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The statistical mechanics of the anisotropic Heisenberg chain is treated by the Bogolyubov variational
method, taking the anisotropic X-F model as trial Hamiltonian. The free energy of the antiferromagnet
is well behaved for all values of the temperature and anisotropy, reducing in the isotropic case to results
obtained previously by Katsura and Bulaevskii. The behavior of the ferromagnet in the isotropic case is
similar to that found by Katsura.

1. INTRODUCTION

N spite of the voluminous literature on the Heisen-
. . berg model of ferromagnetism, there are still few
accurate results known at nonzero temperature. In the
present paper we study the anisotropic Heisenberg
linear chain at nonzero temperature, both for the
ferromagnetic and antiferromagnetic cases. Our method
of calculation consists of an application of the Bogo-
lyubov variatiooal principle for the free energy.
This variation al principle yields a rigorous upper
bound to the free energy at all temperatures and for all
values of the exchange and anisotropy parameters; by
minimizing this upper bound with respect to variational
parameters, one obtains the best approximation to the
free energy consistent with the variational ansatz.

The formulation of the variational principle and
analytical evaluation of the bound are carried out in
Sec. 2, and the variational equations arising through
minimization of the bound are derived. In Secs. 3—6
the Ising limit, ground-state energy, and low- and high-
temperature behavior are evaluated and compared
with the known results. In the remainder of the paper,
the results of numerical calculations of the optimal
bound are presented for all temperatures and values of
the exchange and anisotropy parameters.

2. FORMULATION

We write the Hamiltonian of the anisotropic Heisen-
berg linear chain in the form

N—1
H= —2J Q [(1+7)S S;+t*

+(1—7) (S"S+s"+St*St+t*)] (1)

where p, —1&p& 1, is the anisotropy parameter, J the
nearest-neighbor exchange constant, and S; the spin
operator on site j; the total spin on each site is ~. The
Helmholtz free energy F is dined by

e P~= Tre &~.

If Hp is any "trial Hamiltonian" of the system, i.e.,
any Hermitian function of the S,, then the Bogolyubov
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variational principle' states that the true free energy
is always less than a "trial free energy" F&„.,&'.

I" & I"a.;.i= I"o+ (—H —Ho)o. (3)

Here Fp is the free energy of Hp,

exp( PFp) =—Tr exp( PHp), — (4)

and the angular bracket denotes an average in the
canonical ensemble of Hp.

TrL(H —Hp) exp( —PHp)]
(H —Ho)o-=

Tr exp( —PHp)

As in the case of the quantum-mechanical variational
principle for the ground-state energy, of which (3) is a
generalization to nonzero temperature, one lets Hp

depend on variational parameters and minimizes
F&„,i with respect to these parameters so as to obtain
an optimal upper bound.

We shall choose Bp to be the Hamiltonian of the
anisotropic XI"model, which is exactly soluble' '.

N—1
Ho= —2~' Z L(1+7)St*St+t'+(1—7) St"SJ+t"] (6)

j=l

Our somewhat unconventional choice of the x axis as
the "longitudinal" direction and hence the y and s
axes as "transverse" in (1) is made in order to facilitate
comparison with the work of Lieb, Schultz, and Mattis,
who chose the x axis as longitudinal in (6) . The vari-
ational parameters are J' and y; there is no reason
to expect the best choice of these parameters to be the
same as y and J except in certain limiting cases.

By (1) and (6) one has

(H—Hp)p= —2 Z IL~(1+7)—I'(1+7)](s*st+t )p
j=l

+L~(1—7) —~'(1—7)](S'"Ss+r")o

+J(1—7) (S*S+')oI (7)
Now by (4) and (5)

itpp/itp= (itHo/itp)o,

' N. N. Bogolyubov, unpublished work cited in footnote 4 of
V. V. Tolmachev, Dokl. Acad. Nauk. SSSR 134, 1324 (1960)
)English transl. :Soviet Phys. —Doklady 5, 984 (1961)g.'E. Leib, T. Shultz, and D. Mattis, Ann. Phys. (N.Y.) 16,
409 (1961).

s S. Katsura, Phys. Rev. 127, 1508 (1962).
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where p is any c-number parameter in Bo. A little Thus
straightforward algebra then yields

BIip J BPp
(&—&o)o=(J—J'), + —,(v —v)

BJ' J' By

N—I—2 J(1—v) Z (S~*SJ+~*)o (9)

Thus the only nontrivial term in F&„,& is that involving

(S;S;gg*)o.

