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The Ising-model correlation function C(R») = (totss) is studied in terms of a novel fir-fold integral rep-
resentation. This formula stems from a procedure proposed by Montroll and Berlin. The integral is esti-
mated by maximizing the integrand, an approximation related to the spherical-model assumptions. The
correlation function is not of the Ornstein-Zernike type, just above the critical point, but rather C (R) cc R ' o

for R«1/e, and C(R) cce&R ' exp( —eR) for R»1/e. The correlation length 1/e becomes infinite at the
critical point. The calculated value y=0.646 is too large, reAecting the omission of important terms in the
evaluation of the integral. The unusual mechanism inducing the nonclassical behavior is carefully examined.

I. INTRODUCTION

f lHERE now exists a large body of evidence con-
cerning anomalous behavior of correlation functions

near critical points. For the nearest-neighbor Ising
model, in particular, information has been obtained
analytically in two dimensions, and numerically in
three dimensions. There occur marked qualitative devi-
ations from the correlations predicted by the classical
theory of Ornstein and Zernike. In spite of this wealth
of data, however, there has been very little progress
toward a general analytic theory of the critical point.
In fact, it has so far turned out to be remarkably
dificult to recover anything but the Ornstein —Zernike
correlation function from either soluble models or
systematic approximations. In response to this difB-

culty, we have attempted to 6nd a new formulation
of the theory of critical correlations which might pro-
vide a means for calculating the known nonclassical
behavior. Our attempt has not been completely success-

(1.2)

E=J/21tjsT,

and the pair-correlation function may be written

Cmn. + g ttmttn exp{+ g oijttitsjI ~

f p, i=pl)

(1.3)

(1.4)

ful, but we hope that several of our results may provide
useful clues in the search for a correct theory.

We consider an Ising model consisting of E spins
with values pi=+1, i =1, ~ ~, S, located at sites ri
on an s-dimensional cubic lattice. The energy E is a
simple ferromagnetic coupling of the form

8= —~J Q v;jtt, ttj. (1.1)
i,j=l

Here the dimensionless e;; is a function only of the
distance between the lattice points

~
r;—r; ~, and is of

strictly finite range. The partition function is

Z= Q expIE Q e;stt;ttj},
tungi-All
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We shall consider only zero external magnetic 6eld,
and shall concentrate on temperatures at or just above
the critical temperature, so that there is no long-range
ordel .

Emphasis in the subsequent development will be
placed largely on the evaluation of C „ for large
separations of the lattice points m and e. A class of
approximations very closely related to the spherical
model of Berlin and Kac' will be employed. In Eqs.
(1.3) and (1.4), the sum over the configurations

f p;=&1} is performed over a hypercube in the 1V-di-

mensional p space. In the pure spherical model, this
sum is replaced by an integration over the hypersphere
specified by

Q p;s=X, (1.5)

which passes through the points fp;=+1}.The par-
tition function then becomes

~SM +N

with normalization KN chosen to give the correct result
for a noninteracting system. This quantity Z» is best
thought of as the exact partition function for a well-
de6ned but nonphysical "spherical" model of a ferro-
magnet; but also may be interpreted as a crude approxi-
mation to the partition sum for the Ising model. In
fact, a variety of approximate solutions to the Ising
problem turn out to be essentially identical to the
spherical model. 2

Note that the sphere defined by Eq. (1.5) is just
one of a large class of quadratic surfaces of the form

N

i9i = ip (1.7)

each of which contains every point for which all the pi
are &1; that is, each surface contains all of the points
in p space that describe the allowed configurations of
the true Ising model. The intersection of all possible
surfaces of the form (1.7) must reduce to just these
configuration points. This observation is a geometric
interpretation of an analytic formulation of the Ising
problem proposed originally by Montroll and Berlin, '
and is central to the present work. One interpretation
of the present work is that it attempts to improve
upon the spherical approximation to the correlation
function by including in the integrand a few constraints
of the form (1.7), in which P; is not just a constant as
in Eq. (1.5). It turns out that a very natural choice
of g, may be obtained from a study of the Montroll-

' T. H. Berlin and M. Kac, Phys. Rev. 80, 821 (1952).
'R. Brout, I'hase Transitions (W. A. Benjamin Inc. , Neer

York, 1965).
3 E. W'. Montroll and T. H. Berlin, Commun. Pure Appl. Math.

4, 23 (1951),

Berlin formalism. The result is a novel form of the
correlation function with qualitatively satisfactory devi-
ations from the Ornstein-Zernike theory.

In Sec. II of this paper we shall review the Montroll-
Berlin formalism and emphasize its relation to the
spherical model. Then, in Sec. III, we shall apply this
technique to the calculation of the correlation function.
Throughout these sections we shall pay attention to the
dependence of our results on the dimensionality of the
system in accord with the apparent fact that critical
phenomena are much more sensitive to dimensionality
than they are to, say, lattice structure or the details
of the spin —spin interaction. Because our mathematics
will remain similar to that of the spherical model, we
shall not be able to consider two-dimensional systems,
for which the spherical model predicts no phase tran-
sition. Three dimensions turn out to be the most inter-
esting, with the most significant deviations from the
Ornstein-Zernike behavior. There occurs a weak anom-
aly in four dimensions, and for 6ve or more dimensions,
we recover the Ornstein —Zernike theory.

In Sec. III a number of crude mathematical approxi-
mations will be made so as not to obscure the essential
features of this theory. In Sec. IV we shall describe our
best attempt to date at making a quantitative calcu-
lation of the three-dimensional correlation function.
The critical correlation function calculated in this
fashion decays like R ' &; but our best estimate of g
turns out to be much too large to agree with the
numerical calculations of Fisher and Burford. 4

The specific heat in the neighborhood of the critical
point is related to a four-spin correlation function. 5 A
calculation of this four-spin average within the context
of the present theory is presented in Sec. V.

In an Appendix, we present a discussion of an al-
ternative formulation of the Ising model which is
structurally similar to that employed in the body of
the paper.

