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The statistical mechanics of the anisotropic Heisenberg chain is treated by the Bogolyubov variational
method, taking the anisotropic X-¥ model as trial Hamiltonian. The free energy of the antiferromagnet
is well behaved for all values of the temperature and anisotropy, reducing in the isotropic case to results
obtained previously by Katsura and Bulaevskii. The behavior of the ferromagnet in the isotropic case is

similar to that found by Katsura.

1. INTRODUCTION

N spite of the voluminous literature on the Heisen-
berg model of ferromagnetism, there are still few
accurate results known at nonzero temperature. In the
present paper we study the anisotropic Heisenberg
linear chain at nonzero temperature, both for the
ferromagnetic and antiferromagnetic cases. Our method
of calculation consists of an application of the Bogo-
lyubov wvariational principle for the free energy.
This variational principle yields a rigorous upper
bound to the free energy at all temperatures and for all
values of the exchange and anisotropy parameters; by
minimizing this upper bound with respect to variational
parameters, one obtains the best approximation to the
free energy consistent with the variational ansatz.

The formulation of the variational principle and
analytical evaluation of the bound are carried out in
Sec. 2, and the variational equations arising through
minimization of the bound are derived. In Secs. 3-6
the Ising limit, ground-state energy, and low- and high-
temperature behavior are evaluated and compared
with the known results. In the remainder of the paper,
the results of numerical calculations of the optimal
bound are presented for all temperatures and values of
the exchange and anisotropy parameters.

2. FORMULATION

We write the Hamiltonian of the anisotropic Heisen-
berg linear chain in the form

N1
H=—27 3" [(14+7) S# S

=1
+ A=) (SSiur+S2Si) ], (1)

where v,—1<y<1, is the anisotropy parameter, J the
nearest-neighbor exchange constant, and S; the spin
operator on site 7; the total spin on each site is . The
Helmbholtz free energy F is defined by

e FF=TrePH, (2)

If H, is any “trial Hamiltonian” of the system, i.e.,
any Hermitian function of the S;, then the Bogolyubov

* Supported in part by the National Science Foundation
(GP 4367), and by the Office of Scientific and Scholarly Research
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variational principle! states that the true free energy
is always less than a “trial free energy” Firial:

FL< Fuim=Fo+ (H—Ho>o- (3)
Here F, is the free energy of H,,
exp(—BFo) =Tr exp(—BH,), (4)

and the angular bracket denotes an average in the
canonical ensemble of Hy:

Tr[ (H—H,) exp(—BH,)]
Tr exp(—BH,)

As in the case of the quantum-mechanical variational
principle for the ground-state energy, of which (3) is a
generalization to nonzero temperature, one lets Hp
depend on variational parameters and minimizes
Firia1 With respect to these parameters so as to obtain
an optimal upper bound.

We shall choose Hy to be the Hamiltonian of the
anisotropic X ¥ model, which is exactly soluble?3:

N1

Ho=—2J" 2 [(14+4) S#Sis®+ (1—9) S#Siv].  (6)

=1

(H—H, )= (5)

Our somewhat unconventional choice of the x axis as
the ‘“longitudinal” direction and hence the y and z
axes as ‘“transverse” in (1) is made in order to facilitate
comparison with the work of Lieb, Schultz, and Mattis,
who chose the x axis as longitudinal in (6). The vari-
ational parameters are J’ and 7; there is no reason
to expect the best choice of these parameters to be the
same as y and J except in certain limiting cases.
By (1) and (6) one has
N-1

(H—Hy)o=—2 f:l {LT(A+y) = T (147) HS# S o

FLT(A—=7) = T (1=4) J(S#Sisa¥ o
+ T (A=) (S#Siur ). (7)
Now by (4) and (5)

dFo/dp= (9Ho/3p o, (&)

1N. N. Bogolyubov, unpublished work cited in footnote 4 of
V. V. Tolmachev, Dokl. Acad. Nauk. SSSR 134, 1324 (1960)
[English transl.: Soviet Phys.—Doklady 5, 984 (1961)].

