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Impurity resistivities of monovalent ions in various monovalent matrices are evaluated for both solids
and liquids. The comparison with experiment is satisfactory and lends general support to the pseudo-atom
concept of Ziman and Harrison and the liquid-alloy resistivity theory of Faber and Ziman.

1. INTRODUCTION
' 'N recent years, the concept of a pseudo-atom' ' has
~ - arisen in the theory of metals. Any given metal or
alloy is to be viewed as a superposition of such pseudo-
atoms, each one having a field defined by that of the
individual ion under study, screened by an electron gas
of density equal to the average for the valence electrons
in the actual matrix. The transport properties are then
considered in two stages: (i) the scattering of free elec-
trons from a single pseudo-atom and (ii) the interaction
of the scattered waves from the various sites.

The solution of the problem posed by (i) is conveni-
ently surrnnarized by a set of partial-wave phase shifts
appropriate to the Fermi level of the alloy. In terms of
these, formulas for impurity resistivities in solids' and
liquids can be derived. Hitherto, analysis of such results
has been inhibited by the lack of detailed knowledge of
the phase shifts, but the recently derived data of Meyer
et al. 4 for monovalent ions now enable numerical com-
putations to be carried out for such ions in monovalent
matrices. It is, perhaps, worth mentioning at this stage
that, as Ziman' has pointed out, in an exact treatment
it does not matter whether we consider pseudo-atom or
pseudopotential scattering, for the corresponding wave
functions have identical asymptotic forms, thus produc-
ing identical sets of phase shifts (modulo sr) and, there-
fore Lcf. (2) below) identical physical effects. To this
extent, then, we can if necessary regard the one, even
when calculated within an approximate framework, as

a fair description of the other. Generally speaking Pcf.
(7) belowj we think of the data of Meyer et al. ' as
pseudopotential phase shifts, but, perhaps in the case
of vacancies, which will also be considered, the pseudo-
atom picture is more physically appealing, as there a
whole screened ion is removed from the matrix.

The purpose of this paper is to present and discuss
impurity resistivity calculations, ' ' based on the data of
Meyer et at. , with a view to testing the pseudo-atom
concept of Ziman and Harrison and the liquid-alloy
theory of Faber and Ziman (hereafter FZ).

The plan of the work is as follows. In Sec. 2, we intro-
duce and discuss, in general terms, the impurity resistiv-
ity formula of Ziman s for solids, and in Sec. 3, a similar
analysis for the FZ theory of liquids is made. In Sec. 4,
the detailed phase-shift data are introduced and applied
to the formalism of the two previous sections. Finally,
in Sec. 5, there is a discussion.

where

ts = (X/«k&) I fr fol'&'d&, —

f, ($) = (2i/3sr)g(2l+1)(e'*»' —1)Et(1——t') (2)

2. SOLIDS

Here, the impurity resistivity per atomic percent of
impurity 1 added to a pure metal 0 will be taken to be~
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Upton, New York.' J. M. Ziman, Advan. Phys. 13, 89 {1964).' W. A. Harrison, Pseldopotentials in the Theory of 3fetals (W.
A. Benjamin, Inc. , New York, 1966).' T. E. Faber and J. M. Ziman, Phil. Mag. 11, 153 (1965).

4 A. Meyer, C. W. Nestor, Jr., and W. H. Young, Advan. Phys.
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is the (reduced) scattering amplitude for a pseudo-atom

j, the q~& being the various partial-wave phase shifts
evaluated in both cases at the pure-metal Fermi level,

' J.M. Dickey, A. Meyer, and W. H. Young, Phys. Rev. Letters
16, 727 (1966).' For a review of the work of Refs. 3 and 5, see T. E. Faber,
Advan. Phys. (to be published).' Reference 1, p. 129.
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kg. The constant X, which will be used quite frequently
below, is given by

and, thus, (4) gives

p, =(4orA/100e'ks)P l(ys i—y~)', (9)
X=97r'Aao/1600e'=3 79 pQ cm, (3)

The case of vacancies is particularly simple, for then
all the q~' are zero and (4) reduces to

p„= (4s-A/100e'k r)P l sin'(rt~ io —st is) .
1

(6)

This expression is conventionally applieds to impurity
resistivities in which the Bloch waves of the unperturbed
lattice are approximated by plane waves and the phase
shifts calculated for the perturbing potential. From the
present point of view, however, (6) applies to vacancies
only, impurities being dealt with using (4). In this way
some attempt is made to include band structure' in the
sense that one considers scattering differences for abso-
lute potentials rather than absolute scattering from
potential differences.