II. FORMULATION OF MONTROLL AND BERLIN

Montroll and Berlin' have cast the Ising partition
function, Eq. (1.2), into an alternative analytic form
by inserting Dirac delta functions to convert the
summation to an integration

@t' ' 'dN'EII 28(1 p~')]

Xexp{Eg v,;p;p;}. (2.1)

/Note that Eq. (2.1) may be said to be derived by
choosing a special set of functions $, in Eq. (1.7)
such that the jth function is P,&'&=3;,. Clearly any
function de6ned over the lattice sites may be expressed
as a linear combination of these g's.) With the integral

4 M. E. Fisher and R. J. Bnrford, Phys. Rev. 155, 583 (1967).' F. H. Stillinger, Phys. Rev. 146, 209 (1966).
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representation of the delta function,

E
b(1—»L»') = . exp{Et(1—p') }dt (2.2)

2' Z —sec»
0=8/Bt~ PK'g t; s l—n } T—V }]»r» (2 g)

spherical model. To see this consider the stationary
condition

the partition function becomes =K—-.'G, ,{t}, j=1~ ~ ~ 1V, (2 9)
tE&

Z=i —. ~ ~ ~ d», ~ d» ~ ~ ~ ~ dt's ~ dt~

Xexp{Eg t, } exp{ Kg(—T V)—,,y;p, }. (2.3)

The matrix T is diagonal, with t, in the ii position;
while V is the cyclic matrix with v;, as elements.

If the 3 contours are deformed sufficiently far to the
right such that the real part of T —V is positive definite,
then the order of p, and t integrations may be inter-
changed. A possible choice of t contours 6 is i oo+y-
to i +ooy with

where

X&» =t,—8(p), (2.10)

8(p) =g t»,, exp[i(r; r, )—p]. (2.11)

where the last equality is derived in Appendix B.
In order for 6;; to be independent of j, we must have
t; independent of j; say, t;= t.. With periodic boundary
conditions and a spatially uniform t, , a spectral repre-
sentation of the matrix T—V becomes appropriate. ~

The eigenvectors p,;&» are simply plane waves, and
the eigenvalues are

The integrand for the p integrations is an X-dimen-
sional Gaussian, and the integral may be evaluated by
diagonalizing the quadratic form. With complex ele-
ments along the diagonal the existence of an orthogonal
transformation for this purpose is not guaranteed. '
Thus, in Appendix 8 we proceed via a congruent
transformation which simultaneously diagonalizes the
real and imaginary parts of T—V. We then obtain the
formula

The allowed p s are s-dimensional vectors in a Brillouin
zone

2»l Nr 2s Ãs 27I r4»

Lr
'

Ls
' ' L, j'~ ~ ~

where the e's are integers and the L's are the lengths
of sides of the lattice in units of the lattice spacing.
Equation (2.9) becomes

E=(1/») 2{1/{t.-8(p)]}, (2»)

d{t}exp{E gt, } [T—V [
'I' (2.5)

6

where {t}=t» ~ .ty. —
A similar procedure may be employed for evaluation

of the pair-correlation function (cf. Appendix B):

Z —z N

C „—= (t»„»a„)

K)N/2
= (1/2KZ) i & —

~

-d {t}
7rj

Xexp{Eg t, }{ T—V {
'»'G „. (2.6)

Q(A 4» —r»»)G»~=4, .
l

(2.7)

It should be noted that although Eq. (2.5) is an
exact analytical representation of the partition func-
tion for the Ising model, it bears a very close relation-
ship to the spherical model. For E less than a critical
value the integrand in Eq. (2.7) has a stationary point
{t}in the allowed part of the X-dimensional t space;
and the value of the integrand at this point turns out
to be proportional to the partition function for the

6 Q. L. Dolph, J. K. McLaughlin, and I. Marx, Commun. Pure
Appl. Math. V, 621 (1954).

The matrix G, the inverse (Green's function) of the
matrix T—V, satisfies

which is equivalent to Eq. (C.15) in Berlin and Kac.
This equation may be solved to determine t, as a func-
tion of temperature E as long as E is small enough
that t,)8(0) . The critical point for the spherical model
(SM) occurs when t, =8(0), i.e.,

K.=(1/21V) +{1/L8(0)—8(P)]} (spherical model).

(2.13)

Finally, we may insert t, (K) into the integrand in
Eq. (2.7) to obtain

lnZsM= —slV 1nK+J»IKt, rsg in{ t, —8(P—)], (2.14)

which also agrees with Berlin and Kac, Eq. (C.11),
except for some simple normalization terms.

The next logical step in a straightforward analysis
of the Ising model via Eq. (2.5) would be an expansion
of the argument of the exponential out to terms quad-
ratic in, say, t,—t„and then evaluation of the resulting
Gaussian integrals. It turns out that all of these inte-
grals converge; but the result does not make sense
near the critical point. This, and difliculties in passing
into the low-temperature region, indicate that all
higher-order terms must be considered. This interesting
line of attack is being pursued, but we shall not follow

r T—V is a normal matrix (its real and complex parts commute)
even if t, is complex.
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We now wish to apply the methods of the last section
to a direct calculation of the correlation function as
expressed in Eq. (2.6). Specifically, let us seek a point

{t} in the 1V-dimensional t space at which the integrand
in (2.6) is stationary. Because of the factor G „{t}
in this integrand, {1}may be expected to differ from
that found previously. In particular, t; will be a nori-

trivial function of the position r;.
The criterion for stationarity may be written in the

form Lcf. Eq. (2.9)]
E=2G,;{t} 8/Bt; —lnG {t}j(&). (3.1)

For spatially nonuniform {t},however, the evaluation
of the right-hand side presents djKculties not en-

countered previously.
We may simplify the following mathematics some-

what by going to a continuum approximation for func-
tions dehned over the lattice sites. This should be
particularly appropriate near the critical point where
it is expected that the essential contributions to the
singular behavior come from regions where functions
like 6 and t vary very slowly over distances of the
order of the lattice spacing. Measuring r in units of
the la'ttice spacing, we write Eq. (2.7) in the form

t(r) G(r, r,) — d'r' (rs—r') G(r', r,) =I)(r—r,),

which may be formally expressed as
(3.2a)

{ )!(r)—v( —iV„)]G(r, ro) =b(r —1'p). (3.2b)

If the interaction s(r —r') has a short range, Eq. (3.2)
may be further simplified by approximating the integral
operator by a difIerential operator, i.e., expand 8 to
second order in powers of —iV. One 6nds

it here. Rather, taking the point of view that the above
zeroth-order spherical approximation makes some sense

by itself, we shall attempt a similar zeroth-order calcu-
lation for the correlation function as given by Eq.
(2.6) .The result is a correlation function quite different
from that predicted by the pure spherical model.

III. PRELIMINARY CALCULATION OF THE
CORRELATION FUNCTION

that this differential approximation leads to short-
wavelength divergences similar to those which occur in
field theory. Occasionally we shall have to return to
the exact equation, or invoke an appropriate cutoG.