Ho ——J' Q C(c~ter+y+ve~ c~+yt) +H C.]. (16)

Furthermore

S;*S;+)*=(c c;—-,') (c;+g'c;+r——,'). (17)
In order to simplify the analysis, it is desirable to re-
place (6) by the cyclic Hamiltonian

Ho —J' g——C(c,tc;+~+vc;te;+r)+H. c.], (18)
Our Ho is related to the Hamiltonian H~ of Lieb,

Schultz, and Mattis' by
CN+I= CI,

Similarly, we replace10)
CN+I —=&I ~ (19)

These authors 6rst introduce raising and lowering
operators aj, a;t by the usual transformation

a;t= S,*+iS;,
S"=-'(a+a t)

S,~= aj~a, ——,'.

a, =S, —iS;",

S,"=,'i (a;-a, t—),

[a;, a;t]~=1, (u,)'= (a;~)'=0,

Ca~, a~']-= [a~', «']-= [a~, a~]-= o, i&~ (12)

Fermion annihilation and creation operators t,-,-, c,
are then introduced by the Jordan —Wigner transforma-
tion

c;=exp[in Q a('a)]u;,

c;t= a, t exp[—i~ g a,ta,],

These obey Pauli commutation and anticommutation
rules:

N—I

g S;*S;+~* by g S;*S;+~*.
1 1

As pointed out by Lieb, Shultz, and Mattis, such a
change of boundary conditions is allowable, since the
resultant change in the free energy is only 0 (1),
hence is negligible in the thermodynamic limit [where
F=0(Z) ].Then (3) and (9) become

BFp J BPpF&Fa..i= Fo+(J J') +——(v—v)
BJ J' By

N—2 J(1—v) Q ((e;te; ', ) (e,+gee—;+—g ,') )o—, —(21)

where Fo and ( )o are evaluated in the ensemble of the
cyclic Hamiltonian (18), (19).

The expression for Iip can be read off from the work
of Lieb, Schultz, and Mattis' and of Katsura'; it is

m/2

Fo( J', v, P) = —NKT ln2+ — dk ln cosh( J'PAo),
0

(22)

a;=exp[ im Q cP—c(]c;,
with

Aq ——(cos'A+V' sin'0) '". (23)

a, t= c,~ exp[is g chic~]

Furthermore,

Ccj) cl ]+=Bjl&

Cei~ e&]+ Cei s e& ]+ (14)

ai aj=&j &i~

aj ai+I=&j 6'+I&~t

aj a&'+I C' Cj+I ~

1&j&X
i&j&S—1

1&j&E—1. (15)

E. Leib, "L Shu1tz, and D. Matters, Ref, 2, p. 409.

Then c,, cj~ satisfy the usual Fermi anticorrnnutation
rules:

However, in order to evaluate the explicit ( )o in (21)
it is necessary to know the expression for the bracketed
operator in the representation in which Hp is diagonal.
Since the representation we have found most con-
venient in evaluating (21) is slightly different from
those of Refs. 2 and 3, we shall repeat the diagonaliza-
tion of Hp here, following a Sogolyubov —Valatin trans-
formation method analogous to that of Katsura.