2 E. Leib, T. Shultz, and D. Mattis, Ann. Phys. (N.Y.) 16,
409 (1961).

3S. Katsura, Phys. Rev. 127, 1508 (1962).

455



456

where p is any ¢-number parameter in H,. A little
straightforward algebra then yields

oFy, J dF,
H—Hoo=(J—J') 220 4 L (y—q) 220
( 0)o=(J ])aJ,+J,(’Y 7) a7
N-1
=2J(1=7) 2:1 (87 St ). (9)
p=

Thus the only nontrivial term in Fia1 is that involving
(S#Sit o

Our H, is related to the Hamiltonian H, of Lieb,
Schultz, and Mattis? by

Hy=—2J'H;. (10)

These authors first introduce raising and lowering
operators @;, ¢;' by the usual transformation

ajt=S+iSy,
Sr=4(arta),

—_ 1
SF=a;ta;—1.

a,= S;"—1S7,
_1;
Sp=3i(a;—a;"),

(11)

These obey Pauli commutation and anticommutation
rules:

[afx aj'r:l-!-: 1’ (ai) ’= (aiT) 2= 0;

[aia alT]-—= Eaif) a,ﬁ]_: [a'j? a‘l]——: 0, Jj#l (12)

Fermion annihilation and creation operators c;, ¢;'

are then introduced by the Jordan-Wigner transforma-
tion

il
ci=explir D aitaa;,
=1

=1
CjT= lle exp[—iw Z dlfdl:l,
=1

J—1
a;=exp[—ir X, cife]cs,

=1

=1
a;jt=c;t explir 2 cife/].
1=

(13)

Then ¢j, ¢;' satisfy the usual Fermi anticommutation
rules:

Les, et ]y= 051,

Lei, eide=[cit, af1=0. (14)
Furthermore,
a;ta;=cj'c;, 1<j<N
ajtaj=c;c, iSjSN—-1
aitaiat=cileat, 1<j<N-1. (15)

4 E. Leib, T. Shultz, and D. Mattis, Ref. 2, p. 409.
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Thus

N-1

Ho=—1J" 2 [(cifciaticteiut) +Hel.  (16)
=1
Furthermore

Si*Sin*= (¢i'ci—3) (ci'ea—3). 17)
In order to simplify the analysis, it is desirable to re-
place (6) by the cyclic Hamiltonian

N
Ho=—J" 3 [(citepatieitern) +He],  (18)
=1

where

CN+1=0C1, CN+1T—=—- al. ( 19)

Similarly, we replace
=1 N
;S]‘Sm’ by Zl S Sit’ (20)

As pointed out by Lieb, Shultz, and Mattis, such a

change of boundary conditions is allowable, since the

resultant change in the free energy is only O (1),

hence is negligible in the thermodynamic limit [where

F=0(N)]. Then (3) and (9) become

dF,

0F, J
<Fria= — Ny — — —_—) —
F<Fuia=Fot(J f)a] +],(’Y 7) 97

N
—2J(1—7) ;1 ((ei'ei—%) (cipafeip—3) o, (21)

where Fy and { ) are evaluated in the ensemble of the
cyclic Hamiltonian (18), (19).

The expression for Fy can be read off from the work
of Lieb, Schultz, and Mattis? and of Katsura?; it is

2 /2
Fo(J', %, 8) = —NKT[an—i- u f dkIn cosh(J’ﬁAk)},
T/

(22)
with
A= (cos?k-+72 sin2k)1/2, (23)

However, in order to evaluate the explicit { )o in (21)
it is necessary to know the expression for the bracketed
operator in the representation in which H, is diagonal.
Since the representation we have found most con-
venient in evaluating (21) is slightly different from
those of Refs. 2 and 3, we shall repeat the diagonaliza-
tion of Hy here, following a Bogolyubov—Valatin trans-
formation method analogous to that of Katsura.