The term involving G „ in Eq. (3.1) should affect
the function t(r) only for values of r near r and r„.
Elsewhere in the system, t should be very near the
constant value t, computed previously. It is therefore
convenient to adopt the notation

&(r) =&,+y(r),
t, -8(0) =~,

and sometimes, for compactness,

6=K 0'

(3.6a)

(3.6b)

(3.6c)

It is understood that Q(r) goes to zero as r moves
away from the positions of the two correlated. spins.
As in the spherical model, e vanishes at the critical
point. Equation (3.3) now becomes

L
—o'V'+e+P(r)]G(r, ro) =h(r —ro). (3.7)

Finally, we shall rewrite Eq. (3.1) in the form

E= ',G(r, r
~ p)-—(){ lnG(R, 0

~ Q)]/g (r) ~~~ (3.8).

LThe derivative with respect to t; has become a func-
tional derivative with respect to (() (r).] The lattice
points r and r are now called R and 0; and the
functional dependence of G upon P is indicated in an
obvious notation.

For present purposes, it will be sufhcient to consider
certain semiclassical approximations for the Green's
functions which appear in the two terms on the right-
hand side of Eq. (3.8) . One fairly crude approximation,
valid only in the limit of extremely slowly varying (t) ( r),
may be obtained as follows'. Assume that, for purposes
of calculating G(r, r'),

g—QL-', ( r+ r') ]=const

throughout a large region surrounding x and r'. Then
the eigenstates, appropriate for calculating G from a
spectral representation, are simply plane waves; and
the eigenvalues of T—'Irt' are

l '")=~(0)—8(P)+{~+4{=:(r+r') ]}

where

and

ii(0) fd'r 5 (r), = (3.4)

Lt(r) —8(0) —O'V']G(r, ro) =()(r—ro), (3.3)
Thus

~~2p2+ (~+y) (3.9)

exp{ ip (r—r')]= '~{-«)--(»++ L-:(+")]
(3.10)

0' = (1/2s) d'r r'v (r) (3 5)
Clearly (3.10) cannot be used for large separation,
r —r', but it turns out to possess apparently correct

is a measure of the range of the interaction. Truncation
of the power series in —iV at gradient terms is again
appropriate for slowly varying G. It should be noted

8 M. Kac, W. L. Murdoch, and G. Szego, J. Rat. Mech. Anal.
2, 767 (1953); this is related to the treatment of inhomogeneity
in the development of the Thomas-Fermi approximation as pre-
sented by G. A. Baraff and S. Borowitz, Phys. Rev. 121, 1704
(1961).
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qualitative features for r=r' and for the kind of
functions p which we shall be led to consider. A more
systematic calculation of G(r, r), leading to a result
similar to (3.10), will be presented in Sec. IV, but to
present the full treatment here might obscure the
essential features of the theory.

Let us now use Eq. (3.10) to evaluate the first term
on the right-hand side of Eq. (3.8):

lG(r, r } 4) =(»)-' ZIP(0) —~(p) j+ +&(r) } '.

(3.11)

the transformation

r =e'

so that (3.16) becomes

—(d'G/dx') —(s—2) (dG/dx) +w (x)G =0,

where
m (x) =o—'e"[c+y$.

Now we may write

(3.17)

(3.18)

(3.19)

This expression should be examined for various dimen-
sionalities, s, and for small values of e and g. For s) 2,
(3.11) remains finite when e and g are zero. According
to Eq. (2.13), its value is Z„ the spherical-model
critical temperature. The first corrections in e+P are
listed below.

s=3: -', G=E,&ai —(1/8ira') (e+P)'i'+ ~ ~ (3.12)

s)5: —,'G=E,i' —A&'(c+Q) + ~,
where

(3.14)

Ai & = (1/2N) +[0(0)—e(p) j-', (3.15)

and A&') is Gnite for s&4.
Let us turn next to a calculation of the second term

on the right-hand side of Eq. (3.8). This term will be
quite sensitive to the manner in which G falls to zero
for large distances R between the two spin sites. In this
case, it is appropriate to use the semiclassical WKB
approximation [Eq. (3.10) is insufficient]. To do so,
however, we must make some simplifying assumptions
about the stationary potential g ( r) . It is almost certain
that the exact p will be symmetric under interchange
of the two spin sites, and will have cylindrical symmetry
about the line joining these sites. Perhaps the simplest
such function is the sum of identical, spherically sym-
metric functions centered about each site; and it is
just such a function which we shall examine in Sec. IV.
Although this kind of function is already oversimplified,
we shall see that it requires rather complicated analysis.
It turns out, however, that the qualitative aspects of
the theory may be obtained by assuming that p(r)
has spherical symmetry about only one of the two
sites, say the one chosen to be at the origin. We shall
consider only such P's for the remainder of this section.

With the assumption of spherical symmetry about
the origin, Eq. (3.7) becomes

t'd' s—1 d) ~()—~'
I

—+ —I+[e+e(r) 1 G(r) = . (3.16)
(dr' r dr j 4n-r2

In this case to use the WKB method, one must make

s=4: —',G=E,&4'+(1/32m'e') (e+P) ln(e+Q) + ~ ~

(3.13)

where Q satisfies

G =
expQ (x), (3.20)

Q(x) ~— f-', (s—2) +[-', (s—2) '+~(x') 7'i'}gx'

—
~ »4(s —2)'+~(x)]+" . (322)

This implies that G(R
~ P) has the form

G(R
~
y)=,R*" '( ~i (s—2) 2+ (g/0. )2[e+p(g) ]}1I4

(s—2)' 1/2

Xexp — dr +—,[e+g(r) ] . (3.23)
0' 4r2 02

As a lower limit on the integral 0. is used, and all effects
from 0 to 0 are contained in the constant. Note that if
we set @=0, G behaves exactly like the Ornstein-
Zernike correlation function: If E becomes large while
e remains finite,

G- (A/2|!) « '&e-"ii (3.24)

—Q"—Q"—(s—2) Q'+alii(x) =0. (3.21)

(Primes denote differentiation with respect to x.)
In terms of the quantities appearing in Eq. (3.21),

the criterion for validity of the %KB method is that
w(x) varies slowly enough, so that the second derivative
Q" is small compared to Q' or Q". We now can see
that this will be true for all cases of interest to us.
Consider, first, situations in which P is negligible com-
pared to e, that is, let R become large with ~ fixed.
Then w(x) ~e"; Q'~e; and Q" 0-e &&Q". Next, con-
sider holding E. 6xed and approaching the critical point
by letting e vanish. We shall be interested in P's which
behave like inverse powers of r=e~. As long as p
decreases no more rapidly than r ', the above argument
holds, because m still increases exponentially with x.
If @~r ', then w is independent of x, and (3.21) is
solved exactly with Q"=0. Finally, if P decreases more
rapidly than r ', m vanishes for large x, and the ap-
propriate solution of (3.21) is Q' 2 —s, Q" 0 again.