Actually, in the present circumstances of monovalent
impurities in monovalent matrices, small-angle expan-
sions are appropriate and the basic formulas of the two
approaches are analytically equivalent Lcf. (6) and (9),
below]. As we have indicated, however, the basic phi-
losophy and thus the method by which the phase shifts
are computed are very different.

The reason why small angle approximations are pos-
sible is that the Friedel rule" requires

ae being the erst Bohr radius. Using (2), Eq. (1) can be
integrated to give

p, = (4srA/100e'kr)Q l
~
y) i—p)~ ',

where

y, = (1/2j)(e"«i' e—«i') '.

and this, to the approximation indicated, is of the same
functional form as (6).

Now, as emerges in Sec. 5, it never happens that more
than three pseudo-atom phase shifts are signi6cant.
Thus, observing from (7) and (8) that

P(2l+1)~,=0, (1o)

we may substitute for ys, in terms of yo and yi, in (9)
and obtain

p, = (4«r A/100e'k p) (36/5) (yis+-'sos') .
In general, the 6rst term shown is substantially larger
than the second, and p, is very roughly proportional to
the square of the relative p-wave phase shift.

Conventionally, the relative phase shifts are evalu-
ated for a particular solvent and a particular solute in
the manner indicated above, but the Ziman approach
enables one to tabulate, once and for all, q's from which
the p& corresponding to any alloy may be readily de-
duced. It is appropriate to mention at this point that we
have tackled a set of diflicult cases, in that t cf. (10)]
there is no valency difference between solvent and
solute. When such does exist, invoking the sum rule has
usually been found to be sufhcient to ensure reasonable
results for a rather wide variety of potentials. ' (Only
in the cases of vacancies, below, do we have valence
differences; where comparison is possible, our results are
in agreement with experiment, in conformity with the
above remarks. )

Finally, it should be pointed out that lattice distor-
tion has been ignored, Ziman having estimated this to
incur errors of the order of 10%.

(2/or) P (2l+ 1)st j=1 (7) 3. LIQUIDS

A. Dilatation EBects
and, since a screened ion is essentially attractive to elec-
trons, the g's are positive or, at most, one or more may
be very slightly negative. But no one phase shift can
become too large, as this signals an electronic transition
which invalidates the model. (This matter will be taken
up in more detail in Secs. 4 and 5.) The effect, in general,
is to obtain two or three small positive q's characterizing
the pseudo-atom.

In our detailed calculations, we use the full expres-
sions Lsuch as (4) for solids], but approximate forms are
very useful for qualitative interpretations of our 6nal
results. With this remark in mind, we proceed to the
small-angle expansion of (4).

To first order, (5) becomes

fi'(&) = fi(f) 3f(kr&)fo(k—),
where

(12)

f(K)= (dP/dr) (sinKr/Kr) dr, (13)

I' being the radial distribution function, related to the
pure liquid structure factor, n, through the equation

In order to take into account the dilatation 8 result-
ing from the insertion of a foreign atom into an otherwise
pure metallic matrix, FZ have introduced a modi6ed
solute scattering amplitude

Yl 'g l Ql
I'(r) = 1+(2sr)-'(V/1V) L~(C) —1]

«J. M. Ziman, Electrons ossd Phosioas (Clarendon Press, Oxford,
England, 1960).

~ Reference 1, p. 130."J.Friedel, Phil. Mag. 43, 153 (1952).

