeze through this
triangle with less activation energy than is required for
the motion of a single vacancy. Atom A, however, has
to go through the center of the other triangle. The
activation energy for this process is then almost the
same as that of the motion of a single vacancy. Also, for
the motion of a divacancy, the additional energy differ-
ence, Bor— Borr, between the binding energy of type I
(Bar) and type IT (Bary) is required.

The motion of type II to type I is the reverse of the
process discussed above. In this case the motion of a
type-II divacancy is also as easy as the motion of a
single vacancy. A divacancy can move through type I
and type II in an alternating manner.

Eight nearest-neighbor bonds are broken to form a
vacancy in‘a’bcc metal. One of the eight atoms next to

(a) (b)

Fi1G. 3. (a) Motion of divacancy type 1. Two vacant sites are
at A and B. Type I can be changed to type II which vacant sites
are at A and C by squeezing atom C to site A. (b) Triangle at the
saddle point for the motion of a vacancy in a body-centered cubic
metal. For the motion of a divacancy one of the atoms on one
triangle is missing.
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the vacancy has to be removed to make a type-I
divacancy. Seven bonds are broken for this process. In
a very simple and naive calculation, the binding energy
of a divacancy in a bcec metal is about one-eighth of the
nearest-neighbor bond. If the electron redistribution
and extra relaxation around a divacancy are neglected,
the binding energy of a divacancy in a bcc metal is
about one-fourth of the formation energy of a single
vacancy. The binding energy of a type-II divacancy is
probably not much different from a type-I divacancy
because the distances between two vacant sites are do
and 2d,/V3 for type.I and type II, respectively. The
values of the pairwise potential for these two cases are
not very different.?2:30-%

Johnson? calculated the binding energy "and the
activation energy for the migration of a divacancy in

(o) (b) (c)

1

!
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(d) (e) (f)

Fi1c. 4. Configurations of trivacancies in a body-centered metal.
Solid thick lines represent nearest-neighbor bonds and dotted lines
represent next-nearest-neighbor bonds. (a) 71° trivacancy, (b)
109° trivacancy, (c) 180°(T) trivacancy, (d) 90° trivacancy, (e)
144° trivacancy, and (f) 180°(II) trivacancy.

iron using a pairwise interaction. He obtained the
binding energies of type-I and type-II divacancies in
iron to be 0.13 and 0.2 eV, respectively. He also calcu-
lated the activation energy for the motion of a vacancy
in iron and obtained 0.68 eV. For the migration of a
divacancy from type II to type I he obtained 0.66 eV.
This calculation is consistent with the explanation
given in the preceding paragraph.

IV. TRIVACANCIES IN BODY-CENTERED
CUBIC-METALS

Trivacancies in a face-centered cubic lattice have four
configurations.'*?® de Jong and Koehler classified these

% R. M. J. Cotterill and M. Doyama, Bull. Am. Phys. Soc. 11,
219 (1966).

31 M. Doyama and R. M. J. Cotterill, Bull. Am. Phys. Soc. 11,
460 (1966).

# L. A. Girifalco and V. G. Weizer, Phys. Rev. 114, 687 (1959).



500

configurations and named them ‘“doglegs.” In a body-
centered cubic lattice there are three configurations and
these are shown in (a), (b), and (c) in Fig. 4. The angles
between the nearest neighbor bonds are 70°32’, 109° 28,
and 180°. These will hereafter be called 71° trivacancy,
109° trivacancy, and 180°(I) trivacancy, respectively.
When the next-nearest-neighbor bonds are considered,
there are three more configurations which are shown
in (d), (e), and (f) in Fig. 4. The angles between the
bonds are 90°, 144°, and 180°. These will hereafter be
called 90° trivacancy, 144° trivacancy, and 180°(1I)
trivacancy, respectively. In Fig. 4 the nearest-neighbor
bonds are shown with solid lines and the next-nearest-
neighbor bonds are shown with broken lines. In a fcc
metal the common nearest neighbor of a 60° tri-

.MASAO DOYAMA
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vacancy relaxes to the center of the tetrahedron formed
by the common nearest neighbor and three vacancies.33:3
A similar large relaxation, however, does not occur in
the trivacancies in a bcc metal. The trivacancies are
probably as mobile as the divacancies in a bcc metal.

V. NEAREST-NEIGHBOR INTERACTION

In this section the interaction between atoms farther
than the nearest-neighbor interaction is ignored, and
only the nearest-neighbor interaction is considered.

A. General Kinetic Equations

The phenomenological kinetic equations for pure
metals assuming the nearest-neighbor interactions are:

dCy/dt=—2a(VV — d; A)Ce+2a(d— V, V; A)Ca—a(d, V — i11; 4,)CiCata(f— d, V; A)Cs
~a(d, V= 19 A)C:Cota(t®— d, V; A)CI®—a(d, V= 19, A)C.Cota(f®— d, V; 4)Cs®
—a(V, V,V— 1 A)Ci+3a(it— V, V, V; A)Cll—a(V, V, V= 19; 4,)Ce
+3a(1®— V, V, V; A)Cs®—a(V, V, V— £, A)Ci+3a(1®— V, V, V; A)Ca®

dCy/dt=—+a(V,V — d; A)C—a(d— V, V; A)Ca—a(d, V — 1; A)CiCota( — d, V; A)Ci

dC1Y/dt=+a(d, V — 1 A))CiCr—a(ft— d, V; A)Cs'—a (i1t — £99;

—a(f— d, V3 A)Csi+a(t, V — i A)CiCa—a(ft— V, V, V; A)Cs

dC5/dt=—a (89 — £1; A)Ca®F-a(f — 19; A)Cii—a(f%— d, V; A)Cs®+a(d, V— 09; 4)CiCs

18“/dzf=—oz(t1""—>d V; A)C'®+ta(d, V— 19, A)CiCo—a(f®— V, V, V; A)Cy'®

—a(V, 1 — te; A)C1Cs"+D,V?Cy;  (2a)

—a(d, V— 09; A)CiCata(t®— d, V; A)Cs®—a(d, V— £189; A)C1Cata(t®— d, V; A)C5®
—a(d, d— te; A)C+DyV?Cq;  (2b)

A 2)C371+O£ (llOQ —_— t'll; Azl)cslﬁ's

+a(V, V, V— 11 45)C3+Ds"VCs™;  (2c)
—a(f®— V, V, V; A)Cs®+a(V, V, V— 19; 4;)C3+Di®V2Cs®;  (2d)
+a(V, V, V— 18; 4)CP+Dy¥VIC®;  (2e)
(2f)

dC4/dt—a(t—>te)C1C3—l—a(d d'—>t6 A)C 2D, V?Cy.

