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Partial-Wave Scattering by Non-Spherically-Symmetric Potentials.
I. General Theory of Elastic Scattering
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A general method is developed to obtain the elastic-scattering cross section of an asymmetric potential
U(r) =

P z vz (r)Pz (Qz r) where we have expanded the potential as a sum of multipoles and Qz is a unit vector
along the 2l-pole axis. We assume that vz(r) is effectively zero beyond a cutoff radius E and we solve the
resulting set of coupled differential equations in terms of a scattering matrix S.A general expression for the
scattering amplitude f(k,k ) is derived in terms of the elements of S and 3j symbols. Finally, as an ex-
ample, we apply the method to the problem of calculating the total and momentum-transfer cross sections
for a randomly orientated set of axially symmetric centers.

In Sec. II we derive the radial wave equation for this
problem and it takes the form of a set of coupled
differential equations. Section III contains general ex-
pressions for the scattering amplitude. Finally, in Sec.
IV, we derive scattering cross sections relevant to a
randomly orientated array of axially symmetric centers.

I. INTRODUCTION

'UCH attention has, in the past, been devoted to
~ ~ the problem of elastic scattering of an electron

by a spherically symmetric point charge. In this case
it is a relatively straightforward matter to calculate the
cross section of the interaction using either a Born
approximation or a phase-shift analysis.

However, in many solids, defects in the form of
ionized impurities can be associated with each other to
form tightly or loosely coupled complexes. An example
of the former is acceptor-donor dipoles in semicon-
ductors, ' ' while an example of the latter is ion-vacancy
pair formation in metals. ' The distinction in terms of
coupling depends quite naturally on the effectiveness of
the electron gas inside the solid in screening one im-

purity from another. Similarly, the scattering of elec-
trons by polar molecules' involves a study of dipole
and higher-pole potentials.

The Born approximation is inadequate to describe
the scattering of slow electrons, and in this paper we

develop a general formalism, analogous to the phase-
shift analysis used for spherically symmetric centers,
for the elastic scattering cross section of a particle by
an asymmetric potential V(r). We write, for conveni-
ence, V(r) as the general multipole expansion'

V(r)=g vt(r)Pt(Qt r), (1)
l

where Ql is the unit vector denoting the direction of the
2/-pole axis.

II. THE RADIAL WAVE EQUATION

We envisage a scattering event in which a particle
of energy tz'k'/2rrt, mass rn and momentum tzh is elasti-
cally scattered without change of spin into a state hh'.
If V(r) is the potential energy of this particle, in the
field, of the scattering complex, then its wave function
f&(r) satisfies the Schrodinger equation

L
—(tz'/2rrt) V'+ V(r) jPx (r) =E(h)P&(r) . (2)

A partial-wave expansion of lbt, (r) enables us to define
a set of radial wave functions gtx(r) as follows:

gtz, (r)
lb(r)=E 2 V "('), (3)

lM X=l y

where we have dropped the subscript h for ease of
notation.

If we substitute (3) into (2), premultiply the re-
sulting equation by the complex-conjugate harmonic
Vt*~'(r), and integrate over the solid angle dQ, we
obtain the set of radial equations

(d' l (f+ 1)
+k' )gtz, (r)' A. D. Boardman, Proc. Phys. Soc. (London) 85, 141 (1965).' A. D. Boardman, Phys. Rev. 147, 532 (1966).

' C. P. Flynn, Phys. Rev. 126, 533 (1962).
z J. M. Keller, J. Phys. Chem. Solids 24, 1121 (1963).' M. H. Mittleman and R. E. von Holdt, Phys. Rev, 140, A726

(1965).' This view was recently adopted in a paper by L. C. R. Alfred
LPhys. Rev. 152, 693 (1966)g which appeared while this paper
in preparation.

2m
Z gt x (r) Vt*"(r)V(r) Vz "'(r')df)' (4)

fg2 lr) zz

was
The potential function given by Eq. (1) can also be
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written as

»(r)
V(r) =4gr Q YI.*"(Qr,)YI."(r),

is 2L+1

where we have used, the familiar spherical-harmonic
addition theorem.

The substitution of (5) into the right-hand side of
(4) gives

d' /(/+1) ) Sms sr, (r)
+&' lg. ( ) = 2 Y.*'(Q.)

dr' r' ) fis i'x' 2L+1

will, in practice, cut off at the value of / beyond which
the solutions no longer make a signi6cant contribution
to the scattering cross section.