&& (sinqr/qr) 4«rq'dq. (14)

As usual, E and V denote the total number of ions and
the total volume, respectively.
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physically. Thus, (22) becomes TABLE I. Pseudo-atom phase shifts.

p-=f'(2)p:, Metal kg' 'go

Lcf. Eq. (1) and the comments preceding (6)$, and this
is a natural type of coeKcient to expect in the large
dilatation limit. Equation (25) is similarly interpreted
as

p =—2f(2)pn&/100 (28)

where p„~ is the resistivity of the pure liquid. ' ""
It turns out that the impurity resistivity change on

melting depends little on dilatation, and thus p, its
value at 5=0, is of particular interest; it may be ap-
proximately written

p-=(~/aok~)I ~&'d& ILfo*A+fof~*—2lfol')r=2

2

=(1152/9 ')(l/nk )~ $'d$)y, (g,"—/12), (29)
k 0

the Anal step involving small angle expansions and use
of (7), (8) and (10).Thus, p is small if either y~ is small
or gi'=0. 26.

4. RESULTS

The relevant phase-shift data, taken from Meyer et
at. ,

4 are given in Table I. Thus, Eq. (4) may be used
immediately to calculate impurity resistivities in the
solids, and these are shown in Table III.

The calculation of the corresponding quantities in
the liquids is more devious, however, because the precise
value of 5 to be taken in any given application is not
known. Our aim, now, is to show that p~ is insensitive
to the choice of 8 and that quite crude values wiH

sufhce.
In Table II are shown some results calculated using

Table I, the AL structure factor and the formulas of the
previous section. They combine to show that for dilata-
tions of interest (i.e., for

I
8

I up to about 2) the possible
variations of p~ are never gross and, in most cases, are
quite small. There appears to be no one simple explana-
tion for this, but certain factors combine to make it
possible.

First, as the final column of Table III indicates,
p„=1.25 (all values being in pQ cm/at. %%uo), an d, there-
fore, by (27) p =0.3. Thus the coeKcient of 82 in p((8)
is determined and this is usually small compared with

p, . Secondly, p„& varies between about 10 and 50 for
monovalent liquid metals, and so (28) gives p„ to be,
at its largest, about 0.5 but usually very much less than
this. Apart from p„, the other contribution to the linear
term in p~(8) is p, . This is an interference term I cf. (21)$
which is small if either f~= fo (for example, as in noble-
metal —noble-metal systems) or if fo is small (as in Na,
K, and Rb) in the backscattering region. In those cases
(Li and Cs) when p„ is largest, the size of fo for large-
angle scattering is responsible and thus, as is clear from
(21) and (25), in such cases p, will cancel against p .The

I.i 0.332
0.357
0.382
0.474
0.578
0.611
0.614
0.699

Na 0.332
0.357
0.382
0.474
0.578
0.611
0.614
0.699

K 0 332
0.357
0.382
0.474
0.578

Rb 0.332
0.357
0.382
0.474
0.578

Cs 0 332
0.357
0.382
0.474
0.578

Cu 0.474
0.578
0.611
0.614
0.699

Ag 0.474
0.578
0.611
0.614
0.699

Au 0.474
0.578
0.611
0.614
0.699

0.870
0.778
0.697
0.450
0.243
0.189
0.185
0.069

0.966
0.882
0.809
0.582
0.388
0.336
0.332
0.219

0.705
0.618
0.535
0.254—0.014
0.662
0.573
0.490
0.220—0.007

0.445
0.338
0.239—0.047—0.163

0.983
0.785
0.730
0.726
0.603

0.905
0.710
0.657
0.653
0.533

0.917
0.719
0.665
0.660
0.536

0.228
0.257
0.282
0.357
0.417
0.432
0.433
0.464

0.188
0.212
0.232
0.284
0.311
0.313
0.313
0.309

0.212
0.215
0.212
0.143
0.010
0.195
0.190
0.178
0.086—0.051

0.122
0.090
0.051—0.091—0,186

0.197
0.264
0.282
0.284
0.324

0.228
0.299
0.318
0.320
0.361

0.232
0.309
0.330
0.332
0.378

0.004 0.000
0.005 0.000
0.005 0.000
0.010 0.000
0.015 0.001
0.016 0.001
0.016 0.001
0.021 0.001