In these equations C; is the fractional concentration of
single vacancies, Cp is the fractional concentration
of divacancies, C3™ is the fractional concentration of 71°
trivacancies, C3! is the fractional concentration of 109°
trivacancies, C'® is the fractional concentration of 180°
trivacancies, and Cy is the fractional concentration of
tetravacancies. (For simplicity only one kind of tetra-
vacancy is included; larger vacancy clusters are ex-
cluded.) Rate constants « are given in Table II for the
nearest-neighbor interaction. In Fig. 5(a), » is the
frequency of vibration of a shaded atom which is a
nearest neighbor of a lattice vacancy. vz is the fre-
quency of vibration of the four shaded atoms [one of
which is shown in Fig. 5(b)] which are nearest neighbors
to both of the vacancies in a type-II divacancy. 10972 is
the frequency of vibration of the two atoms [Fig. 5(c)]
which are nearest neighbors to both of the vacancies
which are in the third nearest-neighbor position to

each other. »; is the frequency of vibration of the atom
[Fig. 5(d)] which has three vacancies. There are a few
configurations, one of which is shown in Fig. 5(d). Dy is
the diffusion constant associated with the motion of
single vacancies; D is the diffusion constant associated
with divacancy migration; D; is that associated with
trivacancies. Ev is the activation energy for the migra-
tion of single vacancies, E4 is the activation energy asso-
ciated with the conversion between the 71° trivacancies.

B. Kinetic Equations for the Formation of Divacancies

For the nearest-neighbor interaction the kinetic
equations between single vacancies and divacancies in

% A. C. Damask, G. ] Dienes, and V. G. Weizer, Phys. Rev.
113, 781 (1959).

34R M. J. Cottenll and M. Doyama, in Laitice Defects in
Quenched Metals, edited by R, M. J. Cotterill, M. Doyama, J. J.
Jackson, and M. Meshii (Academic Press Inc., New York, 1965),
p. 653.
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TaBLE I1. The rate constants of the kinetic equations between defects for the nearest-neighbor interaction.

Reaction Constants
I1 V-V a(V— V; A) =8y exp(—Ev™/kT)
It d— V4V a(d— V, V; A)=14v; exp{— (EyM-+Bs)/kT}
III 1 {1 — 7 a(t™ — (1 Ay) =4 nps exp(— EM/ET)
2 41— 1109 a(f™t — 89, 45)=2 s exp{— (Es¥+B1—Ba®) /kT}
3 M dtV a(ft—d, V; 4) =10y, exp{— (Ev¥+B— Bs) T}
4 M VAV a(' =V, V, V; 4) =20, exp{— (Ey™-+B) /kT}
IV 1 #1090 — 471 (119 — {113 Ag) =2 1002 exp{— (EsM+B®—B,™) /kT}
2 19— d4+V a(®®—d, V; A) =12y, exp{— (Ev¥+B"®— By) /kT}
3 9 —V+v+4+vV a(t®—V, V, V; A)=8y exp{— (Ev¥+B)/kT}
vV 1 #neo — 4+ vV a(t®—d, V; A) =14y, exp{— (EvM+B ) /kT}
10 VAV a(i® =V, V, V; 4) =6, exp{— (Ev¥-+Ba%)/kT}
VI 1 d+V - a(d, V — 1, A) =24y, exp{— (Es®+B.—B") /kT}
2 AV — o a(d, V — 89, 4) =24y, exp{— (Es"+Bs— B /kT}
3 a+V — pso a(d, V— 118; A)=14p; exp{— (Ev¥+B.— B®) /kT}

VIL 1 V4V4V -m
2 V4VHV e
3 VHVHV a0

VIII V+V —d

a(V, V, V=1 Ag)=24 11pp CXP(_EdM/kT)
a(V,V, V—199; 45)=12y5 exp(— EM/kT)
a(V, V, V — #18; 4,)=6v; exp(— EM/kT)

a(V,V —d; A)=56v, exp(—EvM/kT)

a body-centered-cubic crystal are as follows:

aCy Eyht
—=—112C¢n exp<——~)

Y ET
+285,C ( EVM+32>
14 € —_——
2 &P T
C: 10C,
- =421 )
ar:  r 9r
5Cr_seca ( EVM)
—= v1 exp| ———
ot O\ T
147:,C ( EVM_I_Bz)
1dCa expf — T T2
P T
®C, 104G,
R e e
or: r Jr

where C; and C; are the fractional concentrations of
single vacancies and divacancies; »; and »; are the ap-
propriate frequency coefficients for the migration of a
vacancy and for the dissociation of a divacancy. D;
and D, are the diffusion constants associated with the
motion of single vacancies and divacancies, respectively.
Ey™ and B, are the activation energy for the motion
of a single vacancy and the binding energy of a di-
vacancy, respectively. 7 is the distance from a sink. The
geometrical coefficients were derived as follows: a single
vacancy has eight nearest neighbors. If another vacancy
comes to one of these eight lattice sites, then a di-

vacancy is formed. Each of the eight sites has seven
sites from which a vacancy can come in. Each time a
divacancy is formed, two single vacancies disappear.
The geometrical factor of the first term of Eq. (3a),
therefore, is 8 X7X2=112. A divacancy has fourteen
sites to break up and each breakup forms two single

O
(a) vy,

@ @
(€) 10972 (d) vy

F16. 5. Definition of vibrating frequencies of atoms next to
vacancies in the kinetic equation. (a) » is the vibrational fre-
quency of an atom next to a vacancy in a bee metal. (b) mivz is the
vibrational frequency of an atom common nearest neighbor to a
71° trivacancy. (c) 102 is the vibrational frequency of an atom
common to a 109° trivacancy. (d) »s is the vibrational frequency
of an atom common to three vacancies.
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I'16. 6. The equilibrium concentrations of single vacancies and
divacancies are plotted with a function of temperature. The total
void concentration is 10™. Figures 6, 7, and 8 are independent of
the activation energy for motion or formation energy of a vacancy.

vacancies. The geometrical factor of the second term of
Eq. (3a), therefore, is 14X 2=28.