First we transfer to running-wave annihilation and
creation operators oz, ;' by the unitary transformation

G=N-1 Y qeti,  ct=N-1 Y aptebi, (24)
k k
where
| k=2rm/N,
m:—%(N—1)$ '_%(N—-l)-*'l; ° "507 1) e "%(N—l)
(25)
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For simplicity, we assume NV to be odd. Then, using the
relation

_ZN; exp[i(k'—k)j]=Né 1, (26)

it is easy to show that (18) becomes
Ho‘—‘ -J Z [:Zak*ak cosk-i-')'l(ak"a_ﬂe""—l-a_kake""‘) :]

: (21)
Similarly, one can transform the quartic operator

occurring in (21):

N
Zl (¢itei—%) (cipaTein—3%
=

N N

1

IN= 2 citei— D0 6 fteipc
=1 =1

iN— Z aytoay N1 Z eiqakﬂfakr_q"ak:ak. (28)
k

akk!

I

In order to put H, into a form in which it can be
diagonalized by a Bogolyubov-Valatin transformation,
we note that since the sum in (27) is over both positive
and negative values of %, the off-diagonal terms for
k and —% can be combined into an even function of %:
artayte®+a_ytayte = ta_it (e®—ei¥)
=2iapta_yt sink. (29)

Thus (27) becomes
Ho= - J E [Zozk*ak Cosk—{—i‘i"(ak“a_k*—a_kak) sink].
k
(30)

To diagonalize (30), we make a Bogolyubov-Valatin
unitary transformation to new Fermi operators B, 8.
This transformation can be written in the form

_ Brt+oBi o Bt o1 B
(14| e ¥ (14 o )17
where ¢y, is a complex ¢-number function which is odd:
O_k= — k. (32)

One finds that the off-diagonal terms in Hp in the new
representation (those proportional to B:'8_;" and
B-#Bx) vanish provided that

or= (== Ax— cosk) /i sink,

oy (273 (31)

(33)

where Ay is given by (23). The choice of the plus or
minus sign in (33) (the sign of the square root in the
solution of the quadratic equation for ¢;) should be
made so that ¢, vanishes as ¥—0, since the off-diagonal
terms in (30) vanish in that limit. Thus one should
choose the sign of A to be the same as that of cosk.
Then H, takes the diagonal form®

Ho=—2J" ; (A8 1Br) - (34)

5 The constant term in H, vanishes since 2 cosk vanishes by
symmetry (% runs from —a to ), and by aforementioned choice
of signs in (33) the sum Z;=-Ay also vanishes.
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The free energy is then
Fo=—KT In Tr exp(—BHo)
=—KTInTrexp[287" 2 == ABi'Bi]
%

=—KT > In[1+exp(£287'A)]
k
=—KT > In[2 exp(=£8J'Az) cosh(8J'Ax)]
k
=— 2[B! In24 J'Ay+B" In cosh(BT'Ax) . (35)
k

Changing the sum to an integral according to the
prescription

N /"

— | dk

zl:§—> 2x -7

valid in the limit N—, noting that the integral of
Ay vanishes’ and using the symmetry of A;, one ob-
tains precisely the result (22) of Lieb, Schultz, and
Mattis. Taking the limit B— o in (22), one obtains the
ground-state energy

1/2m
Eo(J', §) = —2Nat| J| f dkA
0

IA
[N

=—2Nz| J'| EQ—9%); 7

i\
=—2N7r‘1|J’l]';7]E( —); 171z,
Y
(36)

where E is the complete elliptic integral of the second
kind. This agrees with Eq. (2.21) of Lieb, Schultz, and
Mattis.