The WKB solution now may be constructed in the
standard fashion. As usual, it is necessary to include
the first correction, of order Q". The result is
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(/4=4'/'/0); if e vanishes with R held fixed,

G A'/R (3.25)

It remains to employ the Green's function of Kq,
(3.23), along with Eqs. (3.12) through (3.14), in the
saddle point Eq. (3.8) to compute p(r) . For purposes
of taking the functional derivative indicated in (3.8),
we should neglect the prefactor in (3.23), because it
depends upon P evaluated only at the single point
r=R. Furthermore, we must turn the radial integral
into a volume integral by writing

the range of interaction, 0, or the value of the critical
temperature.

Equation (3.31), however, should not be interpreted
as the actual critical correlation function C(R). The
modification of the determinant in Eq. (2.6) by the
inclusion of &=~0'/r' leads to a further power of R
factor in the correlation function. This is clearly
illustrated within the context of the present approxi-
mations. Recall that G(r, r

~ g) is the partial de-
rivative 8 ln

~

T —V ~/BP( r) . Hence, reintegrating the
Green's function in the form of Eq. (3.12) yields
(cf. Appendix 8)

where

f 0 ~ ~ d'r/A (r) ~ ~ ~ (3.26)
V

I

= ——ln [ t, 1 V~+K,"—I d'rp(r)1

8(R r) (s——2)' 1
h G(R l~) I;-=—.. ., +-,(+~)

—1/2

r) o. (3.28)

For r& R, the right-hand side of (3.28) vanishes in this
approximation, as is indicated by the step function
8(R—r). The equation is inappropriate for the short-

range effects, r &0..
Consider, first, the case s=3. Equation (3.8) is

K E&"=(8s.o—') '(e+y) "'

+ L(4r2)
—1+(~2)—1(~+y) $

—1/2 (3 29)
8mr'0-'

The limit obtained by letting r and R go to infinity
before going to the critical point simply tells us again
that 4=0 at E=E,"I, because p is supposed to vanish

for large values of its argument. The most interesting
situation occurs when r is held fixed while e—&0, so that

@becomes much larger than e. Setting e =0 and E=E,&@

in Eq. (3.29), and solving for P we obtain

y~ (coo'/r') 8 (R—r)

~ =L(65)"'-l j/8. (3.30)

The fact that p turns out to vary as r ' for s=3 is
the most important result of this paper. Only this
particular r dependence of P, when inserted into the
exponent of Eq. (3.23), can modify G so that it exhibits
something other than the Ornstein —Zernike power law

at the critical point. Specifically, if &=&so'/r', then,
for s=3,

G(R) pt: R iI2 Ii/4+~)'I'-—(3.31)

according to Eq. (3.23). Clearly the purely numerical
factor co is a measure of the deviation from the classical
behavior. Note that this factor turns out to be inde-

pendent of any of the parameters in the problem, e.g.,

A, (r) =24r'/'r '/l'(i2S) (3.27)

is the area of an s-dimensional hypersphere of radius r.
Then

—(12+0'4) d rLq+y(r) )4/2 (3.32)

= —
2 ln

~
/„1 —V ~+E,I'/ d'rp(r)

r«1//4.

(The critical correlation length for this solution is
1/~. ) Thus for R in the range 0.&&R&&1/~ the previous
treatment of the correlation function is correct. For
R&)1/~, however, the correlation function reverts to
an Qrnstein —Zernike form, but with an important non-
classical modification of the prefactor. Consider again
the integrals which appear in the exponent, for instance
in Eq. (3.23) for G(R) . To estimate the integral divide
it into two ranges: from 0 to 1/K, and 1//4 to R. Then,
to leading order, one Kinds

dr I-'r '+o '$4+y(r) ]I'/'

1/s dr (i+~) i/2

a r
K df

~ ( +40) 1/2 ln (/I 0 )
—1+KR. (3.34)

The ln/4 ' will bring down the same power of 1//4 as
the power of R previously brought down. A similar
situation arises in the evaluation of the determinant.

——',co3/' lnR+C, (3.33)

where C is a constant which accounts for the r &0
eGects. The lnR appearing in the exponent yields a
power of R in the correlation function. This source of
R dependence will be more fully examined in the context
of the improved formulas of Sec. IV.

Before leaving the three-dimensional case, we should
consider the behavior of the correlation function for e

small but 6nite; i.e., the temperature is slightly above
T,. The previous solution (3.30) of Eq. (3.29) for $
is still appropriate when g(r))&4, which implies
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L4o'/(rs lnr) ]i)(R—r); (3.38)

The net result' is that if

C(R) =B/R'+» R«1/~, (3.35)

(B is such that as R~o, C is of order unity) then

C(R) s»(B'/R) e "", R»1/». (3.36)

This dependence of the prefactor on ~ (or the inverse
correlation length), which persists for the more precise
treatment of the next section, is completely in accord
with the scaling laws in the critical region. 4

We complete this section of the paper by outlining
the results for higher dimensionalities. In the following,
we shall set &=0 immediately and solve only for the
Green's function G(R) right at the critical point. For
s=4, Eq. (3.8) becomes, after rearrangement,

@ in/ —8(o/r) '0(R—r) $1+r/o'$ 'I'. (3.37)

The leading term in P is thus

for the Green's function G(r, r
~ p) . A 1/r' variation

of p is the borderline of applicability of this approxi-
mation; the predictions are qualitatively, but not
quantitatively correct. Hence we will subsequently
calculate this Green's function using the same level
of WEB approximation as was previously demon-
strated to be applicable for 1/r'.

On the other hand, the retention of only the leading
term in the saddle-point approximation is a more diK-
cult matter with which to deal. Hence, this level of
approximation will be essentially retained. We have,
however, demonstrated the relation of this estimate to
the spherical model, at least in the case of the partition
function. Similarly, we shall now place our development
for the correlation function in the context of a spherical-
model type of assumption, so that the mathematical
steps may be justified.

The pure spherical model assumes that the spins
may vary continuously between —S'I' and g»2 as
long as the entire array of spins satisfies

and then a short calculation using Eq. (3.23) yields g l,s=N. (1.5)

G(R) o- 1/(R lnR)'. (3.39)

IV. IMPROVED CALCULATION OF THE
CORRELATION FUNCTION

In establishing the 1/r' nature of the p function we

have introduced a variety of approximations. Some
were employed only because they simplified demon-

stration of the nature of the results to be expected.
These include:

(i) Only functions spherically symmetric about ore
of the centers r "or r„were considered. In this section
a functional form more in conformity with the sym-

metry of the problem will be used.
(ii) The Kac—Murdock —Szego estimate was adopted

9 The same result can be obtained by noting the relation of
Eq. (3.16) for G(R) to the Bessel equation when p=»»»'/r' (cf.
Appendices C and D).