C. Thermal Equilibrium

At thermal equilibrium between single vacancies and
divacancies the formation and breakup of divacancies
are equal, i.e.,

Co= 4C12 €xXp (Bz/k T) . (4)

When a total void concentration C,(=C:+2C;) is
given, Cy is

C1=exp(— Ba/ET){(1432C, exp(Bo/kT))2—1}/16.

The equilibrium concentrations of single vacancies and
divacancies are plotted in Figs. 6, 7, and 8 for C,=10%,
1075, and 1075, respectively. These figures are inde-
pendent of the activation energy for the motion of a
vacancy. These figures are good for any body-centered
metals. At high temperatures much above 7+ where the
fractional concentration of divacancies is much smaller
than that of single vacancies, then

c~C te
The fractional concentration of divacancies C; is
Coy=4C ¢ exp(By/kT).

When the logarithum of C; is plotted against 1/T at
high temperatures C; curves show straight lines with
the slope of By/k. Cy is constant at high temperatures
(Figs. 6,7, and 8). At low temperatures much below 7+

MASAO DOYAMA
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where the equilibrium fractional divacancy concentra-
tion is much higher than that of single vacancies

Co~C,/2
and
Ci1= (2Cy)"? exp(— By/2kT) /4.

When C; is plotted against 1/7, C; curves show straight
lines with the slope of Bs/2k. C; is constant at low
temperatures (Figs. 6, 7, and 8). Tt is given by

TH=— (k/Bz) 1n4C1,

where Tt is the temperature at which the fractional
concentrations of single vacancies and divacancies are
equal.

Koehler, Seitz, and Bauerle®® and de Jong and
Koehler™ pointed out that a single vacancy will spend
a fraction of its life as a single vacancy and the rest of it
as a divacancy. In the diffusion process involving lattice
vacancies, an effective diffusion constant D, which is
given by

D=D1T1/(7'1+4:T2) . (5)

The number 4 occurs because the gradients under which
single vacancies and divacancies diffuse are coupled by
the equilibrium condition. D= w142 exp(—Ey™/kT) is
the diffusion constant for single vacancies. The average
life time 7 of a single vacancy is given by 1/7;= 56w,
Xexp(—Ey™/kT). In pure metal, a single vacancy lives
until it encounters another single vacancy forming a
divacancy. 1/72=14v; exp{— (Ev¥+B,)/kT} gives the
average lifetime 7, of a divacancy which ends when it
dissociates into two single vacancies. Assuming that
single vacancies and divacancies both diffuse and that
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Fi16. 7. The equilibrium concentrations of single vacancies and
divacancies are plotted with a function of temperature. The total
void concentration is 1075,
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Fi6. 8. The equilibrium concentrations of single vacancies and
divacancies are plotted against the reciprocal of temperature. The
total void concentration is 1076,

the vacancies and divacancies maintain their local
equilibrium ratio, Fick’s law requires an appropriate
diffusion constant to describe the flow of voids, which
in our case is given by D. This can be shown as follows:
Let z be the local void concentration, i.e.,

2=C1+2C,. (6)

Assume that a gradient exists in z in the « direction. If
the single vacancies and divacancies are in equilibrium
with each other, the relative concentration of single
vacancies and divacancies is given by Eq. (4). The flux
of voids which results from single-vacancy motion can
be derived from the gradient of z using (4) and (5).

dCy via® exp(—EvyM/kT) dz
—= —.
90X 1416C; exp(By/kT) dX

The total flux of voids J, is D1(8C;/8X). Fick’s law is
obeyed, i.e.,

™

J.=—D(92/9X). ®)
The effective diffusion constant D is therefore
v1a® exp(— EyM/kT)
T 1416Cy exp(Bo/kT)

©)

D. Divacancy Formation During Quenching

Before a specimen is quenched single vacancies and
divacancies are in thermal equilibrium at a temperature
Tgq, and the temperature of the specimen drops very
rapidly during quenching. Divacancies are formed even
during a rapid quench. Koehler ef al.,® and Fujiwara®
show that there exists a critical temperature 7%, above
which the reactions between single vacancies and di-
vacancies are still in thermal equilibrium, but below
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which the single vacancies do not move fast enough to
maintain the thermal equilibrium. We assume that no
vacancies anneal during quenching. This assumption is
not very serious because the annealing of vacancies
above T* does not alter the discussion. The annealing
of vacancies only lowers the effective quenching tem-
perature. Then the kinetic equation is

dCy Ey™

e 112C 2 e (—-—>
dt PSP\ T

128C ( EVM+B2> (10)
2V1 €XP BT .

Since it is assumed that no vacancies nor divacancies
anneal out from the specimen during quenching, it

follows that
Ci=const.=C1+2C,. (11)

Differentiating Eqs. (4) and (11) with respect to time
¢ the following equations are obtained:

dCs Bs\dCy, 4CB, By\dT
——=8C1exp< )-————— e ( ) , (12)

dt kT kT ET

dCy  dC,

—_—=—2—. (13)
dt dt

Using Eq. (13), Eq. (12) becomes

aT kT2 B, dCy
—_— exp< >|:1+16C1 exp( ):I
dt  8B,C kT kT,

Here we take the first term of Eq. (12) for the loss of
single vacancies, i.e., the formation of divacancies. Then

dCl/dl= —112C12V1 exp(—EVM/kT). (15)
From Egs. (14) and (15), one finds

d 14v,kT? Ey™M
(D)l 2
dt B, kT
B,
X |1+ 16C, exp(——)} . (16)
kT,

From Egs. (11) and (10),

cmsen{ D) (ssm(3) -

Equation (16) can be written as

d 14v,RT? EyM4B,
(-t 2
dt B,

kT

B2 1/2
X 11432C, exp(— )} , (18
|rrancem()} an

. (14)
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F16. 9. The values of the critical cooling rate for the formation
of divacancies at various temperatures for Ey¥=0.9 eV. This

figure can be directly used for the relation between the cooling
rate and the ciritical temperature. Iron is close to this case.