0.008 0.000
0.010 0.000
0.013 0.000
0.026 0.001
0.047 0.002
0.055 0.003
0.055 0.003
0.078 0.005

0.045 0.001
0.060 0.001
0.078 0.001
0.174 0.002
0.307 0.003
0.063 0.001
0.083 0.002
0.106 0.002
0.213 0.004
0.338 0.006

0.149 0.002
0.189 0,003
0.231 0.003
0.369 0.006
0.441 0.012

—0.001—0.002—0.002—0.002—0.003
—0.005—0.009—0.011—0.011—0.015
—0.009—0.018—0.021—0.021—0.028

0.000
0.000
0.001
0.001
0.001

0.000
0.001
0.002
0.002
0.004

0.001
0.002
0.003
0.003
0.006

a The k~'s are in atomic units. Those appropriate to the pure liquid
metals at their melting points are given in Table IV.

upshot is that almost without exception the coeKcients
of 8 and 8' are small compared with the constant term
in p&(8), thus yielding a slowly varying function, insen-
sitive to physical choices of 5.

Table II establishes lower bounds (by the present
theory and data) to the various impurity resistivities.
If the physical choice of 8 is positive, one chooses p;
if 8;„)0 and p~(8= 0) if 8;„(0.A similar selection is
made if 5 is negative and the lower bounds thus found
are italicized in the table.

To improve on the above a little, we have takeri

8= (k p'/kg')' —1,
where the k&'s are the respective pure liquid values, as
given in Table IV. This supposes that the volume associ-
ated with an ion is unaltered by its environment; it is
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TABLE II. Dilatation data. '

Solvent Solute p, p, p pt(B =0) p; S

Li
(0.363)
[0.5161

Na 0.47
K 5.69
Rb 7.20
Cs 11.48
Cu 2.25
Ag 1.62
AU 1.58

—0.61—1.39—1.62—1.92—1.13—0.95—0.91

—0.75—2.45—2.79—3.43—1.21—0.98—0.91

—0.28
3.25
4.41
8.06
1.04
0.64
0.67

—O.Z8
Z.7Z
3.57
6,70
0.78
0.51
0.57

0.12
1.20
1.52
1.93
0.85
0.60
0.55

Na
(0.225)
L0.032)

K
(0.239)
$0.062)

Li
K
Rb
Cs
CG
Ag
Au

Li
Na
Rb
Cs

0.33 —0.06
1.55 —0.01
2.48 0.00
8.00 0.04
1.16 0.24
0.74 0.18
0.77 0.19

0.50 —0.13
0.67 0.07
0.07 0.08
2.08 0.36

—0.01—0.39—0.49—0.83
0.20
0.18
0.20

—0.04
0.14
0.04
0.12

0.3Z
1.16
1.99
7.17
1.36
0.92
0.97

0.46
0.82
0.11
Z.19

0.32
1.16
1.99
7.17
1.Z7
0.87
0.9Z

0.45
0.80
0.09
2.01.

0.05—0.06—0.08—0.17—0.61—0.47—0.49

0.15—0.27—0.30—0.89

Rb Li 0.67 —0.13 —0.06 0.61
(0.291) Na 0.92 0.11 0.17 1.08

t 0.155) K 0.05 —0.07 —0.05 0.01
Cs 1.11 0.26 0.12 1.ZZ

0.61 —0.04
1.0Z —0.46
0.00 —0.14
1.08 —0.71

Cs
(0.359)
$0.499)

CQ
(0.187)
L0.074)

Li 2.62 —0.64 —0.76
Na 3.02 —0.38 —0.51
K 1.24 —0.54 —0.61
Rb 0.84 —0.43 —0.49

Li. 1.76 0.11 0.08
Na 0.64 0.01 —0.17
Ag 006 002 005
Au 0.11 0.04 0.09

1.h'6 1.84 0.19
2.51 Z.50 —0.16
0.6Z 0.62 0.06
0.35 0.35 —0.09

1.84 1.79 —0.48
0.48 0.4'7 —0.22
0.11 0.10 —0.25
O.ZO 0.18 —0.30

Ag Li 1.52 —0.04 —0.07 1.44 1.44
(0.229) Na 0.53 —0.07 —0,23 0.31 0.31
(0.102) Cu 0.06 0.01 —0.02 0.04 0.03