First we transfer to running-wave annihilation and
creation operators Oj„oi,t by the unitary transformation

c =E 'I' Q n e'o~' c t=lV "Q n te +& (24)— '

where
k = 2m'/1V,

m= ——,'(X—1), ——,'(X—1)+1,~, 0, 1, ~, xo(E 1). —
(25)
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Fs—— K—T ln Tr exp( —PHe)
(26)

K—T ln Tr expL2PJ' g &AsPstPsj

KT—g lnL1+exp(+2P J'Aq)]

KT—P 1nL2 exp(&PE'As) cosh(PJ'As) ]
= —g ~' ln2+ J'As+P ' ln cosh(P J'hs) ). (35)

Q expl i(k' —k)jl=Nb&, s,

it is easy to show that (18) becomes

Hp —J'——Q I 2', tag, cosk+f (asta

steal+a

sase s)]
(27)

Similarly, one can transform the quartic operator
occurring in (21):
N

Cj Cj—2 Cj+1 Cj+1 2
Changing the sum to an integral according to the
prescription

For simplicity, we assume N to be odd. Then, using the The free energy is then
relation

N

g c~'tc&'—g c&tc' rtc~ +re''
1 j=l

=AN ga—stng, +N ' Q eirasi. ,re, stag ag, . (28)
Ig qkk~

In order to put Hp into a form in which it can be
diagonalized by a Bogolyubov —Valatin transformation,
we note that since the sum in (27) is over both positive
and negative values of k, the oG-diagonal terms for
k and —k can be combined into an even function of k:

valid in the limit E—&~, noting that the integral of
AI, vanishes, ' and using the symlnetry of 3&, one ob-
tains precisely the result (22) of Lieb, Schultz, and
Mattis. Taking the limit p~~ in (22), one obtains the
ground-state energy

s fei&+a'„ta te is —a„—ta t (eik e i7c)—

=210!pto! yt slrik. (29)
Thus (27) becomes

Hs= —J' g I
2astas cosk+iy(asta st as') —sink(.

(30)
To diagonalize (30), we make a Bogolyubov-Valatin
unitary transformation to new Fermi operators p&, p&t.
This transformation can be written in the form

= —2Ns. '
I
J'

I E(1—y');

Ps+a sp s"-, Ps'+v s*p s-
(1+I v. I')"" (1+I ~s I')'"'

where q~ is a complex c-number function which is odd:

(32)

One finds that the oG-diagonal terms in IIO in the new
representation (those proportional to pstp i,

t and

p ~pi, ) vanish provided that

q&~
——(&As cosk) /iy—sink, (33)

where i4 is given by (23). The choice of the plus or
minus sign in (33) (the sign of the square root in the
solution of the quadratic equation for p&) should be
made so that yI, vanishes as y—&0, since the oG-diagonal
terms in (30) vanish in that limit. Thus one should
choose the sign of A~ to be the same as that of cosh.
Then Hp takes the diagonal form'

Ho= —2&' Q (~&spstps) (34)

' The constant term in H& vanishes since Z~ cosh vanishes by
symmetry (k runs from —7i- to x), and by aforementioned choice
of signs in (33) the sum Zs&i4 also vanishes.

(36)

where E is the complete elliptic integral of the second
kind. This agrees with Eq. (2.21) of Lieb, Schultz, and
Mattis.

The thermal average of the transverse term
I

the ex-
plicit ( )s in (21)j, can be evaluated with the aid of
Matsubara's theorexn, ~ according to which the thermal
average of any product of annihilation and creation
operators in an ensemble appropriate to independent
fermions and/or bosons can be expressed in terms of
products of contractions, each contraction being the
thermal average of a product of only two operators,
each linear in annihilation and creation operators.
Since the transformation (31) conserves momentum,
the only such contractions which are nonzero are those
which conserve momentum. One thus 6nds

N

cj+» cj+1
j 1

=-,'N —g (apts)e+N 'g e"( a,s'+—a~s)ot( a sa)os

Ig q, k

+N—' Q I1—expl i(k —k') j}(as'as)p(apt'asr)p. (37)

To evaluate the various contractions occurring in (37)

s T. Matsubara, Progr. Theoret. Phys. (Kyoto) 14, 351 (1955).
7C. B1och and C. deDominicis, NucL Phys. /, 459 (1958),