If one knows »1, Ev™, Bs, and C,, the value of the right
side of Eq. (18) can be calculated as a function of tem-
perature 7. At any temperature T, dT/d¢ can be calcu-
lated; this will be called the “critical cooling rate.” If
the specimen is cooled slower than the critical cooling
rate, the thermal equilibrium between single vacancies
and divacancies is maintained. If the cooling rate is
faster than the critical cooling rate, single vacancies
move too slow to maintain the thermal equilibrium
between single vacancies and divacancies. When the
cooling rate is known, the critical temperature 7* can be
calculated. Above 7* thermal equilibrium between
single vacancies and divacancies is maintained but
below T* single vacancies move too slow to maintain
the thermal equilibrium between single vacancies and
divacancies and the situation at 7% is preserved.
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Fi16. 10. The values of the ciritical cooling rate for the formation
of divacancies at various temperatures for Ey¥=1.5 eV. This is
also for the plot of the cooling rate versus critical temperature.
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At T=T*

<dT> 14,k T*2 < EVM"I—Bz)
_ = exp( ————
dt/ perx B, kT*

By \ Y2
X {14-32C, — . (19
[rcien(z)] -

The values of the critical cooling rate at various tem-
peratures for EyM=0.9 eV are given in Fig. 9. »; and
C, are taken to be 10 sec™ and 105, respectively. This
case is somewhat similar to the case for iron. The values
of the critical cooling rate at various temperatures
for body centered metals having Ey¥=1.5 eV and
EyM=2.0 eV are also plotted in Figs. 10 and 11, re-
spectively. »; and C; are also taken to be 10% sec™! and
1075, respectively. These cases are also somewhat
similar to the cases for molybdenum® and tungsten,?
respectively.
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EM-20ev
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TEMPERATURE (critical temperature) IN °C

F16. 11. The values of the critical cooling rate for the formation
of divacancies at various temperatures for Ey¥=2.0 eV. Tish
figure can be directly used for the relation between the cooling
rate and the critical temperature. Tungsten is close to this case.

E. Divacancy Formation During Annealing

A quenched specimen contains single vacancies and
divacancies and the relative concentration can be
estimated from the critical temperature 7* as discussed
in Sec. VD. The fractional concentration of di-
vacancies (Cq)o after a quench is

(C2)o=4(C1) e exp(By/ET*)

Bz B2 1/2 2
exp(‘,ﬁ{[“m exp(;f;)} ‘1]

(20)

ok

# J. D. Meakin, A. Lawley, and R. C. Koo, in Lattice Defects in
Quenched Metals, edited by R. M. ]. Cotterill, M. Doyama, J. J.
Jac7k657on, and M. Meshii (Academic Press Inc., New York, 1965),
p. 767. .
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When the annealing of vacancies and divacancies into sinks is small and the loss can be neglected, then
Ci=C11+2C,.
Using this equation, Eq. (10) can be integrated.
Crm exp{ — (t-+1t0)/7} — 1+ {1+32C, exp(By/kT)}*[1+exp{ — (t-+1)/7}]
16[1—exp{— (¢++4)/7}] exp(Bs/kT)

) @

where .
1= 14y, exp(— —E-ZEE) { 1+432C, exp(ﬁ) l (22)
T kT kT.
16(C1)o exp(Be/kT)+1—{1+32C. exp(Bo/kT )}
bo=1 (23)

n16(c1)0 exp(By/AT)+1+{1+432C, exp(Bo/ET)}V2

7 has the dimensions of time and is related to how fast the equilibrium divacancies are formed. For iron, Ey* and
vy are taken to be 0.9 eV and 10 sec™!, respectively. Figure 12 shows the plot of the values of 7 (right scale) in
iron for the case C,=107%, B,=0.1, 0.25, and 0.5 eV. Figure 12 also shows the plot of the values of 7 (left scale) for
tungsten. Ey™ and »; are taken to be 2.0 €V and 108 sec™!. For the case that C;=10"%, B,=0.2, 0.8, and 1.5 the
values of 7 are calculated.

VI. NEXT-NEAREST-NEIGHBOR INTERACTION

In this section the interaction between atoms up to the next-nearest-neighbor interaction is considered. In body-
centered metals the next-nearest-neighbor is only 2/v3=1.16 times the nearest-neighbor distance. The third
neighbor is (v/11)/v3=1.91 times the nearest-neighbor distance.

A. General Kinetic Equations
The kinetic equations for body-centered-cubic pure metals up to the next-nearest-neighbor interactions are

dCy/dt=—2a{V,V — d(I); A}C2+2a{d(I) — V, V; A} —2a{V, V — d(II); A}Cy2
+2a{d(IT) - V, V; A} —al{d(D), V — 1; A}C:Col+-a{fm — d(I), V; A}Cs™
—a{d(IT), V — 7; A} CiCl +a{f — d(IT), V; A}Cs—al{d(I), V — £9; A}C,Cyt
a9 — d(I), V; A}Ci®—a{d(IL), V — £19; A}C,Ca +af{ 1% — d(II), V; A}Cs
—a{d(D), V— 0D ; A}C1Col+a{ %D — d(I), V; A}C3'* D —a{d(II), V — #1990 ; A}C,CyM
Fa{f0® — G(II), V; A}CiOO —o{d(I), V — 0; A}CiCo+al{®— d(I), V; A}Cs®
—a{d(I), V— 4 A}C1CH+-a{f4 — d(I), V; A)Ci4—afd(I), V — £0D; A}C1C
{0 — 4(1), V; ACA0AD o {d(I), V — 800D ; 4}C,Co1
+A{10D 5 A(T), V; A}CARD—o{V, V, V — £9; A}CP+3a{f® — V, V, V; A}Cs®
—a{V, V, V— 89 A}C3+3a{t0— V, V, V; A}CP—alV, V, V — t4; A}Cy?
+3a{i4— V,V, V; A}Ci—a(V,t— te; A)CiCs+DiV2Cy;  (24a)
dCytJdt=a(V, V — d(I); A)C2—a(d(I) = V, V; A)Ci—ald(I), V — £11; A}C,Cat
+a{tt— d(1), V; A}Ci—ald(I), V — £9; A}C:Coi+-a{f® — d(I), V; A} Cs®
—a{d(I), V — 89D ; A}C,C 4-a{ 0D — d(I), V; A}CsOD—a{d(I), V — £; A}C,Ct
Faf{— d(1), V; A}C0—a{d(D), V — t4; AC:Co +a (i — d(T), V; A}Cs4
—a{d(I), V — £9D; A}C,Cl+a{ 0D — 4(T), V; A}C0aD
—a{d(D), d(T) — te; A}C2+DyVICE,  (24b)
dCy/dt=a(V, V — d(I1); A)C2—ald(Il) > V, V; A}Cal—a{d(IT), V — £1; A}C:C:T
Fa{ft— d(IT), V; AYCit—a{d(I1), V — 89; A}C1Co +a{f® — d(IL), V; A}C5®
—a{d(I1), V — 890 ; A}C,CH 1 4-a{#00 — d(II), V; A}CDD—g{d(IT), V — £9; A}C;C:1
a0 — d(II), V; A}Cf'—al{d(II), V — #9D; 4}C,CyT+a{#00D — ¢(II), V; A}Co5aD
—af{d(I1), d(IT) — te; A}C2+D.VICS.  (24c)
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Similarly
dC71 dC109 dc130 (D) dCQO dcl44 dCISO (¢89]
Ty Ty Ty Ty Ty and
dt dt dt dt dt dt