AU 0.01 0.01 0.04 0.04 0.03

—0.14—0.06—0.25—0.25

Au Li
(0.245) Na
$0.133] Cu

Ag

1.46 0.00
0.57 —0.08
0.09 —0.17
0.01 —0.02

—0.05 1.41 1.39—0.27 0.30 0.30—0.08 0.01 O.CO—0.04 —0,04 —0.05

—0.28—0.11—0.24—0.24

a All numbers are in pQ cm/atomic percent. The above figures demon-
strate the insensitivity of p& Lcf. (17) and thereafter7 to variations of B.
The italicized numbers represent lower bounds to pi consistent with the FZ
theory and the data of Table I (see early paragraphs of Sec. 4) and are not
greatly different from the pi's of Table III calculated using an improved
(though possibly still crude) choice of b. The entries under the solvents are
p~ Pcf. (22) 7 and pn Pcf. (25) 7 in round and square parentheses, respectively.

an empirical assumption, but in reasonable accord with
Freedman-Robertson" data for Na alloys, and, as we

have stressed, its effects are not radical. The p~ thus
computed are shown in Table III.

A discussion of the theoretical and experimental num-

bers shown in Table III occupies the remainder of this
section, and, for this purpose, it will be convenient to
partition the data in the manner indicated in the fol-

lowing subsections.

A. Alkalis in Alkalis

Here, the over-all comparison with experiment is
quite good. The poorer values involve Cs, and this is
consistent with the observation that q~ data for this
case, as a result of a certain computational approxima-
tion, tend to be overestimated. Bearing in mind (8) and

(10),a glance at the relevant lines of Table I shows quite

"J.F. Freedman and W. D. Robertson, J. Chem. Phys. 34, 873
(1961).

clearly that a reduction in q& for Cs will decrease po and
yt and, thus, p, as given by (11).Furthermore, since it
is principally determined by p„we can expect the same
kind of errors to occur in p~. As Table I indicates, the
errors in q~, for Cs, increase as the Fermi level is raised
and this is in line with the sizes of the discrepancies be-
tween theory and experiment for the three systems, Cs
in Xa, Cs in K, and Rb in Cs, under discussion. In the
other cases, where experimental values are not available,
we can also expect results to be too large, particularly
when higher Fermi levels are involved.

It will also be seen that in the three cases where ex-
perimental data are available, the charge in impurity
resistivity on melting is reasonably described. This in-
creases for the cases of Na and Rb in K and decreases
for K in Rb, and the reasons for these two possible kinds
of behavior may be sought, as follows, in the variation
of the phase shifts.

As has been shown, the effect of dilatation is small.
Thus, let us consider p~(8=0) —p, =p„, which is given
exactly by (24) and approximately by (29). For Na in

K, y~ is so small (=0.020, see Table I) that higher-order
terms omitted from (29) are required to represent (24).
However, (29) describes the other two cases satisfac-
factorily. For Rb in K, Table I gives p&= —0.034 and
rlt' —~/12= —0.047, and thus p is positive. On the
other hand, for K in Rb, we fInd py=0. 025 and q~'
—7r/12= —0.072, and so p is negative.

Actually, the case of K in Rb is an illustration of the
possibility that in the liquid (as distinct from in the
solid) the impurity resistivity can be negative. This oc-
currence is less rare when polyvalent metals are involved
and happens, in present circumstances, as the result of
a number of exacting conditions being met. First, as we
saw above, the g~'s are such that p is negative. But
this is not enough if p, is too large. In fact, Rb and K
scatter very much like solvent ions when inserted as
impurities into each other, as is indicated by the ap-
propriate p, values in Table III. In order to obtain such
small p, 's it is necessary [see (11)j that both pe and p&

should be small. Thus, for example, as we have seen
above, p& is very small for Na in K, but the correspond-
ing F0=0.274 is quite large compared with the K in Rb
and Rb in K s-wave values of &0.045.