Sec, 3.
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Thus by (33),

(cdh"cion &p= ,'$1+A-g, ' cosk tanh(p J'Ah) ],
(n/, tdh ht &o-= ——',ifc4 ' sink tanh (PJ'Ah),

(a hnh)0=-,'i/Ah ' sink tanh(P J'Ah). (40)

Substituting these expressions into (37) and thence
into (21), one 6nds, ' after converting k sums to inte-
grals,

tr/2 r pr„;,t/ddt =rr t 2r dh in 2—cosh
~ „ds)

0
&2T'*

—(r—r)r dhds sin%tosh~~ ds)
r p

we note that, after the ak, uk~ are expressed in terms of
P/„Pht, only the diagonal contractions (PhtPh&0 and

(PiP/, t)0 are nonvanishing. Thus, using (31), one finds

(~"~h)o= (1+I v ~ I') 'C(p~"P~ &o+I v. I'(P-hp-h')03,

(~"~-")0=(1+I v~ I') '~~*4(p-ip-" &0
—/p"P~&o j

(ch-hdh/ &o= (1+I q'i I') 'd/'hL(P hp i—t&0-(Ph—mph)oj (3g)

By (34) and standard arguments one has

(P,tP„&,= Lexp(W2P J'A, ) +1)—',

(PA'&o=1 —(P"P.)0= LexP(+2P»h)+1j '. (39)

if the following two equations are satis6ed:

v —i+2~ '(1—v) v dh ds ' tsnh d )=0 id5)

Henceforth (45) and (46) willbereferredtoasthe vari-
ational equations.

Using the relations (45) and {46),the expression for
the trial free energy is found to be

Fh„.i/ JE=Fp/ JX——', (1—y) 'L (1—p) ' —(yp —y) 'j
ye 1, (47)

where

/ r p(JÃ) 'Fo= 4/r 'T*— dk ln 2 coshI k

To obtain an expression for the internal energy, we
take as a definition

internal energy = d {PF„;.i) /dP, (48)

d(PFh. .i)
dp

BFtritsl dp BFtritsi ~p= —(PFh. .i) +P —+

(49)

But we have chosen BFhr i/Bpt=BFh, i/Byt=0 as the
minimization conditions for F&„,i. Therefore

—(1—p)+2~ '(1—v)

rm/2

&& dk Ah ' cos'k tanhI A„=O. (46)

:—(1-p)
pe/2

dk Ag,
' tanh Ak d(PFh. .i)/dP= (B!BP)(PFt-.i) (5o)

= (II&0+P(B!Bp)(&—&0&o (51)

(1 v)~& '~—(p, —~, T*),

where P= J'/J, 1/T*=2PJ, and

Z(p f' T)=ÃIy'S'(p y T*) C'(p r T*))

p
2T*dk Ah 'sin'k tanh

{41) But (B/Bp) (H—Ho &o
——0, since (H—IJO &0 does not

contain P explicitly. Therefore

d(PFhrr, i)/dP= (H)0=internal energy. (52)

In terms of the variational parameters one obtains for
the internal energy,

tr/2 r p
ds ' cot% tsnh( „ds). (44) 3, ISING LIMIT

T* negative corresponds to the antiferromagnet and
T* positive to the ferromagnet. The minimum of the
trial free energy is obtained by solving BFh„.,i/B&=0
and BFh„,i/BP=O for f and P, the solution of these
two equations giving the extrema of the free energy.
The derivatives of Fh„,i with respect to y and P vanish

8 Use has been made of the fact

dk coskAk ' tanhc'p J'Ak} =0,

In the Ising limit, y=1, the variational parameters
are y= 1 and p= 1. In this limit the trial Hamiltonian,
jVO, and the actual Hamiltonian of the system are
identical. Therefore we obtain the exact values for all
thermodynamic quantities of interest.