can be easily obtained. In these equations C; is the fractional concentration of single vacancies, Cy! and C,!! are the
fractional concentrations of type-I and type-II divacancies, respectively. C3™ is the fractional concentration of 71°
trivacancies, C5'® is the fractional concentration of 109° trivacancies, C3'%® is the fractional concentration of
180°(I) trivacancies, C3®, C3!%, and C3!®UD are the fractional concentrations of 90° trivacancies, 144° trivacancies,
and 180°(II) trivacancies, respectively. Rate constants « are given in Table III.

B. Kinetic Equations for the Reaction between Single Vacancies and Divacancies

The kinetic equations between the fractional concentration of single vacancies and divacancies of type I and

type II are as follows:

aCy Ey¥ Bl4-Ey™
—=—112C% exp(——)-l— 16vCa4t exp(————-)
ot T ET
B+ Ei 9°C; 10Cy
+162C,1 exp(—— )—D { + —}; (25a)
kT ar: r or
aCy! Byl— Bl Eq ™ B4 Ey¥
=—6pCy! exp(——————————————)—81/C2x eXp( )+32vC1 exp( )
ot kT ET
92C,t 1 aC,1I
+8VC2H,.CXP( > { ] ; (25b)
EYoke o Bal— Byl Eypt . B4 By e
=6vC; exp(—————————————)— v exp(———-————) vCile ( >
a kT ’ kT v
82Cm 1 AC,!
—8yC,y11 exp( ) { l , (25¢)
r ar

where Ci, Cof, and C,'! are the fractional concentra-
tions of single vacancies, type-I divacancies, and type-1I
divacancies, respectively ; » is the frequency of vibration
of the atom next to a vacancy. Here all of the frequency
coefficients are taken to be the same for simplicity. Dy,
D1, and Doy are the diffusion constants associated with
the motion of single vacancies, type-I divacancies, and
type-II divacancies, respectively. Ev™ is the activation
energy for the migration of a single vacancy. Es™ is
the activation energy for the migration of a divacancy
from type I to type II. Bs' and B,™ are the binding
energy of type-I divacancy and type-II divacancy,
respectively. 7 is the distance from a sink. The geo-
metrical constants are derived as follows: In Eq. (25b)
the first term is the breakup of type-I divacancies to
type-1I divacancies. Each of two vacant sites has three
ways to break up to type IT (3X2). The second term is
the breakup of type-I divacancies into single vacancies.
Each of the vacant sites has four ways to break up to
single vacancies (4X2). The third term is the formation
of type-I divacancy by two single vacancies. A single
vacancy has eight nearest neighbors, each of whose sites

forms a type-I divacancy. For each of the sites there are
four possible sites from which a type-I divacancy can be
formed (8X4). The fourth term is the formation of type
I divacancies from type-1I divacancies (4X2). Similarly
the first term of Eq. (25c) is the formation of type-II
divacancies from type-I divacancies. The second term
is the breakup of type-II divacancies to single vacan-
cies (4X2). The third term is the formation of type-II
divacancies from single vacancies (8X3). The fourth
term is the formation of type-I divacancies from type-II
divacancies. The diagram for the energy relation is
plotted in Fig. 13.

C. Thermal Equilibrium

At thermal equilibrium the formation and breakup of
divacancies are equal. The left side of Egs. (25a), (25b),
and (25c) are all zero. Therefore,

C21= EICIZ (26)
and

Co'=tnCe?, (27)
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TasLE III. The rate constants of the kinetic equations between defects for the next-nearest-neighbor interaction.