This is a very weak deviation from Ornstein —Zernike.
Finally, for s) 4, the analog of Eq. (3.35) is

I'(-', s) 0(R—r) 1 (s—2)' 2r'

2»r'*'a A &'& r~ 4 o

where the constant A&'' was defined in Eq. (3.15).
The leading term in $ now becomes

r (-',s) ()(R—r)
»r'*'(s —2) o'A ~'& r

Returning to Eq. (3.23) for G(R), we see that 4
vanishes too rapidly to make any long-range contri-
bution in either the exponent or the prefactor; and

G(R) returns to the Ornstein —Zernike behavior given

by Eq. (3.25).

In the calculation of C „=—(p Iu„) it may be desirable
to inhibit large local fluctuations of the spins in the
neighborhood of r and r„. For this purpose let us
introduce two further constraints. These are quadratic
conditions of the form (1.7); in particular,

Q Q'syP = Q Pa, k=e, nz, (4.1)

where

4's=4(~ r;-r. ~).

Based on the considerations of the previous section we
shall select for the function p

=0(1), (4.2)

The function q provides a cutoff to p at some distance
r/R=O(1). The detailed nature of the q function is
unimportant for leading-order behavior, as long as

q(x)~1,

The cutoG of 4 may be effected within a shell several
o's in thickness at some radius of the order of E, let
us say bR Pi.e., q(x) ~8(b —x) j. On the other hand, a
function like q(x) =t 1+(x/b) ) ' would do as well.

The three constrains of Eqs. (1.5) and (4.1) may
be introduced into the p, integral for the correlation
function by means of 8 functions, in the integral repre-
sentation (2.2). The p integrations may again be per-
formed first. The resulting equation, intermediate in
character between the pure-spherical model and the
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Ising-model formula (2.6), is

dS Ao l(d

The transform equation for t is

Ld/dt —p'V'+(dye(l r —r„ I)

+pp'4(l r—r I) jG(r, rp, t) =0, (4.11)

XexpLE g(s+(p(t); +(p'(t), ) jl T—V
I

'I'G . (4.3) with "initial" condition

The matrix T is diagonal, with jjth element

t; =s+(dg, m+(p'Q, . (4.4)

(The reuse of t; suggests the relation to the previous
development. ) OR)(( is made up of a normalization factor
and a factor which arises from the p integrals. It also
appears in the partition function, which is

ds d(p d(p' expl E g t;gl T—V
I

'I'. (4.5)

We define the constants t. and ft; again by

p=t, —8(0) = «'o'. (3 6)

From the spherical-model calculations' one finds $cf.
Eq. (3.29) with r~~]

.=st~pl z—z,&»j. (4.7)

Consider next the equation for the Green's function.
In continuum language, and with the gradient expan-
sion of the integral operator, this is

L
—~'~'+ p+~~(I r —r- I) +~'e(l r —r- I) j

XG(r, r„p) =()(r—r,). (4.8)

It will be conceptually valuable to discuss the solution
of this equation in terms of an inverse Laplace trans-
form on &. Thus consider the Green's function 6

+ico+8

G(r, r(), t) =(2vri) ' e"G(r, rp., p) dp, (4.9)

The contours 8 run from —i~+y to ppp+7 in such
a manner as to keep Re(T—V) positive-definite.

The s, co, and co' integrals may now be performed by
the saddle-point method, and as we shall see this is a
mathematically legitimate procedure. Operationally, the
intermediate calculations are identical with those called
for by the technique of the previous section. Now that
we have an appreciation of the type of results to be
expected, let us carry out these steps to the best of our
ability. We will work exclusively in three dimensions.

The s integral may be performed immediately. Since
the new constraints are only effective in the neighbor-
hood of r and r„s is determined by the remainder of
the volume and has as a saddle value that of the
spherical model I cf. Eq. (2.12)j,

(4.6)

G( r, r„0) =8 ( r—r,) . (4.12)

6 is the solution of a diffusion problem, i.e.,
G(r, rp, t) is the density at point r at a time t under
the following circumstances. A 8-function distribution
of material is placed at ro at time zero and diffuses
with diffusion constant 0-'. In addition, for co and cv'

real there is a distributed sink with intensity at each
point equal to

I &p(t)(l r —r„ I)+(p'(t)(l r—r„ l)g, times
the density at that point (as in a first-order decompo-
sition reaction with position-dependent rate constant) .
If or and co' are complex, the real and imaginary parts
of 6 may be regarded as the densities of two materials
which can diffuse, decompose, and interconvert. An-
other expression for the Green's function, which brings
out the relation to a diffusional process, is the path-
integral formula"

, dr(t')
G(r, rp,' t) i) r(t') exp — dt' (r'

paths

where the paths of integration go from I'0 to r in time t.
The function G satisfies a Smoluchowski equation

G(r„, r„;t) = d'r G(r„, r;t —3)G(r, r„;f) (4.14)

for any 7 between 0 and t. We will approximate
G(r, r; $) by the value it would have if there were no
"sink" term centered about r„, and likewise for
G(r„, r; t—t) we assume no sink centered about r

In terms of the path integral (4.13) the approxi-
mation would be valid if the paths which determine
the dominant E dependence pass out of the region
surrounding r and go to r in t without lingering near
a region about r„, and in 5—t to t go to r„without
lingering near r . The results seem to imply that
"lingering near" means entering within a distance of
order less than R and staying for a "time" of order
pgp/gp

In the context of the approximation just described
the two-center solution may be determined from the
one-center solutions previously calculated, with only
minor modilcations arising from the cutoff function
q(r/R) . The one-center Green's functions are (cf. Ap-
pendix C): for «R))1,

Gi(rp p) ~ ««r 'I'&„()(r), (4.15)

G(r, r„p) = e
—"G(r, r(), t)dt. (4 1o) "M. Kac, Probability and Related Topics in Physical Sciences

(American Mathematical Society, Providence, Rhode Island,
1957), Chap, IV.
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where v= (co+i«)'~', and E„ is a modified Bessel func- each of these regions we can approximate the Green's
tion; and for xR(&1, function by its value neglecting the other center, so

where

~ R—~+~I2~—~~—«
7 Kr))1,

f(x) ~ x "', x&&1,

ocg &

Gi(r, «) ~R ~"'f(r/R), «r&&1,

(4.17)
(4.25)

L L(a)) +L(a&'),

(4.16) (o)' /r)
L(~) =~ dr d'r

I

—
I q I

—
I
G(r r

I
r~e)+Lo«i &Ri

Primes on v or f will indicate ce' replaces ~.
In Appendix C this result is used to derive G(R)

from the Smoluchowski equation, which may be written
in the alternative form

where 1.0 represents the contribution from r &0. 6 may
be expanded in spherical harmonics as

G(r, rp
l rp) = g Q G((r, rp) I'~ (0) V~ *(Qp), (4.26)

Z~ m~l

G(R) =2o' «' d«' d'r G(r„, r; «') G(r, r; «') .