(1/ J1V) (II),"'.*=—tanh(1/2T*); (54)

(1/ J+)F"thh= —2T* ln2 cosh(P/2T*) . (55)

Defining c= (1/JÃ) (B(H)o/BT*), which is the specific
heat measured in units of (2/Ek), we obtain

Qge to &he symmetry of cosP and p/, . c=-'(T*) ' sech'(1/2T*) . (56)
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4. GROUND-STATE ENERGY

In the limit of zero temperature the free energy is
equal to the ground-state energy:

-l.o -08 -0.6 -0.4 -0.2 0t i I

-02--

-04--

-06--

O2 O4 O6 Oe ia
1

E
JN

+trial (H )0

The values of p and y occurring in (H)p which is
given by Eq. (53), are the solution of zero-temper-
ature variational equations Fro. 2. Antiferromagnetic ground-state energy, 8/Jib, curves

as a function of anisotropy, p. E is the exact energy, E is
Kasteleijn's variational energy, and I' is present work.

7—~+2 '(1—v)~sgn(T*) dk As ' ——0, (58)

First we consider the ferromagnetic case where
sgn(T*) = 1.For 0(y& 1 the solution of (58) is y= 1.
The trial ground-state energy is

0&y& i. (6o)

This is the exact, ground-state energy, corresponding to
all spins aligned along the x axis. A simple proof that
(60) is the exact ground-state energy is the following'.

Write the Hamiltonian as

H= —2 J(1+y) j g I (1—o) S 5,+t*+oS, St+,}j,

(61)
where o = (1—y)/(1+y) .

The totally aligned state gives the maximal eigen-
value of S, S;+i~ and S, S,+i, yielding the minimum

energy of the system. In the isotropic limit, p=0,
Eq. (58) has three solutions, y=&1 and f=0. y=1
corresponds to all spins aligned along the x axis and
y= —1 corresponding to all spins aligned along the y
axis. These two solutions give the exact ground-state

-I.o -08 W6 -04 -02 0
y~

02 0.4 0$ 0.8 I.O

-0.2.-

04--

FIG. i. Comparison of the variational ferromagnetic ground-
state energy to the exact ground-state energy. A is the exact
energy and I' the present work.

' M, Wortis (private communication).

m/2—(1—p)+2m '(1—p) sgn(T*) dk cos'k Aq ' ——0
0

(59)
where we have used the relation

lim tanhj (p/2T*) As]=sgn(T*).

energy. The third solution, p= 0, gives a higher ground-
state energy and is discarded. We now consider the
region of anisotropy, —1&&&0. Although p™=1is a
solution of (58) for all ferromagnetic anisotropy, it
does not minimize the energy for —1&p&0. The
minimum energy was obtained by solving (58) nu-
merically. The resulting energy is compared with the
exact energy given by des Cloizeaux" in Fig. 1.

The solution. of (58) within this region of anisotropy
yields p& —1. Writing the trial Hamiltonian in the
form

Hs —Q (J,S;*——S,+t'+ J„S,vS,+tv), (62)

S. LOW-TEMPERATURE LIMIT

A perusal of the excitation spectrum of the XI'
model'3 shows that there is an energy gap between the
ground state and the low-lying excited states of the
system for p/0. Using this fact we can obtain a low-

"J. des Cloizeaux and M. Gaudin, J. Math Phys. 7, 1384
(1966)."R. Orbach, Phys. Rev. 112, 315 (1958).

P. W. Kasteleijn, Physica 18, 111 (1952).
~3 g. Iteib, T. Shultz, an/ D. abattis, Ref, 2, p. 414,

where J = —2J(1+y); J„=—2J(1—y), shows that
the exchange constants J, and J„have opposite signs.
In the classical sense, where the diferent components
of spin commute, this means that the y component
of the spins is interacting ferromagnetically, whereas
the x component is aotiferromagnetic. This description
is similar to that given by des Cloizeaux. '

For the antiferromagnet, sgn(T*) = —1. Equation
(58) was solved numerically and Fig. (2) shows that
the resulting energy is closer to the exact energy' "
than the variational calculation of Kasteleijo. "

/Note added i,e proof. The vertical axis of Fig. 2
should be relabeled E/j J j X, the vertical axis of
Fig. 3 should be relabeled 6/2 j j j, and the vertical
axis of Fig. 6 should be relabeled (H)/j J j X.j

As can be seen from Figs. (1) and (2), there is good
agreement between our ground-state energy and the
exact result. The deviation in energy from the exact
result is less than 8% for all values of exchange con-
stant J, and anisotropy p.
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-I.O -0$
l.0

temperature expansion for Zo, the partition function,
in the following manner.