Reaction Constants
I VoV ar(V— V; A)=8v exp(—EvM/kT)
I 1 d(I) — d(II) a1(d(I) — d(II); Aa1)=61vs exp{ — (Ear™ +Ba'— Bat) /kT}
2 a(II) —ad) a1(@(IL) — d(I); A2rr)=8nv: exp{— (Eext® +Ba'— B4) /kT}
3 Q) —» V4V ar1(@(X) = V, V; A)=8v exp{— (Ev¥+BJ") /kT}
4 all) - V+V a1(@1) » V, V; A)=8v: exp{— (EvM+Ba)/kT}
I 1 M a1 (i — 1 Aor) =41va exp{ — En*/kT}
2 111 — o an (11— 195 A) =29y exp{— (EvM+B1— BM%)kT}
3 £y 80 a1 (" — 1995 A) =4p; exp{— (Ev¥ 4B,/ —B») /kT}
4 M dD+V (¢t —d(1), V; A)=6v; exp{ — (EvM+B,*—B") /kT}
5 11— d(1)+V (™ — d(1), V; A)=2v exp{— (Ey¥+B,*~ By /kT}
6 11— pu oy (i1 — 145 An) =21, exp{— (Ea™+B*— B /kT}
v 1 1199 — g7 ay (19 — {7 Aor) = 21w exp{ — (Ear”+B%—B") /kT}
2 $109 5 14 1 (19 — (1445 4o1) = 21y exp{ — (B +B%— B4) /kT}
3 109 5 490 a; (8199 — 1905 A3) =2p;5 exp{— (EsM+B%— B /kT}
4 19 — d(I)+V ar(@® — d (1), V; A)=10y, exp{— (Ev¥+ B — B") /kT}
5 19— d(IN+V a1t — d(1D), V; A)=2v; exp{— (Ev¥+Ba%—B,) /kT}
6 FEICIING 7T AT a((® — V,V,V; A)=2v exp{— (EvM+Ba%)/kT}
Vo1 #50(T) — s ar (B (T) — £19; Ayr)=41v, exp{ — (Eard+ B150(D — 1) /5 T}
2 @) —dD+V ar(B0(T) — d (L), V; A) =8, exp{— (EvM-+BAoW — B.)/ET}
3 pn(I) > dI)+V ar(P(I) — d(IT), V; A) =8 exp{— (Ey¥+B0W — B11) /5 T}
VI 1 50 5 411 a1 (%0 — 175 A5%) =4 g3 exp{ — (s0Es¥ 4B — B,™) /kT}
2 0 5 4109 oy (190 — #1995 459) =2 gv3 exp{ — (s0Es™ + B — B/%) /kT}
3 90—y jl44 a; (190 — 15 An) =4w, exp{— (Ea®+B»— Ba) /kT}
4 B —dD+V ar(®—d(I), V; A)=8v exp{— (Ev¥+B#»—BJ") /kT}
5 #0— d(I1)+V a1 (® — d(I0), V; A)=4: exp{— (Ev¥+B®— Bs) /kT}
6 s V+VLEY a(®—V,V,V; A)=2v exp{— (Ev¥+B) /kT}
VII 1 e — e o (B4 — 445 Ag4) = w5 exp{—144Es¥ /kT}
2 44— 471 (1 — 11 A1) =2 14405 exp{ — (1aaEsM 4B —B™) /kT}
3 144 5 1109 (14— 199 Ao11) =4y exp{ — (wEM 4B — B%) /ET}
4 74— p8(T) a1 (4 — 13(I) ; Anr)=2nve exp{ — (1EX+ B4 — BA%D [T}
5 a4 g4V a1 — d(1), V; 4)=8 exp{— (Ev¥+Bs—BJ) /kT}
a (@ —d1), V; Aa)=2w: exp{— GEM+B—Bj") /kT}
a(t — d(1), V; Aaxr) =3nve exp{ — (uEM+Ba—BY) /kT}
6 M VHVHV a (M —V, V, V; A)=v exp{— (EvM+B") /kT}
VIIL 1 #8(II) — s ar (0 (IT) —> 1% Ayrr) = 811w exp{ — (EaM -+ BaSo0UD — Bitt) /pT)
2 A(IT) —» d(M)+V a(((II) — d(X), V; Aarr) = 8wz exp{ — (nEM 4 Ba1%UD — By) /R T}
3 #OII) - D) +V a1 (0(I1) — d(I1), V; A) =8 exp{— (EyM + B0 — B,IT) /E T}
IX 1 dD+V—om (@), V —1"; A)=24v exp{— (EM+Bs'— B:™) /kT}
2 A4V o (@), V — 9%; 4)=24p exp{ — (Ey*+Bg—B%)/kT}
3 d()+V — psm ai(d(I), V — 880D 4)=8y; exp{— (EyM+Bsl— B0 /ET)
4 dD+V—opu a1(@(X), V — t4; 4)=16v, exp{— (Ev™-+Bgl— B) /kT}
5 d@)+V o a(@@), V — 5 4)=24v, exp{— (Ev¥+Bs'—B) /kT}
X 1 dAD+V—im a(@(ID), V —1™; A3')=8vs" exp{— (Ea¥+B,1) /kT)
2 d(II)+V — psodn a1 (d(I1), V — #8aD ; 4) =8y, exp{— (EyM+ BylI— B/8UD /LT}
3 dID)+V o s a(@(II), V — #; A)=10v; exp{— (Ev¥+Bs""— B*) /kT}
4 dID)+V — peom ar(@(L), V — #80M; 4)=16v; exp{ — EsM+Ba1— B80UD /R T}
5 dAD+V o a1(@(X), V — 1°; A)=32v; exp{ — (Ev¥+Bs*— B /kT}
XI 1 VA+V+V—opo a(V, V, V=% A) =4y, exp{—Ev¥/kT}
2 V4V4V - a(V, V, V— 4 4) =2y, exp{— EvM/kT}
3 VH+V+HV - a(V,V,V— 9, A) =4y, exp{— Ev¥™/kT}
XII 1 V4V —d@) ar(V, V—d(1); A)=32s exp(—Ev¥/kT)
2 V4V —d(dD) ar(V, V—d(l); A)=24v, exp(— EyM/ET)
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F1G. 12. The plot of characteristic time 7 for the formation of
divacancies in body-centered-cubic metals during annealing at
various temperatures. Total concentration of voids was chosen to
be 1075, For the case ExV=0.9 eV (B»=0.1,0.25, and 0.5 eV), the
values of 7 are plotted. For this case, use the scale on the left. This
case is close to iron. For the case EyV=2.0 eV (B;=0.2-0.8 eV
and Bz=1.5 eV) the values of 7 in seconds are plotted. Use the
scale on the right. This case is close to tungsten.
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F16. 13. Schematic diagram for the energy relation of a single
vacancy, a divacancy tyne I and a divacancy type II and their
motion.

where
&1=4 exp(B2'/kT), (28)

EII= 3 exp (an/kT) . (29)

Let the total fractional concentration C, of single
vacancies C; and divacancies (C! and C2™) be C;, then

Ci=C1+2Co"+2Co™. (30)
From Eqgs. (26), (27), and (30)
Cie [1+8(&r+Em)Ci ] 2—1

(31)

4(EI+EH)
1 8 Cl 1/2_1 9
21:([ +8(ir+m)C.] ) .
4(£I+En>
C = <[1+8(EI+EII)CJ1/2_ 1>2 (33)
2 4(&r+£11) i
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The fractional concentrations C;, C.f, and Cs!! are
plotted in Figs. 14 and 15 for the cases where C,=10-°
and 109, respectively. Bs' was taken to be 0.1 and
0.25 eV. B! was taken to be 0.8B5%. In Fig. 16 the
fractional concentrations of Cy and Co! are plotted. In
Fig. 17 C.H is plotted. In these cases, Bo! was taken to
be 0.4 eV and the total fractional concentration of voids
was taken to be 1075, In these figures, various values
of By'! are taken. If B,'! is taken to be zero and &y can
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F1c. 14. Equilibrium fractional concentrations of single vacan-
cies, divacancies (type Iand IT) at various temperatures. The total
fractional void concentration was chosen to be 1075, and B! is
taken to be 0.8ByI. This plot is independent of the activation
energy for motion and the formation energy of a vacancy. There-
fore, Figs. 14 and 15 can be used for any body-centered cubic
metals.
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F1c. 15. Equilibrium fractional concentrations of single vacan-
cies, divacancies (type I and I1) at various temperatures. The total
fractional void concentration was chosen to be 1075, and B! is
taken to be 0.8B,I. This plot is independent of the activation
energy for motion and the formation energy of a vacancy.
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Fic. 16. The equilibrium fractional concentrations of single
vacancies and type-I divacancies versus the reciprocal of tempera-
ture. B! was taken to be 0.40 eV. B, was varied and shown in the
figure. The total fractional concentration of voids was chosen to be
1075, This plot is also independent of the activation energy for
motion and the formation energy of a vacancy.