Among the cases under study, that of Na in Li would

appear to be the best (and, indeed, only other) example
for exhibiting a negative p~. Here, the root cause is
somewhat different from that discussed above, lying in
the relatively large p-wave phase shift for Li when acting
as a solvent. This means that gP —z/12 is positive and

y~ is negative for each solute, both terms being unusually
large in absolute value. Thus (29) predicts a strong
negative p, which, when Na is the solute, is sufhcient to
make p, +p negative. Unfortunately, the experiment
has not yet been performed.

Agreement with observation is satisfactory for the
alkalis in liquid Na, particularly when the above dis-

cussion concerning Cs is recalled, though it is, perhaps,
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TABLE III. Theoretical and experimental impurity resistivities. All numbers are pQ cm/at. %.The theoretical results marked with an
asterisk mean that, on the basis of Table IV an s-wave resonance should occur, and the present work will severely underestimate the
correct value. Table I indicates the possibility of p- and d-wave resonances, also, and these are indicated by **and ***,respectively.
In each unit the values are placed according to the following key:

Solid, theoretical; Eq. (1) Liquid, theoretical; Eq. (17)
Solid, experimental Liquid, experimental

+Solute
Solvent+

Ll

Ll

0.47 —0.11 5.69 3.30 7 20Q Q sic 465... Cs Vacancy

11 4gsiesicsie 8 71 ++sic 1 59

Na

Rb

Cs

0.33

0.67 0.76

2.62 2.20

Ll

0.37
0.28.

0.50 0.63 0.67
0.56b
0.92*

0.81
11'
1.02*

3.02* 2.56*

1.55

0.05
0.04, 0.13'
1.24

Cu

0.00—0.03~
0.68

2.48

0.84
0 2ge

2.44
2.55'
0.16
0.21b

0.35

8.00

2.08
1.1k
1.11

Au

8.14
3.64.
2.48

1.34

1.26

1 ~ 10

1.374

Ll

CU

Ag 1.52 1.46

1.46 1.45

0.53

0.57

1.'?6** 2.09** 0.64 1.57

0.64

0.'?0

2.25
1.16*

0.06
0 08'
0.09
0.38

0.03
0.08'
0.00
0.16'

0.01
0.36l

1.38 1.62
1.2'?* 0.74*

0.06
0.07j

0.71
0.87*
2.50'
0.20
0.07'

—0.04
0.3(3}f

1.58
p 77 sic

0.75
0.92*
4.80'

0.11 0.29
0.52g 0.48f
0.01 0.04
0.36 & 045'

1.10
1.5h

1.43
1 3h
1.53
1 5h

a J.F. Freedman and W. D. Robertspn, J. Chem. phys. 34, 769 (1961).At the melting points.
b A. M. Guhnault and D. K. C. MacDonald, proc. Roy. Soc. (London) A264, 41 (1964).Measurements were quoted for 4.2'K in terms of room-tempera-

ture values. We have taken the ideal resistivity of pure K at room temperature to be that obtained by J.S. Dugdale and D. Gugan LProc. Roy. Soc (Lon-
don) A270, 186 (1962)g.

o C. C. Bradley, phil. Mag 7, 1337 (1962).At 500 K; the figure shown, therefore is likely to overestimate that appropriate to the melting point Lcf. fur-
ther results reported in Ref. ag.

~ N. S. Kurnakow and A. J. Nikitinsky, Z. anprg. Chem. 88, 151 (1914).The figures are for 298 K for the solids and 348 K for the liquids.
e A. M. Guenault and D. K. C. MacDonald, proc. Roy. Soc. (London) A274, 154 (1963).At 4.2 K. The ideal resistivities t.cf. Ref. bg of pure Rb and