Zs =—g (rr
I exp( —PHs) I rr) (63)

0 0.5
y

Fro. 3. Energy gap, n/2 J, between the ground state and Grat
excited state as a function of anisotropy. "E"is the gap for the
ferromagnet, "A" for the antiferromagnet, and the dashed curve
is that of the anisotropic XF model.

ishes only for the isotropic antiferromagnet. This
special case is considered in Sec. 7. For a finite energy
gap, the variational equations can be linearized in
8f and 8p with T* treated as a parameter, By and 8p
being the small change in y and P for

I
T*

I
«1.

First we consider the ferromagnet (T*)0) in the
region of anisotropy 0&p & 1. The quantities of
interest, to first order in exp( —ph) are

by= —4I (1—y)/(1+y) ]expl —(1+y)/2T*], (70)

hP = —,'I (1—p) /(1+y) ](1+3') expL —(1+y) /2T*],

(71)

F„;,i/ JE= —s(1+y) —2T* expL —(1+y)/2T*].

(72)

For the antiferromagnet with y&0 and the ferro-
magnet with —1&y&0, the values of the variational
parameters at small temperature are obtained by
linearizing Eqs. (45) and (46) and evaluating the
resulting integrals by the method of steepest descents.

The results for the antiferromagnet are

or since Hs is diagonal we have Zs ——g exp( —ps ),
where e is the energy of state 0,. Hence

Zs ——exp( PE,)+ g'—exp( —Ps ), (64)

where E, is the ground-state energy and the g ' is
a sum over the excited states of the svstem. Therefore, py= tp, l

T* I'~'+p,
I

T* I'I'+O(l T* I'I') I
we can write e = E,+d,+e, where 6 is the difference
in energy between the ground state and the erst X xp( —P I v/T* I), (73)
excited state of the system (the energy gap), and where
& ~ is the energy of the system measured relative to the
energy of the 6rst excited state.

Then the expression for Zo is

Zs ——exp( —PE,)+exp[—P(h+E, ) ]g' exp( —Pe ),

II s~Pv(1 —~') lI '";(1—v) v'

(1—p) v+v

~s=-s
I v I '~r,

where
Hence

Sp= If I

T* Iris+ad, I
T* Is~s+O(I T* I»s) I

Zp= exp( —PE,) I 1+exp( —Ph) g' exp( —Pe )]. (66) &«m( —p I
v/T* I), (75)

Fp= —p-' ln Zp,

Fs E,+P 'inL1+exp( ———Ph) g' exp( —Pe

Illa'

P(&—v') I I
"'

(68)
(1—v') (1 P) ~+& ~™—

The expression for the energy gap, 6, of the XF model
1s

and
~=2

I Jp~ I
fo. I~I &1

&=2
I ~

I p

Figure 3 is a plot of the zero-temperature variational
energy gap of the anisotropic Heisenberg model.

Then using exp( —pd) as a small expansion param-
eter, one can obtain expressions for Ft,„,i, y, p, internal
energy, and the specific heat which are valid at low
temperature.

An investigation of (58) and (59) as well as Fig. (3)
shows that the energy gap at zero temperature van-

which for large p becomes

Fp E&+P ' exp( —PA) g' exp( —Pe ) . (69)

b2=—

5 To Iyf l76 AT T*O
I.O—

y50.9
0.8—

0.6—
l™yl04-

0R — y50

y 0.5

y5-0.2
y= 0.2

FIG. 4. The variation al
parameter p versus tem-
perature for various anisotropy
values in the ferromagnetic
case.