be ignored with respect to & then Eq. (26) becomes
Eq. (4) and Eq. (32) becomes Eq. (20).
D. Divacancy Formation During Quenching

The formation of divacancies during quenching can
be treated as discussed in Sec. V D. The kinetic equa-
tion between single vacancies and type-I divacancies is

1 eacs ( EMV)
O 64C s exnl —
dt PO\ T

Ex"+ Bt
+16V1C2I CXP(— —-—*——) . (34)
kT

The kinetic equation between single vacancies and
type-II divacancies is

% _ oy < EMV)
48 exp —
dt . kT

EpV+ Bt
——-——————) . (35

+ 16V1C2H exp<—

Here », is taken to be equal to »;. Since it is assumed

that no vacancies anneal during quenching
C¢= const.= C1+202I+2C2H . (30)

Differentiating Eqgs. (26), (27), and (30) with respect

Here the £”’s are the derivatives of the £’s with respect
to temperature 7'. Adding Eqgs. (36) and (37) and using
Eq. (38) we obtain

dT_ 3 +2C1(¢1+#10) dCy

—_— (41)
If we assume here that type-I divacancies are always in
thermal equilibrium with type-II divacancies during
quenching, then the change of single vacancies can be

TEMPERATURE
1000 700 500 400 300
T T T T

(*C)
200 100 60 20
T T T

1073 |-

107

cE(8Y - 0.8ev) .

c’{ (eg =« 0.4¢eV)

T on
62(52- 0.24“”

1078 .

10-°

FRACTIONAL CONCENTRATION

10710

107"

17T (10-3 °x-1)

F1c. 17. The equilibrium fractional concentrations of type-II
divacancies versus the reciprocal of temperature. Bs! was taken
to be 0.40 eV. B, was varied and shown in the figure. The total
fractional concentration of voids was chosen to be 1075, This plot
is also independent of the activation energy for motion and the
formation energy of a vacancy.
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(cooling rate) IN °*C/sec
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F16. 18. The values of the critical cooling rate for the formation
of divacancies at various temperatures for Ey¥=0.9 eV. This
figure can be directly used for the relation between the cooling
rate and the critical temperature. The total concentration of voids
was chosen to be 107 This case is close to iron. The ratio By!l/By!
was changed, but it was not sensitive for Bo!>0.2 eV.

represented by the sum of the first terms of Egs. (34)
and (35)

aTr EMV> 3+2C1 (614 b1r)
—=112y exp(——
di kT e
3 Ey"\ [14-8C (1t £m1) ]2
=56, exp(— ) . (42)
kT &+ &

When one knows vi, Ev™, By, By'!, and C; the value
of the right side of Eq. (42) can be calculated as a func-
tion of temperature 7. At any temperature T, the
derivative dT/dt can be calculated; this is the critical
cooling rate of this reaction. If the specimen is cooled
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F16. 19. The values of the critical cooling rate for the formation
of divacancies at various temperatures for EyM=0.9 eV. This
figure can be directly used for the relation between the cooling
rate and the critical temperature. The total concentration of voids
was chosen to be 10-5. This case is close to iron. The ratio By1/B,!
was changed, but it was not sensitive for B,1>0.2 eV.

slower than the critical cooling rate the thermal equilib-
rium between single vacancies and divacancies is main-
tained at any temperature 7. If the specimen is cooled
faster than the critical cooling rate the thermal equilib-
rium between single vacancies and divacancies is not
maintained because single vacancies move too slow to
maintain thermal equilibrium at a temperature 7". The
situation at the temperature 7T is frozen in. When the
cooling rate is known the critical temperature 7* can
be calculated. Above T%* single vacancies and di-
vacancies are in thermal equilibrium. Below T* single
vacancies move too slow to maintain thermal equilib-
rium between single vacancies and divacancies and the
situation at 7% is frozen in at T=T%*

d

CRITICAL COOLING RATE
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Fi16. 20. The values of the critical cooling rate for the formation
of divacancies at various temperatures for Ey¥=0.9 eV. This
figure can be directly used for the relation between the cooling rate
and the critical temperature. The total concentration of voids was
chosen to be 107¢. This is close to iron. The ratio Bo!/B;! was
changed, but it was not sensitive for ByI>0.2 V.

<d7> 56kT™*2y1 exp(— Ea”/ET*)[148C {4 exp(Bsl/kT*)+3 exp(B,1/ET*)} ]2
t /) pps 4B" exp(Bal/kT*)+3B, exp (Bo/kT™) '

(43)

T T T T T
400 -
8
w 350 R 4
ox
S
[=
&
& 300 |-
a
H
w
" 250 4
-
<
=4
= L
= 200 104 °C/sec
[+ Cy = 109
M
150 |- EY - 0.9 ev
1 1 1 1 1
0.1 0.2 0.3 0.4 0.5

F16. 21. The critical temperature versus the binding energy of
type-I divacancy for the case the total concentration is 1075, the
cooling rate 10* °C/sec, and the activation energy for the motion
of a single vacancy 0.9 €V. The ratio B,II/B,! is varied.
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Fi16. 22. Characteristic time = for the formation of divacancies
versus the inverse of annealing temperature. The total void con-
centration, the activation energy for the motion of a single
vacancy, and the vibrational frequency were chosen to be 1073,

0.9 eV, and 10 sec™?, respectively. Each case for the values of the
binding energies of type-I, and type-II divacancies are given.

The values of the critical cooling rate at various
temperatures for Ey”=0.9 eV are plotted in Figs. 18,
19, and 20. »; is taken to be 10 sec™. The fractional
concentrations of total voids are 1074, 10~5 and 10—
for Figs. 18, 19, and 20, respectively. Solid lines
represent E,'=0.8E;"" and broken lines represent
Eo'=(2.0/1.3)E;™. As shown in the figures, if the bind-
ing energy of a divacancy is more than 0.2 eV, both
cases [ E.l=0.8 ;! and E»'= (2.0/1.3) Es'] give almost
the same critical temperature. If B, is taken to be
zero and 3 exp(Bo'/kT*) is ignored compared with
4 exp(Bo/kT*), Eq. (43) becomes Eq. (19) which is the
equation for the nearest-neighbor interaction.