It is interesting to note, at this stage, the following
properties of the coupling function Wi&„i q (r):

Wi ', i.*(r)= Wn, , i '(.),
W —. "()= (-1)"'-"W.. '( )

If the scattering potential happens to possess an axis
of symmetry (for example a dipole potential), we can
always choose it as our s axis, i.e., we can set Qz, ——0 in
the harmonic Yz)' "(Qr,), which then becomes

Xgv~ (r) Yr. (r') Yi "(r)Yi "'(r)dQ, . (6)
Yz,' "(Qz) = ((2L+1)/4m)'ls8), ),. (12)

(ds /(/+1)
+& Igix(r) =Z Wll ~(r)gl x(r) (13)

adrs r'

The substitution of (12) into Eqs. (9) and (10) gi~es,

The integration over the solid-angle dQ, can be im- " pe

mediately performed, using the result'

Yg'(r) Yi*"(r)Yi."'(r)dQ,

(2L+1)(2/+ 1) (2/'+1) "'
= (—1)"

4

/'/ /' Lq / /' L ~

(0 0 Oi X —X' X'—X)

and

2m
W«'(r) = 2(—1)"(2/+ 1)"'(2/'+ 1)'"

PP
/' L /'/ /' Lqx"()I I I, («)

&0 0 0 EX —X oi
'

The 3j vector coupling coefficient

&a b c&

where Wii ~(r) is real and

Wii ), (r)=Wipe(r). (15)

is defined by Edmonds, r who gives tables and. formulas
for some specific cases. A useful property of the 3j
symbols is that

/ /' L~
I

= 0, if /+/'+L is odd.
0 0 0)

Equation (6) now becomes

(d' /(/+1)
+O' Ign, (r) =P Wn„t x (r)gvx (r), (9)

&dr' r' )
where

2m 4m. (2/+1) (2/'+ 1) "'
Wn, is (r)= 2(—1)

'

2L+1

p/ /' L~ )/ /'

XI II, l»(r) Yr,"' "«r.) (1o)
&0 0 0) I,X

We have therefore arrived at a set of coupled dif-
ferential equations for the functions gn, (r), which we

7 A. R. Edmonds, Angular Momentum in Quantum 3fechanics
(Princeton University Press, Princeton, New Jersey, 195&), p. ».

Equation (13) no longer has a coupling term con-
necting diferent values of P . In this case we need only
to solve the coupled set of equations (13) for positive
values of X.

IQ. THE SCATTERING AMPLITUDE

In the problem of elastic scattering by spherically
syrrilnetric potentials, the phase shift 8&, which the IIth

partial wave possesses in the asymptotic region, re-
Inoved from the scatterer, contains all the information
needed to define the scattering cross section.

In practice the wave function becomes

i/s(r) ~ sik r+f(k k)eikr/r (16)

and the differential cross section is dehned as

o(k, k')=
I f(k, k') I'.

We return to the problem at hand and. note that if,
in practice, the potential terms»(r) vanish beyond
some radius E, Eq. (13) becomes

(d'/dr' /(/y1)/r'+k')gn, (r) =—0)

the solutions of which can be written in the form

gn (r) = s'~ n Lrji(&r)+r&n & l (~r)j,
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I' *"'(k)I,"(k')=P D, ,„„„,(-k)I,, "(0)
kg+(kr) = —ie'is~"~ &/kr. (20)

XP Dp, )," (—k) I'P"'(x), (29)
The coeScient 2 z), is 6xed by requiring the asymptotic

form of the total wave function to be
where D p~ are the matrix elements of the rotation
operator. 7

It is obvious that

7'v""(0)= ((21+I)/4s-)'" )"=0
=0 ) "~0 (30)

(22) and this results in the first summation of (29) becoming

((2l+1)/4')'"Dv(g, (—k) = Vi."'(—k) . (31)

The expansion of e'"' into spherical harmonics gives

where j&(kr) is the usual spherical Bessel function and axis, and write

the asymptotic form of hz+ is

which immediately shows that

3 tg
——4' Vi*'(k) .

The final expression for the scattering amplitude is
(23) thus

4~
It is interesting to note at this stage that for a spheri- f(y to) =
cally symmetric center we have

f(k, k') =4s P i'I'i*"(k) I'&"(k')Si
X (—k) 7 i "'(—k) F'i""'(x), (32)

=P i'(21+1)Pi(cosX)Si,

where the scattering amplitude is now only a function
of the scattering angle X and the angle ro of an axis fixed
in the scattering center, relative to the new frame.

where x is the scattering angle. Equation (24) shows

that

Sz——e"& sinbz, (25)

where 8z is the usual phase shift.
The general expression for the scattering amplitude

is therefore

IV. AXIALLY SYMMETRIC SCATTERING

The majority of physical applications of our theory
will involve potentials with an axis of symmetry. '' '
We will therefore for simplicity develop below the total
cross section for a randomly oriented set of axially
symmetric centers. '