The thermal average of the transverse term [the ex-
plicit { Y in (21)7], can be evaluated with the aid of
Matsubara’s theorem,5” according to which the thermal
average of any product of annihilation and creation
operators in an ensemble appropriate to independent
fermions and/or bosons can be expressed in terms of
products of contractions, each contraction being the
thermal average of a product of only two operators,
each linear in annihilation and creation operators.
Since the transformation (31) conserves momentum,
the only such contractions which are nonzero are those
which conserve momentum. One thus finds

N

2 ((citei—3) (crateirn—3)o

=1

=IN— 3 (ostou o+ N1 D € {aunsqTo i g Do{asan Yo
k q.k

+N Y (1—exp[i(k—F) 1} {awtan YoleTar o (37)

P
To evaluate the various contractions occurring in (37)
6 T. Matsubara, Progr. Theoret. Phys. (Kyoto) 14, 351 (1955).

7C. Bloch and C. deDominicis, Nucl. Phys. 7, 459 (1958),
Sec. 3.
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we note that, after the e, ;' are expressed in terms of
Br, Bif, only the diagonal contractions {(B:x'B:) and
(BB Yo are nonvanishing. Thus, using (31), one finds

{tanYo= (1| or ) LB "Be Yot o [P (BiB" o,
{artai o= (1+| ¢r 1) 7 0r*[ (B-rB—r o— (B"Br JoJ,
{orer o= (14| ¢r |2) 7 ou[ (BB Yo— (Bi™Bx )0 . (38)
By (34) and standard arguments one has
(Bi"Br Yo=[exp(F28J'A) +117,
(BiBi Yo=1— (Bi"Br Jo=[exp (=26 T Ax) +117. (39)
Thus by (33),
(antau Yo=2[1+A;" cosk tanh(BJ'Ay) ],
(awtast Yo= — 3if A" sink tanh (87As),
(e Yo=3i7Ac sink tanh (8J7AL).  (40)

Substituting these expressions into (37) and thence
into (21), one finds? after converting % sums to inte-
grals,

/2 P
Fuial/JN=21r_1 {—ZT'/; dk In [2 cosh ('2'-27'* Ak)]

/2
— (=7 fo dk Ay sin’k tanh(z—% Ak>

/2
" (1—p) /o dk A tanh(z—;* Ak)

—(I_W)WN—IZ(P, ')-;) T*)}y (41)
where p=J'/J, 1/T*=28J, and

Z(P, ¥, T) :N[')‘ﬂS?(P, ¥, T*) - C2(P, 07 T*) ]) (42)

/2
—e [ th i tanh(5L ), (49

{2
C=x"1 /(; A7t cos?k tanh(z—% Ak). (44)

T* negative corresponds to the antiferromagnet and
T* positive to the ferromagnet. The minimum of the
trial free energy is obtained by solving 0Fia/d7=0
and 9F4i.1/0p=0 for ¥ and p, the solution of these
two equations giving the extrema of the free energy.
The derivatives of Fyia1 with respect to 7 and p vanish

8 Use has been made of the fact
/ " dk coskAy tanh (8J'Ay) =0,

due to the symmetry of cosk and A.
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if the following two equations are satisfied:
/2

y—F+2r 1 (1—v)¥ / dk Ayt tanh(%;£< Ak)=0 (45)
0

~ (1= p) 201 (1)

/2
X _/(; dk Ayt cos?k tanh(z—% Ak)z 0. (46)

Henceforth (45) and (46) will be referred to as the vari-
ational equations.

Using the relations (45) and (46), the expression for
the trial free energy is found to be
Fusa/ IN=Fo/ IN—3(1—=7)7[(1—p)*— (7p—7)*]

y4+1, (47)
where

/2
(]N)_IF(): — Qg1 T* /(; dk ln[z COSh(%* Ak):l

To obtain an expression for the internal energy, we
take as a definition

internal energy=d(BFria1) /dB, (48)
d(ﬁFtriaﬂ) d aFtrial dP aFtrial d';’]
—————— = — (BFuia - — .
) (BFu) ] i 2 e 07
(49)