G (r «)=o 'l-
(It is clear from Eq. (C1) that G is proportional to o='.)
Inserting these into the Smoluchowski equation (4.18)
reveals that

G(R, «) =o 'l (4.19)

In the region «R«1, where G(R, «) is, to leading
order, independent of «, Eq. (4.20) implies

(4.18)

Heuristically the result for G(R) follows from di-

mensional analysis. %e introduce the symbol = for
"dimensionally equal to," and / for length in units of
the lattice spacing; then

l (l+1) rcuq(r/R)«' ———r' —+ Gi(r, rp)
dt' c& r2

= (o'rp') '5(r —rp), (4.27)

where simplifications arising from the spherical sym-
metry of @ have been incorporated. A complication,
arising from the use of the diGerential operator as
roar, will be treated presently. The angular inte-
gration in (4.24) is easily performed, resulting in

m

L(pi) = pp dr r'dr —
qr R)

X Q(2l+1) G((r, r) +Lp. (4.28)

In Appendix D it is shown that for ~R((1 the leading
order of G~ is

G~(r, r) = (1/2o'r) L(l+-')'+res j'I' r&&R&&1/«

G(R «) =B/R"+"' (r«R«1/«. (4.20) (4.29)

On the other hand, in the Ornstein —Zernike region the
R dependence must be e ~/R, so

Note that because of the q cutoff at r=0(R), the r
integration yields logR, just as in the previous section
(cf. Appendix D) .

However, a difhculty is immediately apparent in
that the l summation appears to diverge. For angular
index I and radius r the gradient expansion breaks down
for "wavelengths" r/l &o, so that the l summation
should be cut off at l„r/o. We shall handle this .upper
cutoff in an implicit manner. The term ~Eg, P, also
occurs in the exponent of the integral for C, Eq. (4.3) .
A relation between J and a Green's function is, as in
the spherical model Eq. (2.9),

G(R «) =B'e+. ie .~/R— «R))1 (4 21)

The arguments of Appendix C are essentially the same,
except imbedded in the context of definite equations.
The result is independent of q(x), because the cutoff
condition was such as to allow the entire functional
dependence on q(x) to be put into f(x) and other
dimensionless parts of the problem.

Attention shall now be directed to the determinant
term, which we write in the form suggested in Appendix

B, Eq. (B18):

l T—V l 'I'=exp( —«2g lnLt, —v(p) j——,'LI,
P

&=p&»lh=t. I.

d'rL~y(l r —r l)
0

+~'&(I r—r- I) jG(r r
I
«&-+r~'&-) (4 23)

It can be demonstrated that the important regions of
r in this integral are

l
r—r [/R or

l
r—r„[/R«1. In

ppZ PP, ', pi d'r P(r)G(r—, r l @=0), (4.30)

and evaluate this by the differential-equation approxi-
mations embodied in Eqs. (4.26) —(4.29) . Combining

(4.22)
This expression may be evaluated, as in Eq. (2.12),
without resorting to the gradient expansion. Rather,
let us write
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the two terms in which we have made compensating
high / errors yields a convergent result,

~& Z 4~-—2L (~) =L—i~ Z(t+2)
lM

X {L(t+-',)'+ $"'—(t+-,') ,'/—(t-+,') I j-gc( ),
(4.31)

where C(co), which is of 0(1) in R, contains contri-
butions from the r &0- region, and also depends on the
specific form of the q cutoff.

We may now put together the various terms { Eqs.
(4.31), (4.24), (4.22), (4.20), and (4.3)j for the case
of ~R((1

2

C(R) = d~ D(co) exp[ —M(a&) lnRj . (4.32)
Z -6

The identity and independence of the or and or' inte-
grations has led to the integral squared; D(~) is a
collection of 0(1) terms; and

~( ) =( +-') "+Z(t+-:){L(t+2)'+ 3"'
l=0

—(t+2) —2~/(t+2) I (4 33)

The first term on the right is from G „, the second
from the determinant. In Appendix E it is argued that
any spurious dependence of ZsM/Z upon R, arising
from the R-dependent constraints, results, at worst, in
a (lnR) ' factor.

The saddle-point technique is appropriate for the or

integration, lnR being the large parameter. The saddle

value of ~ is determined by

o=( .+-.') "'+Z(t+-') {L(t+-')'+ .?"'—(I+-') 'I

function. According to Eq. (4.7), 3 vanishes as T T,—
so that Eqs. (4.37) and (4.38) imply a susceptibility
which diverges as (T—T,) "34.

These results fail to agree with the calculation of
Fisher and Burford4 which predicts that the power of R
in Eq. (4.3'I) should be —1.056&0.008. Furthermore
the temperature dependence of the correlation length
1/3 should be (T—Tc) '3, rather than the (T Tc)—
which follows from the spherical model. Finally, the
susceptibility is incorrect. Comments on the significance
of these errors are reserved for the discussion.

r(13
~
24)-1/R,

(T Tc) ", —
for ~R((1, (5 3)

(5.4)

R f]2~f34)

V. FOUR-SPIN CORRELATIONS AND THE
SPECIFIC HEAT

In continuation of our probing of this alternative
approach to the Ising model we shall also examine the
specific heat as determined via long-ranged correlation
functions. These will be calculated by the method of
Sec. IV, although results based on the leading saddle
point in the t, variables are identical.

Stillinger' has used the relation between specific heat
and energy Quctuations to write

err= (2E2/1V) Q v(rg3) w(r24) I'(13
) 24), (5.1)

r1,r2, r3,r4

I'(13
I 24) = (t ~ ~ ~ )—( t ) (t ~ &.

The factors v(r23) and e(r24) keep r~ near r3 and r,
near r4. A divergence of the specific heat implies long-
range correlations when four spins are divided into two
groups, (13) and (24). If

with solution
(4.34) then the specific heat will diverge in s dimensions as

or, =0.935,

M((o,) =0.823.

Vfe thus find for the correlation function

C(R) ~ R '~3 KR&&1.

(4.35)

(4.36)

(4.37)

c&-(T Tc)=, —(5.5)

n=3 (s—0). (5.6)

The calculation of I'(13 j 24) is easily executed by
the foregoing techniques. The spherical constraint (1.5)
and the further ones

There are again logarithmic factors arising from the
integration away from the saddle point, but these,
together with the logarithmic factors from the partition
function, will be disregarded as higher-order corrections.