Cs have been taken to be those given by J.S. Dugdale and D. Phillips )Proc. Roy. Soc. (London) A287, 381 (1965)j.
f A. Roll and H. Motz, Z. Metalkde. 48, 495 (1957).At the melting points.
I L. D. Roberts, R. L. Becker and F. E.Obenshain, Phys;rRev. 137, A895 (1965).Professor J.S.Dugdale (private communication) has made measure-

ments in essential agreement with these figures.
"As quoted by J. Friedel, in 17se In~erac)ion of Radia]ion arith Sobds, edited by R. Strumane, J. Nihoul, R. Gevers, and S.Amelinckx (North-Holland

Publishing Company, Amsterdam, 1964).
' J. O. Linde, Ann, Physik 15, 219 (1932).
i J.S. Dugdale (private communication). professor Dugdale has indicated that these results are rather less reliable than those of Ref. g.
& M. A. Archibald, J. E. Dunick, and M. H. Jericho, Phys;: Rev. 153, 786 (1967).

worth remarking that in this series p„alone, dictates
the trend "

Finally, we should mention the possibility of reso-
nances for the cases of Na in Rb and Cs and also of K.,
Rb, and Cs in Li, but, for convenience, we postpone the
discussion of this matter until later.

B. Noble Metals in Noble Metals

As Table III shows, results are poor here, particularly
when Au is used. The trouble would not appear to be
one of numerical accuracy (successful calculations for
some of the alkali-alkali systems being at least as deli-
cate), and thus we conclude that the physical model is at
fault for such systems. ' %e should point out, however,
that pure liquid-metal resistivities and thermopowers, "
vacancy resistivities )see 4C below/ and divacancy
binding energies' are given reasonably by the pseudo-
atom approach.

C. Noble Metals in Alkalis

There occurs here another kind of situation which
invalidates our quoted results under certain circum-
stances. This is when an electronic transition is involved.

By investigating the lowest free-electron wave func-
tion in the pseudo-atom model problem of Sec. 1, it is
possible' to establish that Fermi wave index kg' below
which an additional bound s state is formed. The re-
sults found by Meyer et ul. ' are shown in Table IV and
should give an indication of where similar bound states
occur in alloys.

%hen such a bound state occurs, the corresponding
phase shift changes by x, and the data of Table I are
based on the assumption that this happens discontinu-

TABLE IV. Pseudo-atom bound states.

Metal Li Na K Rb Cs Cu Ag Au

k&ca 02/ 035 028 029 024 05P 049 053
ky 0.578 0.4/4 0.382 0.357 0.332 0.699 0.611 0.614

"In Ref. 5 we quoted results appropriate to the experimental
o nf Ref. 13 and the f drawn in I ig. 2 of Ref. 3. This accounts
largely for small di6erences from the present numbers.

"Axel Meyer, W. H. Young, and J. M. Dickey (to be pub-
lished).

a A;p&, in atomic units, gives that Fermi level at which a pseudo-atom ac-
quires an additional bound s state. kz, also in atomic units, corresponds to
the pure liquid at the melting point.

A. Messiah, Qmasstum Mechassjcs (North-Holland Publishing
Company, Amsterdam, 1961),Vol. I, pp. 392, 408.
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ously at k p'. In practice, however, in some fairly narrow
region of k~ above kg', the system will possess a virtual
bound state, and a rapid, but nevertheless continuous,
variation of qo with kp will take place. This results in
considerably enhanced scattering not accounted for by
the present techniques.

Table IV indicates that Ag may have a virtual bound
state in Na and provides an explanation of why our
calculated p~ so severely underestimates the observed
value. Presumably, a similar explanation may apply to
Au in Xa.

The calculated results for Li as solvent are displayed
in Table III because, if the above reasoning is the whole
story, we can expect these predictions to be correct. On
the other hand, the K, Rb and Cs solvent cases are
omitted because, as indicated above, the underlying
model is no longer obviously correct.

In view of Table IV and the above discussion, the
signi6cance of the 6nal paragraph of Sec. 4A, insofar as
it affects Na in Rb and Cs, is now apparent.