But we have chosen 9Firia1/0p=0F1ia/07=0 as the
minimization conditions for Firia1. Therefore
d(BFiar) /dB= (8/0B) (BF iria) (50)
= (H )+B(8/38) (H—Hy ).  (51)
But (8/98) (H—Hy)=0, since (H—H,)y does not
contain 3 explicitly. Therefore
d(BFuia1) /dB= (H Yo=1internal energy.  (52)

In terms of the variational parameters one obtains for
the internal energy,

(H)/JN=—5(1—v)"[1=7"— (1= "],

y1. (53)

3. ISING LIMIT

In the Ising limit, y=1, the variational parameters
are =1 and p=1. In this limit the trial Hamiltonian,
H,, and the actual Hamiltonian of the system are
identical. Therefore we obtain the exact values for all
thermodynamic quantities of interest.

(1/JN) (H)jsi»s= —tanh(1/27%);  (54)
(1/ JN) Flsine= —2T*In2 cosh(p/2T*). (55)

Defining ¢= (1/JN) (8 (H )o/dT*), which is the specific
heat measured in units of (2/Nk), we obtain

¢=3(T*)~2 sech?(1/2T%). (56)
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4. GROUND-STATE ENERGY

In the limit of zero temperature the free energy is
equal to the ground-state energy:

lim Ftrial= <H )o,

-0
Epia= (H )o. (57

The values of p and ¥ occurring in (H ), which is
given by Eq. (53), are the solution of zero-temper-
ature variational equations

/2
T+ (1= 7 sen(T) [ dkATI=0, (58)

0

T,

/2
— (1= p) 271 (1—7) sgn(T*) / dk cos?k Ay1=0),

0
(59)
where we have used the relation

lim tanh[ (p/2T%*) Ay ]=sgn(T%).
70
First we consider the ferromagnetic case where

sgn(T*) =1.For 0<y<1 the solution of (58) is y=1.
The trial ground-state energy is

—1(14+);  0<y<1. (60)

This is the exact ground-state energy, corresponding to

all spins aligned along the « axis. A simple proof that

(60) is the exact ground-state energy is the following®:
Write the Hamiltonian as

H==2J(1+v)[ 2 {(1=0) S#Sp1"+08, Sy} ],
(61)

Egria=

where o= (1—7v)/(14+7).

The totally aligned state gives the maximal eigen-
value of S#S;r® and S, Sjyy, yielding the minimum
energy of the system. In the isotropic limit, y=0,
Eq. (58) has three solutions, y==-1 and ¥=0. y=1
corresponds to all spins aligned along the x axis and
¥=—1 corresponding to all spins aligned along the 7y
axis. These two solutions give the exact ground-state

Y—

-0 -08 -06 -04 -02 O 02 04 O;G 0'8 l._O

E
JN

Fic. 1. Comparison of the variational ferromagnetic ground-
state energy to the exact ground-state energy. E is the exact
energy and P the present work.

® M., Wortis (private communication).
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<0 -08 -06 -04 -02 0 02 70.4 06 08 10
T T T T T T T

1
£
N

-0.24

[

-04+

-06+ p
-0.81 K
E
-1.04
_|.4.

Fic. 2. Antiferromagnetic ground-state energy, E/JN, curves
as a function of anisotropy, v. E is the exact energy, K is
Kasteleijn’s variational energy, and P is present work.

energy. The third solution, ¥=0, gives a higher ground-
state energy and is discarded. We now consider the
region of anisotropy, —1<y<0. Although ¥=1 is a
solution of (58) for all ferromagnetic anisotropy, it
does not minimize the energy for —1<y<0. The
minimum energy was obtained by solving (58) nu-
merically. The resulting energy is compared with the
exact energy given by des Cloizeaux! in Fig. 1.

The solution of (58) within this region of anisotropy
yields y<—1. Writing the trial Hamiltonian in the
form

Ho=—= 2. (J.S7 S+ TS Si"),  (62)
J

where J,=—2J(14+%); J,=—2J(1—%), shows that
the exchange constants J, and J, have opposite signs.
In the classical sense, where the different components
of spin commute, this means that the y component
of the spins is interacting ferromagnetically, whereas
the & component is antiferromagnetic. This description
is similar to that given by des Cloizeaux.!