A calculation in the case of ~R))1 would be quite
repetitious. Essentially, 1/z replaces 0(R) as an effective
cutoff distance of the 1/r' terms of the differential

equations. Hence, many R's are replaced by 1/3;. Also,
terms of the type e "~ must be carefully regarded. The
result is

inIJi = n=1, 2, 3, 4, (5 7)

(t31V2t33P4)

"(1/Z) ~ ~ o dp& ~ ~ o dIJg d2' dory dor2 dG03 dor4

Xpit32lll3I34 exp{ E g t; Kg (T—V);&p,t33$, (5.8—)

may be introduced by means of 8 functions into the
expression for (t3/t32t33134):

K '0.646R—le—Ital gR))1. (4.38)

The susceptibility is proportional, by a Quctuation

theorem, to the integral over R of the correlation
t; =s+g ~.y;.

n=l
(5.9)
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Performing the p integrations Grst, we obtain

Qs 4coy ~ ~ ~ 8co4

Xexp(K g t,) ) T—Y ) "'[GrsGs4+G]4G82+G18Gs4j.

(5.10)

If the pairs (13) and (24) are widely separated then
the term with GrsGs4 reduces to (tsrtts)(psts4). "To leading
order, therefore, we may write

Xexp(K g t,) J
T—Y

)
't'[G(R) g' (5.11)

Here the variables sr =cur+roe and co' =res+~4 have been
introduced; variables or~ —co3 and co2 —M4 have been inte-
grated out and contribute only al 0(1) factor which
has been suppressed; also, for leading order we set
4ts=4t»nd 4r4=4'n

Except for the square on the Green's function the
equations are as in Sec. IV. In particular, we obtain
formulas like (4.32)—(4.34), but with a 2 multiplying
the first term on the right-hand side of Eqs. (4.33)
and (4.34). The result is &o, =1.923 and

I'(12
j 34) R 4 "s, o«R«1/s. (5.12)

Unfortunately, the approximations of this theory pro-
duce a large R behavior too weak to yield a divergence
of the specific heat.

VI. DISCUSSION

The quantitative errors which emerge in our detailed
application of this theory make it clear that terms
arising from Quctuations from the saddle condition of
the t s must be treated. Series developments diverge
at the critical point, but we hope that we can use the
mechanisms outlined in this paper to handle contri-
butions from all higher-order terms. We view the calcu-
lations presented here as important guidelines for the
future development.

One may be tempted to believe that the calculation
of the correlation function has a validity beyond that of
the partition function, which cancels out from numer-
ator and denominator. We believe, rather, that the
calculation of further terms of both the partition func-
tion and correlation function are linked, in the same
sense that higher-order corrections in diagram theories
frequently proceed via the correlation or Green's
functions.

It should be mentioned that a number of other
theoretical problems can be cast into a form quite
similar to that of the present paper. We refer to the

"Possible residual R dependence will be assumed to be neg-
ligible, or of the same order as the terms retained.

grand partition function" and Green's function of
many-body systems, and to the S matrix and Green's
functions of certain Geld theories. " We suspect that
just as similarities are reflected in the diagram theories
for a variety of problems, there will be a variety of
analogs to this Ising formulation (cf. Appendix A) .

There is also a resemblence to the formulation em-

ployed by Edwards" in solution of aspects of the ex-
cluded-volume problem. In fact the present project
was largely motivated by Edwards' papers.

A self-interaction no=—v;; has been added and sub-
tracted. The strength of eo is sufIicient to make V
positive definite. Siegert employs the identity

exp[K /5;, ts;ts, ]=sr t
/
y

)
Qxy' ' 'sxg

Xexp[ —g Bgx;x;+2K't' Q x tt;) (A2)

(where 8=V '), to produce a form in which the tt
summations may be performed. The result is

Z= exp( —EKes) (4/s. )~"
)
V [

—'t' Qxy' ' ' Qxg

Xe p[—P &;;*, ;jg co h(2K"';). (A3)

In order to Inanipulate Siegert's partition function into
one like that of Montroll and Berlin, we introduce a
function Q(y) by

t~+y
coshx= .

~

es* eett»dy,2') (A4)

Q(y) =h J e "' coshs"'Ck, Rey) 0. (A5)

The similarity of Eq. (A4) to the integral represen-
tation of the 8 function [Eq. (2.2) $ allows us to perform

"R. L. Stratonovich, Dokl. Akad. Nauk SSSR 115, 1097
(1957) LEnglish transl. : Soviet Phys. Doklady 2, 416 (1958)j;
J. Hubbard, Phys. Rev. Letters 3, 77 (1959); S. F. Edwards,
Phil. Mag. 4, 1171 (1959); A. J. F. Siegert, Physica SuppL 26,
S30 (1960).

'3N. N. Bogoliubov and D. V. Shirkov, Introduction to the.
Theory of Qgamtised Fields (Interscience Publishers, Inc. , New
York, 1959), Chap. 7.

'e S. F. Edwards, Proc. Phys. Soc. (London) 85, 613 (1965).
'SA. J. P. Siegert, Statistical Physics 3, Brevis Summer

Irsstitlte 196Z (W. A. Benjamin, Inc., New York, 1963).

APPENDIX A: ALTERNATIVE ISING-MODEL
FORMULATION

We outline in this Appendix an alternative formu-
lation of the Ising model which is structurally related
to the Montroll —Berlin partition function Eq. (2.5)
and the correlation functions Eq. (2.6) .

I et us proceed via an intermediate formula due to
Siegert. "Consider first the partition function

Z= exp( —1VKwp) Q exp[K Q e,,ts;ts;j. (A1)
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In this Appendix we concern ourselves with the evalu-
ation of the integral

Z= exp( —ÃEss) (4s Ei)—~
l
Y

I
rts ~ ~ ~ dsr ~ dsN

the x integrals in (A3) just as the p integrals in Eq. APPENDIX B: SEVERAL GAUSSIAN INTEGRALS
(2.3) were performed. The result is

XexpLP Q(s,/4E) g) B—S [-'ts, (A6)

where S is a diagonal matrix with ii element s;. The
contours of the s; integrals run from i ~—+y, toi ~+y,
in such a manner as to keep Re(B—S) positive definite.
Since 8 is positive de6nite, this can be achieved with
all 7;&0.