In Fig. 21, the critical temperatures are plotted
against B! for the case C,=10"% dT/dt=10*°C/sec
and EyM=0.9 eV. The curves for various values of
By'/Bgt are shown in the figure.

1_ 14y, exp{— (EMV+le)/kT}|_

r 142 exp{(B— B)/ET} L
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E. Divacancy Formation During Annealing

We consider the formation of divacancies during
annealing as treated in Sec. VE except that in this
section the next-nearest-neighbor interaction is taken
into account. For simplicity it is again assumed that no
vacancies anneal to sinks and that thermal equilibrium
is always maintained between type-I and type-II
divacancies. The kinetic equation is

dCi Ex"
— = —112Cn; exp(———)

dt kT
Exn¥+B)!
+ 16V1C2I exp(— —'—*——>
kT
Ea¥+B"
+16V1C2H exp(—T) , (44)

with
Ci=C1+2(CL+CoY). (30)
The fractional concentrations of type-I divacancies

(CaMo and type-II divacancies (Ca''), after a quench
are given by

[14-8(&r* 4 £1*)Ci— 112 2
(Czl) 0= { . (EI*_l_ EH*) } EI* , (45)
o ([AA8E* - ErMC— 1] 2
(CaT)o= { I ] £r*,  (46)

where

16{exp(B2'/kT)+3% exp(Bo"/kT)} (Cr)o+1—[1+432C{exp(B2Y/kT)+% exp (B kT)} ]2

Ifo‘-=1'

7 has the dimension of time and is related to how fast
the equilibrium divacancies are formed. For iron, E,"
and »; are taken to be 0.9 eV and 10 sec™, respectively.

nltS{exp(BzI/kT)-l—% exp(Ba/kT)} (Cr)oF-14-[14-32C {exp (Bsl/kT) 42 exp (B RT)} V2 '

E*=4 exp(B/kT™) 47
fir¥=3 exp(BS/RT¥). (48)
Using Eq. (30), Eq. (44) can be integrated.
1
" 16{exp(— B/ET)+2 exp(BsY/kT)}
1 t—t¢ 1
+ exp[ (t—t0)/71+ o)
112v17 exp(—ExV/kT) exp[ (t—to)/7]—1
where
B2I B2II 1/2
_— 3 —_—
kT>+4 exP( kT )” ’ (50)
(51)

Figure 22 shows the plot of the values of = for the case
where C;=1075. The values of the binding energies of
type-I and type-II divacancies are given. If B, is
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taken to be zero and % exp(B2''/kT) is ignored, then
Eq. (51) becomes Eq. (23) which is the equation for the
nearest-neighbor interaction.

VII. CONCLUSIONS AND SUMMARY

Divacancies and trivacancies in body-centered cubic
metals have been classified and discussed. For the
nearest-neighbor interaction, one type of divacancy and
three types of trivacancies are classified. These are 71°
trivacancies, 109° trivacancies, and 180°(I) trivacancies.
Divacancies have to be broken up into two single
vacancies to migrate. For the next-nearest-neighbor in-
teraction there are two kinds of divacancies. Type I has
the vacant sites in the nearest-neighbor position and
type II has the vacant sites in the next-nearest-neighbor
position. There are three more kinds of trivacancies for
the next-nearest-neighbor interactions. These are 90°
trivacancies, 144° trivacancies, and 180°(II) trivacan-
cies. The general kinetic equations are discussed in detail
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concerning these defects. The formation of divacancies
during quenching and annealing is discussed in great
detail. There exists a critical temperature 7% above
which the temperature is high enough to maintain ther-
mal equilibrium but below which the motion of single
vacancies is too slow to maintain thermal equilibrium
in the quenching process. The situation at 7* is frozen in
by quenching. After the quench more divacancies are
formed and the kinetic equations and the characteristic
times for the formation of divacancies are discussed.
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Determination of Anisotropic Momentum Distributions in
Positron Annihilation
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A theoretical method is presented which permits the experimental determination of the momentum
distribution of the photon pairs originating in positron annihilation in crystalline solids, as a function of
both the magnitude and the direction of that momentum. The distribution is expanded in a series of lattice
harmonics. It is shown how linear combinations of the two-quantum angular correlations, obtained from
measurements on a number of suitably oriented single crystals, may be unfolded to yield the momentum-
dependent coefficients in that expansion. The method is illustrated by a model computation.

1. INTRODUCTION

T is well known that the angular correlation of the
annihilation radiation from positrons stopped in
oriented single crystals’™® may provide information on
the electronic structure of the substance under study
and, in metals, on the shape of the Fermi surface. The
intensity of the two-quantum angular correlation N(p.),
measured with the long horizontal slit apparatus com-
monly used,? is proportional to the probability that the
photon pair carries off a momentum with a component

1S, Berko, R. E. Kelley, and J. S. Plaskett, Phys. Rev. 106,
824 (1957).

2 S. Berko and J. S. Plaskett, Phys. Rev. 112, 1877 (1958).
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D. O. Edwards, F. J. Milford, and M. Yaqub (Plenum Press, Inc,
New York, 1965), Part B, p. '835.

‘5 B. Ro7enfeld W. SWlatkOWSkl and J. Wesolowski, Acta Phys.
Pol. 29, 429 (1966)

along the z axis of the instrument between p, and
p.+dp.. This probability is related to the probability
that the pair of annihilation quanta has a total mo-
mentum p, i.e., the photon-pair momentum distribution

P(p); by o
N(ps)e / [ p(®)dpads,. M

In general, p(p) is anisotropic owing to the presence
of the lattice potential,? while it is also influenced by
many-body effects like electron-electron and electron-
positron correlations.®:” The detailed behavior of p(p)
will therefore yield information concerning those effects.

The extraction of this information from the experi-
mental data is complicated by the fact that one does not
directly measure p(p) but rather its integrals over slices
of momentum space characterized by certain values
and orientations of p,, as expressed by Eq. (1). Of

6 S, Kahana, Phys. Rev. 117, 123 (1960); 129, 1622 (1963).
7C. K. Majumdar, Phys. Rev. 140, A227 (1965); 140, A237
(1965).