For the antiferromagnet, sgn(7*)=—1. Equation
(58) was solved numerically and Fig. (2) shows that
the resulting energy is closer to the exact energy'o:!
than the variational calculation of Kasteleijn.!?

[Note added in proof. The vertical axis of Fig. 2
should be relabeled E/| J| N, the vertical axis of
Fig. 3 should be relabeled A/2| J |, and the vertical
axis of Fig. 6 should be relabeled (H)/| J | N.]

As can be seen from Figs. (1) and (2), there is good
agreement between our ground-state energy and the
exact result. The deviation in energy from the exact
result is less than 89, for all values of exchange con-
stant J, and anisotropy %.

5. LOW-TEMPERATURE LIMIT

A perusal of the excitation spectrum of the XV
model® shows that there is an energy gap between the
ground state and the low-lying excited states of the
system for ¥5%0. Using this fact we can obtain a low-

( 1o J.) des Cloizeaux and M. Gaudin, J. Math Phys. 7, 1384
1966) .
11 R, Orbach, Phys. Rev. 112, 315 (1958).

12D, W. Kasteleijn, Physica 18, 111 (1952).

13 E. Leib, T. Shultz, and D. Mattis, Ref, 2, p. 414,
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F16. 3. Energy gap, A/2J, between the ground state and first
excited state as a function of anisotropy. “F” is the gap for the
ferromagnet, “A” for the antiferromagnet, and the dashed curve
is that of the anisotropic X ¥ model.

temperature expansion for Z,, the partition function,
in the following manner.

Zo= > (o] exp(—BHo) | @) (63)
or since Hy is diagonal we have Zy= D, exp(—fes),
where ¢, is the energy of state «. Hence

Zo=exp(—BE,)+ 2 exp(—fer),  (64)
where E, is the ground-state energy and the .,/ is
a sum over the excited states of the system. Therefore,
we can write e,= FE,+A-e,r, where A is the difference
in energy between the ground state and the first
excited state of the system (the energy gap), and
€ar is the energy of the system measured relative to the
energy of the first excited state.

Then the expression for Zy is

Zy=exp(—BE,) +exp[—B(A+E,) ] Z' exp(—Bex),

(65)
Zo=exp(—BEy) [1+exp(—pA) 2 exp(—Bex)]. (66)
Hence
Fo=—8"11n Z,, (67)
Fo= B+~ In[1-+exp(—p4) 2 exp(—Bew],  (68)
which for large 8 becomes
P BB exp(—BA) 2 exp(—fex).  (69)

The expression for the energy gap, A, of the X ¥ model
is

A=2|Jpy| for |7]<1
and

A=2|J|p for |§|>1.

Figure 3 is a plot of the zero-temperature variational
energy gap of the anisotropic Heisenberg model.

Then using exp(—pBA) as a small expansion param-
eter, one can obtain expressions for Fiyia1, ¥, #, internal
energy, and the specific heat which are valid at low
temperature.

An investigation of (58) and (59) as well as Fig. (3)
shows that the energy gap at zero temperature van-
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ishes only for the isotropic antiferromagnet. This
special case is considered in Sec. 7. For a finite energy
gap, the variational equations can be linearized in
67 and &p with T treated as a parameter, 3§ and 6p
being the small change in  and p for | 7% | 1.

First we consider the ferromagnet (7*>0) in the
region of anisotropy 0<y<1. The quantities of
interest, to first order in exp(—BA) are

87=—4[(1=v)/(1+v) J exp[— (1+7)/2T*], (70)

dp=3[(1—v)/(1+7) J(143v) exp[— (147)/2T*],
(71)

Fuia/ IN=—3(1+7) —2T* exp[ — (1+4~) /2T*].
(72)

For the antiferromagnet with y>£0 and the ferro-
magnet with —1<y<0, the values of the variational
parameters at small temperature are obtained by
linearizing Egs. (45) and (46) and evaluating the
resulting integrals by the method of steepest descents.