In like manner it may be demonstrated that

C =exp( —Jlr'Ewe) (47rKi) [ Y [
'I'

~ ~ ~ dh& ~ .de exp — R iM .I,x;xI, ,
jvc

(81)

R =E(71—Y),

M=E(T—yl).
A nonsingular matrix H exists such that"

(82)

(83)

and related integrals. R and M are real symmetric
matrices but they do not in general commute; R is
positive definite. For application to Sec. II,

where

X (1/2KZ) ' ' ' dsr' ds~s s„

XexpLQ Q(s;/4E) j[ B—S [
't'G „fsI, (A7)

H~RH = 1,

H~MH =a,
Hr(R+iM) H = I+ia.

(84)

(85)

(86)

G=(B—S) '.

g p,4=1V, (AS)

introduced in a canonical fashion with conjugate vari-
able 0.. The resulting partition function is

If we employ the approximation of assigning to C „
the value of the integrand at the saddle point in s space,
we obtain the same critical correlation function as that
determined in Sec. IV.

It might be noted, also, that one of the authors
(J.S.L.)"has attempted to restore the correct analytic
structure to the phase transition of the spherical model
by supplementing the spherical condition LEq. (1.5)j
with the further constraint

x=Hy, (87)
where x is a column matrix with elements x;. Under
this transformation Eq. (31) becomes

d3'r'"d3'~ exp' —Z(1+i»)XPP

=fr "
/

H [/ 1+i'
/

'"
=~~ts

/
R+iM /-rts,

(BS)

(89)

where for the final result the determinant of Eq. (86)
has been used.

The moments matrix

where 0 is a diagonal matrix with jj element co;. Con-
sider the change of variables

Z ~x ds exp EEs dp, y' 'dIJ~

XexpL —K Z(sl Y)' t a P—Z t "j —(A9)

with P= 1/k&T. After employing the integral

I' =I ' ~ ~ ~ dgr ~ dgrrxx~ exp' —xr(R+iM) xj,

(310)

required in Eq. (2.6), may be evaluated by the same
transformation. It is easy to see that

exp( —npp, ) =i '(KJ/87m) I'
/co

I'= —,'H(1+iQ) 'Hr

= s (R+iM)

(811)

(812)

Xexp[(J/Sn) Et sj exp[Et;p;s], (A10)

we obtain a partition function quite similar to Eqs.
(2.5) and (A6) . Thus, this model probably does capture
the essential analytic features of the Ising-model tran-
sition. The correlation functions, likewise, are similar
structurally to those employed in the body of the text.

"J.S. Langer, Phys. Rev. 13'1, A1531 (1965).

where for the final result the inverse of Eq. (36) has
been used.

The formula

8 ln( T—V ~/Bt, =G;;, (813)

"R. Bellman, Introduction to Matrix Analysis (McGravr-Hill
Book Company, Inc. , Near York, 1960), p. 58. I'his is the fact
employed in small-vibration theory to simultaneously diagonalize
the potential and kinetic energy.
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i '(it//tM; )I=—II'; .

used in Eq. (2.9), follows as a special case from the The required convolution is best performed if we con-
obvious relation between (81) and (810), vert to a Gaussian x dependence by the integral repre-

sentation
(814)

/i r=2 '1'(so+4)l —
I

&22rj o

x "'E„x
Equation (813) suggests the interesting method of

writing ln)T —V [ employed in Eq. (4.23). Equation
(813) may be reintegrated as a line integral from the
point It, I to ItI in the 1V-dimensional t space:

ds ( s) -I/2v-3/4t-~1

R

»IT—V I—=»It1 —1/ I+L (815)
&&exp/ —1st—x'(t '+s) $. (C6)

t~l

dlI t'I 7, ln~ T' —V ~.L=— (816) The Hankel contour R for the s integral starts from
ininity, encircles the origin counterclockwise, and re-

One possible "path" is the straight line parameterized turns to in6nity. The x integration may be Performed

by v., yielding

so that

{1);=r(t —t.) =—ry;,

I
L=Q drgsG, s I rct/I .

p

817
W(X) =~'"2"+"' '1'(ho+4) 1'(so'+-')

(ixi- dttdts dstds2( —s1) ' '
xx

(r acts like a charging parameter. )

APPENDIX C: TWO-CENTER GREEN'8
FUNCTION

X (—s )
—»»'—3/4t,—~tt —"—1 (S +S +t,—1+ t2

—1)3/2

XexpL —-', (t1+t2) —X'(t1 +sl)

In this Appendix we shall examine solutions of the
two-center Green's function equation (4.8), construct-
ing these solutions by means of the approximate
Smoluchowski equation from the one-center Green's
function, given by

aslp2+/42&2+co(a2/r2) q(2/R) )G1(t ) p(r) (C1)

Consider 6rst the simpler case of ~R)&1. The term
/42 in Eq. (C1) dominates the 1/rs term before the
eBects of the q cutoG are important. With q neglected
the solution of Eq. (1) can be written in terms of a
modified Bessel function"

where

Gt(r) =A/c"+'/2X '/'E„(X), (C2)

s= Kr) o —(~+1)1/2 (C3)

The Smoluchowski equation (4.18) can be written in
the form

o(x) 3 x""f=sx'x"-+-'w{x)'- (C4)

W(X) = d'xx '/2E„(x)
)
X—x

)

—'/'E„()X —x [). (C5)

"Handbook of Matken3atscat Fnncteons, edited'by A. Abramo-
witz and I. A. Stegun (U. S. Department of Commerce, National
Bureau of Standards, Washington, D. C., 1964), Appl. Math.
Ser. 55, p. 355.

X(ts '+s2) (t1 '+t2 '+sl+ss) 'j (C7)

To handle the case of X))1, one extracts, in the
exponent, terms of zeroth order and erst order in s.
The exponential of the remaining expression is then
set to unity, which can be shown to be correct to lowest
order in X '. The resulting integrals can all be per-
formed exactly, yielding

W(X) cc X'/2E) „+„3/g (X)L1+O(X ') ), (C8)

G(R) cc x~" / R / K ~ 1/2(sR) nR»1. (C9)

It is interesting to study the case ~2&&1 even though
this neglects the cutoff functions q. The substitution
s, =a;/X2 and t, =r;X2 reveals that W(X) goes like
X2 ~"' for small X. Thus the integral in Eq. (C5) is
0(1) and G(R) ~ R "'. This result agrees, of course,
with the conclusion of the dimensional arguments in
the body of the paper.

To correctly examine the case R((1//4, where the

q function may be important, employ the WEB solution
(3.23) of Eq. (C1) for G1, with p(r) =co(a2/r2)q(r/R),
with s=3, and with r replacing E. The essential be-
havior of G1 is summarized in Eqs. (4.16) and (4.17) .

In order to obtain the leading order of the two-center
Green's function we will divide the integrals in the
Smoluchowski equation (4.18) into intervals, and. use
the small and large ~r expressions for G~ right up to
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