The general differential cross section is

4x
f(k,k') =—p SD, I'i*"(k) I'i"(k') .

o (x,to) =
i f(x,c ) i',

giving a total cross section of

(33)

However, it is inconvenient to express f(lr, k') in this

form because, although we dropped the suKx it on the o (co) — ~(x,ro)dn,

wave function at an earlier point in the text, we must
note that Slx depends on I, the direction of the incident and a momentum-transfer cross section
beam. We therefore write

(34)

Si~,sI'i*"(k)=2 Sv~, D, I'i *" (k)
Z')I

(2&) o (to) = o (x,to) (1—cosx)dQ. . (35)

The scattering amplitude then becomes

4m

f(&,&') =—2 P Sn„i ~ I'v*"'(k) I' t"(k').
z) z)

Equation (28) is still not in its most useful form,
because the coordinate frame is 6xed in the scattering
center. We therefore rotate the coordinate frame,
through —k, to a new frame in which 4 lies along the s

4x
o=—Zlsi, ~l'. (36)

In order to determine (35), after averaging over co,

it is only necessary to begin with Eq. (28), which for a

The result for random orientation of the centers is
obtained by a simple classical average over co.'' We
therefore obtain for the total cross section

The method of solution in terms of Sz.)t ~), is discussed in the
Appendix.

9 A discussion of a partially oriented set of scatterers, based on
Zqs. (34) and (35), will be the subject of a forthcoming paper.
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potential possessing an axis of symmetry becomes

4x
f(k,k') =—Q Sip', Fp*"(k)F'i"(k') .

l'A l'

We write
4~

cosx—=cos(k k') =—P Fi~™(k)Fi~(k'),
3

(37)

(3S)
gi(r) =E &'gi"'(r) (A1)

APPENDIX

Let us suppose that we generate X linearly inde-
pendent solutions of our set of coupled differential equa-
tions by using S different initial conditions. If this
set is gi&" (r) (where we drop the l& suKces for conveni-
ence) then the true solution must be a linear combination:

and we Gnd that the integral involving cosX, becomes

3(2/+1)(2L+1) '"
p' xp' mp' OAdQ

finally becomes

~4~q'

(k) &VS Ir"A m

(/ L 1 (/ L 1)
&&I

Eo o 1«x —A ~i'

I=—
~

—
~
P P P Sr, r, g*Sii g

3 Ski &VX LL'L m

)& Fi*™(k')Fi"(k') Fi~(k')dQi, dOi, , (39)

which on using

We determine 8; by matching solutions (A1) to the
asymptotic solution (19), i.e.,

B,gi&'i (R)
=i'fiji(kR)+AiSihi+(kR)], (A2)

E

and, by matching the derivatives, i.e.,

d gi&'& (R))

dR R hi+'(kR)
8, —A iS)=A i. (A3)

i'k ji'(kR) ijii'(kR)

where
Cx=d, (A4)

~G Hq 8; q pi,~
(A&)

(O' H') iS&) EA il

Equations (A2) and (A3) can be written in the matrix
form

l L 1
X $(2l+ 1)(2L+ 1)(2l'+ 1)(2L'+ 1)]"'~

0 0

)/ L 1) /' L' 1q(/' L' 1)
(41)

tx A ~) o o 1i4 —A m)

Equations (41) and (36) give us the result we desire.

V. CONCLUSION

and

gi"'(R)
G—

hi+(kR)
Ijir =-

i'ji(kR)i'Rji(kR)

d g&" (R))

dR R hi+' (kR.)B'=—
i'kji'(kR) i'ji'(kR)

(A6)

We have developed a method of solving the problem
of elastic scattering of particles by an asymmetric, point
potential in a very general fashion. However, we should
like to emphasize that the work. can be used to attack a
number of well-dehned physical problems. The first
problem of interest is the scattering of electrons by
screened dipoles in semiconductors. "other problems
include the analogous problem of scattering of slow
electrons by polar molecules such as ammonia and.
scattering by molecular hydrogen where a quadrupole
term will have to be considered.

The problems mentioned are being investigated, by
the authors and detailed numerical solutions will appea~
as sequels to the present paper.

If we now invert C and write
x= C—'d,

where

)G H

EG' H' '

then we obtain

A&Si ——Q(G&p'+Dip')Ap—=Q Sii Ap,

(A7)

(AS)

(A9)

which essentially is the result used in Eq. (27) provided
that one includes the generalization to a dependence on
X and X'.