The results for the antiferromagnet are

by={a T* [etas | T [20(| T+ [52))

Xexp(—p | ¥/T*|), (73)
where
(1-7v)% } L iy
_J AT L 1—92) |}z,
(2 {(1—P)’7+‘Y “s"rP‘Y( 7)'}
a=—%|p7 |"a, (74)
3p= (b T* Pty | T* 30(] T* i)
Xexp(—p |¥/T*|), (75)
where
1—y {(1—21))*74-7} 3 _
b= — 1 1—52 12,
P [1_ 1 {?(1—2@—}-7}]
Y=L 209 =5y
X 37ep(1—7%) [, (76)
Fuial/ IN= Euia— {| §rp7(1—77) [}7V2| T* |32
Xexp(—p |7/T*]). (77)
«—TO [¥176 AT T=0
10 =09
0.8}
Fic. 4. The variational
06 705 parameter ¥ versus tem-
|;|°4 | perature for various anisotropy
g 7=-02  yalues in the ferromagnetic
02 7202 cage.

0 02 04 06 08 10
27
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For the ferromagnet we have

o7=Laa(T*)+co(T*)*] exp(—p/T*), (78)
where
o CNTHHTOIZ, ammtpria ()
dp=[di(T*)"2+dy(T*)¥*] exp(—p/T*), (80)
where
= 22 mpt— )1 2L
-1 v+7(1—p)
3 s tmp= 0o i T2
(81)
Fiia)/ IN = Egim— [3mp (72— 1) J7V2(T*)32
Xexp(—p/T*). (82)

The p and 4 that occur in Egs. (75)—(83) refer to
their zero-temperature values.

6. HIGH-TEMPERATURE LIMIT

For large T*, the thermodynamic functions can be
expanded in powers of (7*)~1. When this is done, the
following expressions are obtained for p and ¥ to first
order in (7%)1:

p=1-1(1=)(TH7; F=v{1+5(1—)(T*)}. (83)

Katsura and Inawashiro give the exact expansion of
the partition function. To order (7*)~2it is

N-11n(2-VZ)

=LA+ /4(T*) 2L (1—y) /4(T*) 2. (84)
The variational partition function is
NIn(27Y Zisial) = 26 (14+92) (T%)2. (85)

The variational partition function at high temperature
is close to the exact partition function only in the
neighborhood of y=1, the Ising limit.

1 ] 1 ! 1
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F1c. 5. Internal energy of the ferromagnet as a function of
temperature for various values of anisotropy.

1 S, Katsura and S. Inawashiro, J. Math. Phys. 5, 1103 (1964).
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7. INTERMEDIATE TEMPERATURES

First we consider the isotropic antiferromagnet
and ferromagnet. In this limit, the variational equations
are

/2
«;[1—21r~1 / dk At tanh(é% A,,)]=o, (86)
0

/2
—(1—p)+2=x1 / dk cos*k Ayt tanh(——z— Ak)=0~
0

2T*
(87)
The above two equations have two sets of solutions:
7=0, (88)

/2
—(1=p)+2771 / dk cosk tanh(é—;—; Ak>= 0, (89)
0
and

/2
1—2771 f dk At tanh(z—g* Ak) =0, (90)
0

/2
—(1=p)+2=7" /; dk cos’k Ay tanh(é—% Ak):O.

(91)

For T* negative, (90) can never be satisfied. There-

fore, the variational equations for the isotropic anti-

ferromagnet are (89) and (90). This is exactly

Bulaevskii’s result.’® He gives the following high- and
low-temperature expansion for p.