D. Alkalis in Noble Metals

In these cases, electronic transitions of a diferent
character appear to be possible. It will be seen from
Table I that at higher kp the screening charge for K, Rb
and Cs is almost all of d character. We might thus expect
a situation somewhat analogous to that discussed in
Sec. 4C for s waves, and, indeed, there appears to be
indirect evidence in favor of this conclusion in Fermi's
explanation" of the sharp increase in the resistivity of
pure Cs obtainable under pressure.

We have not investigated the situation in a manner
comparable to that of Sec. 4C, and have no analog of
Table IV. We assume, however, on the basis of the
Table I data, that the computational techniques of
Meyer et al. ' are not applicable to K, Rb and Cs at Fermi
levels as high as those in the noble metals. I-i is more
marginal and theoretical numbers are quoted, but g~ is
uncomfortably high. From the present point of view, the
application to Na would appear to be more reasonable.

A similar situation may occur Lrecall end of Sec. 4B)
for K, Rb and Cs in Li, but in the case of Cs (and, to
a lesser extent, Rb when, as in present circumstances,
the Fermi level is quite high) the known' overestimation
of q2 results in our present calculations already being
too high.

E. Vacancies

Here, one may use Table I and Eq. (6) to obtain the
final column of Table III, the agreement with experi-
ment being satisfactory where comparison is possible.
This is a diTicult problem from the perturbative ap-
proach, '0 the perturbation resulting from the creation of
a vacancy being large. By the present method, there is
no special trouble and reasonable results are actually
easier to obtain for vacancies than for monovalent im-

~s I. G. Austin, Contemporary Physics 7, 174 (1966).See p. 185.
20 J. Friedel, in The Interaction of Radiutioe with Solids, edited

by R. Strumane, J. Nihoul, R. Gevers, and S. Amelincirx (North-
Holland, Amsterdam, 1964).

purities. For, as Table III illustrates, a variety of sets
of phase shifts all satisfying (7) give about the same p„,

whereas the p's satisfying (10) are seen to give rise to
a wide range of p, 's. In short, a valency difference helps
enormously.

S. DISCUSSION

Our results for alkali-alkali systems are encouraging.
Insofar as comparison with experiment is possible, they
are consistent with the conclusion that the pseudo-atom
picture of Ziman' and Harrison' and the liquid-metal
alloy theory of FZ are valid. ' To get the details correct
(as we have done) for the systems Na in K, Rb in K,
and K in Rb both for the solids and the liquids, requires
a high level of numerical accuracy in the phase shifts,
as was shown in Sec. 4(a). This suggests that the phase
shifts of Meyer et ul. 4 are rather accurate for Na, K, and
Rb. For Cs they are less so, though fairly small reduc-
tions in the ris(k~) for this ion would bring the corre-
sponding computations into line with experiment.

As we indicated in Sec. 4E, cases when there is no
valency difference between solvent and solute are difi-
cult to treat and extreme numerical accuracy is de-
manded. The fair success of the alkali q's for present
purposes suggests that they may be applied, with con-
6dence, to less critical situations.

In contrast with the above, the present approach ap-
pears to be inappropriate, on physical grounds, to
noble-metal —noble-metal systems. We leave the degree
of applicability of the present techniques to alkali-noble-
metal systems open. The difficulty (and the interest)
here lies in the possibility of the formation of bound and
virtual bound states, invalidating the model on which
the present phase shifts are calculated.

Finally, it is important to indicate the extent to which
the FZ theory has been tested in the present work. This
theory is rather general, extending over all composition
ratios for binary alloys, whereas we are concerned
only with the small concentration limits. In addition,
whereas FZ invoke three structure factors, we use only
that for the pure solvent into which the impurity is
inserted.

Also, our results are insensitive to dilatation (and,
thus, despite obvious size differences among the various
ions, the FZ "substitutional" model is valid in the low-
impurity concentration limit). The advantage of this is
that despite our poor knowledge of dilatation, meaning-
ful impurity resistivities can be obtained; the disadvan-
tage is that the particular mechanism employed by FZ
for including this effect has not been tested.

On the other hand, their disorder term, under condi-
tions of zero dilatation, has been successfully applied
and explains clearly why the impurity resistivity
changes on melting for the three cases (under present
discussion) where experimental results are known.
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