I I i l

0 0.2 0.4 0,6 0,8 l.O
~T
2J

1—y 1 y(1—2P) +y1—
p(1 —~') 2

I 7 I (1 P)v+~—
yD —ys p(1 —ys) l]iis (76)

F*-.i/»=E-. t I
'Pv(1 v') —lI-'"-I T* I'"-

&&exp( —p I
f/T* I). (77)
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For the ferromagnet we have '7. INTERMEDIATE TEMPERATURES

where

By= LCi(T*)'~'+Cs(r*)'I'j exp( —P/T*) p (78) First we consider the isotropic antiferromagnet
and ferromagnet. In this limit, the variational equations
are

Ci—

where

(1 v)v'—{srrp(v' 1) } —"'
cs= —-', p-'ci, (79)

T v1—p

BP={:di(r*)'"+ds(r*)"'j em( —P/T*), (80)

7 1—2~1
m'/2

dk its 'tanh~ As
~

=0, (86)
& P
&2T*

~/2 t' p—(1—P)+2s ' dk cos'k its ' tanh~ A& ~=0.
j

(87)

The above two equations have two sets of solutions:

y=0, (88)

{s~p(P ) } + —(1—p)+2s. '
n./2 p

dk cosk tanh As ~=0,
] (89)

Fg„,i/ JX=Et„,i—{ isz.P (y' —1)] 'I'(T*)si'

&«xp( —P/T*) (82)
n/2 ( p1—2s. ' dk As ' tanh~ Ai ~=0,pre j (90)

The p and y that occur in Eqs. (75)—(83) refer to
their zero-temperature values. —(1—p)+2s. '

2r/2 r
dk cos'0 4, ' tanh~ „A,)=0.2T*

6. HIGH-TEMPERATURE LIMIT

For large T*, the thermodynamic functions can be
expanded in powers of (T*) '. When this is done, the
following expressions are obtained for p and y to first
order in (T*)

(91)
For T* negative, (90) can never be satisfied. There-

fore, the variational equations for the isotropic anti-
ferromagnet are (89) and (90) . This is exactly
Bulaevskii's result. "He gives the following high- and
low-temperature expansion for p.

Katsura and Inawashiro' give the exact expansion of
the partition function. To order (T*) ' it is

E 'ln(2 ~Z)

= —,
' {L(1+y)/4]'( T*)—'+2L(1—y) /4$'( T*)—'} (84)

The variational partition function is

& '»(2 ~Z~, '.i) =A(1+v') (T*) ' (85)

The variational partition function at high temperature
is close to the exact partition function only in the
neighborhood of y= 1, the Ising limit.
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Fro. S. Internal energy of the ferromagnet as a function of
temperature for various values of anisotropy.

i4 S. Katsura and S. Inawashiro, J.Math. Phys. 5, 1103 (1964).

P= (1+2~-')—,(T*)' T*&&1, (92)

p=1y, [
r* (-' T*»1. (93)

Now consider the isotropic ferromagnet. In the limit
of zero temperature, the two solutions of (90) and
(91), / =+1 with p=-'„give the exact ground-state
energy. However, there exists a temperature To*
above which these equations cannot be satished. A
numerical calculation yields To*——0.2262 with p™=0
and p=0.54572. Above Te* (88) and (89) minimize
the free energy and at T*=To* both sets of equations
give the same value for F&„-,~. Figure 4, a plot of y
versus T* for various values of the anisotropy param-
eter, shows that in the isotropic limit y changes from
&1 to 0 over a small temperature range. In fact it can
be shown that

lim(dy/d T*)~a ~ .
T+~T0+

The internal energy is continuous but has a cusp at
T*=To*. The speci6c heat, the derivative of the
internal energy with respect to T*, is discontinuous at
To* with the specific heat on the high-temperature side
being less than that on the low-temperature side. This
behavior corresponds to a second-order phase transition

"L.N. Bulaevskii, Zh. Eksperim. i Teor. Piz. 43, 968 (1962)
/English transl. : Soviet Phys. —JETP 16, 685 (1963)g.
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