(T%)? T, (92)

P S T
p=1+3 | T* |1 T*>1. (93)

Now consider the isotropic ferromagnet. In the limit
of zero temperature, the two solutions of (90) and
(91), y==+1 with p=1%, give the exact ground-state
energy. However, there exists a temperature 7¢*
above which these equations cannot be satisfied. A
numerical calculation yields 7*=0.2262 with =0
and $=0.54572. Above T,* (88) and (89) minimize
the free energy and at 7%= T,* both sets of equations
give the same value for Fia. Figure 4, a plot of ¥
versus T* for various values of the anisotropy param-
eter, shows that in the isotropic limit ¥ changes from
=+1 to 0 over a small temperature range. In fact it can
be shown that

lim(dy/dT*)—t .
T*->To*
The internal energy is continuous but has a cusp at
T*=To*. The specific heat, the derivative of the
internal energy with respect to 7%, is discontinuous at
To* with the specific heat on the high-temperature side
being less than that on the low-temperature side. This
behavior corresponds to a second-order phase transition

15 L. N. Bulaevskii, Zh. Eksperim. i Teor. Fiz. 43, 968 (1962)
[English transl.: Soviet Phys.—JETP 16, 685 (1963)].
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F1c. 6. The antiferromagnet’s internal energy versus tempera-
ture for various values of anisotropy.

for which the trial Hamiltonian has gone from the
Ising to the isotropic XV model. A measure of the
short-range order of the system is given by 8 Firia1/97.
This quantity is discontinuous as a function of v at
v=0 for T*< T¢*, because of the two solutions of (90).
However for T*> T,* the variational equations have
only one solution and the short-range order is a con-
tinuous function of v.

The solution of Egs. (45) and (46) for all values of
anisotropy, v, and exchange constant, J, shows that
all the thermodynamic functions are well behaved
except in the aforementioned case of the isotropic
ferromagnet. The results of these calculations are shown
in Figs. (5) through (8), where Figs. (5) and (6) are
the internal energies and Figs. (7) and (8) are the
specific heats of the ferromagnet and antiferromagnet.

8. DISCUSSION AND CONCLUSIONS

In this paper we have found an upper bound to the
free energy of the anisotropic Heisenberg magnet by

08—
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F1G. 7. Ferromagnetic specific heat in units of 2/NK, as a
function of temperature for various values of anisotropy.
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means of the Bogolyubov variational principle. This
investigation showed that the thermodynamic functions
of the antiferromagnet as well as for the ferromagnet
with y5£0, are smooth, and well behaved, for all values
of anisotropy, the isotropic antiferromagnetic case
agreeing with the work of Katsura® and Bulaevskii.!s
In the zero-temperature limit, the variational ground-
state energy was found to be in good agreement with
the exact results.

The isotropic ferromagnet has a discontinuity in the
specific heat at a temperature 7¢*, this behavior
fitting Ehrenfest’s criteria of a second-order phase
transition. We attribute the phase transition to the
discontinuous nature of the short-range as a function
of v below To*, the discontinuity disappearing above
To*. Katsura’s model®® of the isotropic ferromagnet
also shows a discontinuity in the specific heat analogous
to that of ours.

[Xo] o
¥=09.
(o]
06— y=0
f a
05
04 4
0.2}
| | | L 1 1 1

02 04 06 08 10 12 14
KT
-

Fic. 8. Antiferromagnetic specific heat, in units of 2/NK,
versus temperature for various values of anisotropy.

To give a better physical explanation of this phase
transition, one would like to calculate the longitudinal
magnetic susceptibility or the long-range order. How-
ever there is no simple means by which the magnetic
susceptibility can be calculated in the X-Y plane. This
difficulty arises from the fact the total spin along the
X or Y axis cannot be expressed in a simple quadratic
form of Fermi operators, due to the nonlinear nature
of the Jordan-Wigner transformation. Lieb, Schultz,
and Mattis show that the long-range order for the
XY model is zero at all finite temperatures. But the
X7 model is equivalent to a system of noninteracting
fermions, whereas the Heisenberg model has inter-
actions via the Z component of spins. It is just these
interactions, however, that make the computation of
the long-range order intractable.

16 S, Katsura and S. Inwashiro, J. Math. Phys. 6, 1916 (1965).



