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Isothermal Relaxation
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A mathematical description of isothermal relaxation is presented. The equations are based on quite
general principles, and an extension of Landau's theory of second-order transformations. Qualitative
features of the experimental observations can be explained.

I. INTRODUCTION

l' 4HE rate of phase transformations or the time-
development of one phase changing into another

poses an interesting problem. In its complete generality,
the problem is akin to the well-known Gibbs program
in statistical mechanics, and is extremely dificult.
However, some phenomenological relaxation-time ap-
proach can be tried and the problem partially clarified.
In this spirit, a discussion by Tempereley is pertinent.
He considers irreversible processes generally associated
with a phase transition and de6nes three categories.
First, the rate of transformation is essentially governed

by the "free-energy barrier" between the two states,
as in a supercooled gas. Secondly, there are intrinsic
irreversible processes appearing at the transition, for
example, eddy currents generated in attempting to
change the magnetization of a ferromagnetic metal.
Thirdly, in certain transitions, the relaxation time gets
longer and longer as the transition point is approached.

The first problem was mathematically formulated

by Kramers2 in terms of the escape of a Brownian
particle trapped in a potential well across a barrier.
It is connected with the definition of a metastable
state and is often discussed through a potential with
two minima. 3 Here a quasithermodynamic theory has
long seemed plausible. The second category is the
hardest to discuss mathematically, because intrinsic
irreversible processes are inevitable at the transition.
The third type seems amenable again to a quasi-
thermodynamic treatment, since near the transition
point the rate processes are slow. There may be no
free-energy barrier, and the transition is presumably
of the second order. We are concerned with a mathe-
matical description of this category.

Tempereley illustrates the fact of long relaxation
time by a mechanical analogy. If x represents a possible
displacement of a mechanical system, the condition for
equilibrium is BV/Ox=0, where V is the potential
energy. The equihbrium is stable or unstable according
as O'V/Bx' is positive or negative. If O'V/Bx' is positive
but small, the system described by

md'x/dt'+xct'V/Bx'= 0

is just stable. The period of oscillation tends to become

' H. N. V. Tempereley, Changes of State (Cleaver-Hume Press,
London, 1956), p. 31.

2 H. Kramers, Physica '7, 284 I,'1941).
' ' See, for instance, R. S. GriSths, C. Weng, and J. S. Langer,

Phys. Rev. 149, 30j (j.966).

long as O'V/cjx' —+0. Although the thermodynamic func-
tions possess many properties of the potential energy-
for instance, they may be stationary at equilibrium—
there is no statistical mechanical analog of the effective
mass and the mathematical analogy is not particularly
apt.

As mentioned above, the third category may be rele-
vant to second-order transformations. It is well known
that a general theory of such processes was given by
Landau. 4 One would naturally look for a time-dependent
extension of the theory to illustrate Tempereley's third
category. This will be tried here. Recently attempts
have been made, in connection with the theory of super-
conductivity, to derive such time-dependent equations
from more basic principles. No such attempt will be
made here. But we shall try to formulate the theory in
a quite general manner and discuss some questions of
principle involved in such a quasithermodynamic ex-
tension.

II. EQUATIONS FOR ISOTHERMAL RELAXATION

Following Landau, ' we introduce an order parameter
supposed dimensionless. The ordered phases are

characterized by nonvanishing values of p. In analogy
with other evolution equations, such as the Schrodinger,
Boltzmann, or Liouville equation, this equation will
be of first order in time, that is, we have an equation
for ctrt/Bt. Such an equation, which is our starting point,
was written by Landau and Khalatnikov' in connection
with their work on liquid He II:

Brt/Bt =y84/Brt—=yH$q]. —
Here y is an appropriate kinetic coeKcient; its oper-
ational definition is provided by Eq. (19) below. C and
consequently the operator H/rt] is related to the free
energy of the system, since phase transformations are
governed by free-energy changes. Ke shall take every-
thing to be real valued only, although the order param-
eter can be complex in certain physical problems, such
as superconductivity, and appropriate generalizations
are possible. Notice that HLrt] need not be linear in rt.
In fact, in general, it is nonlinear.

To see the significance of H[rt], we note that when
Brt/itt = 0 we have the stationary solutions, among which
we have the thermodynamic solutions. Thus the de-

4 L. Landau and E. M. Lifshitz, Statistical Physics {Pergamon
Press, Ltd. , London, 1958), p. 430.

'L. D. Landau and I. M. Khalatnikov, Dokl. Akad. Nauk
SSSR 96, 469 (1954).
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termination of H$g$ may be possible under some circum-
stances from the knowledge of thermodynamic states.
Indeed,

BC/Bg =H[g] = 0

is simply the requirement that the free energy be
minimized with respect to the order parameter g. Ke
also note that under some conditions B/Bg may have
to be replaced by a functional derivative.

The free energy is, of course, also a function of other
thermodynamic variables, in particular the temperature
T. For equilibrium states, temperature has a well-
de6ned operational meaning, and so Eq. (2) is well
defined. On the other hand, when we substitute the
operator H$g) from (2) into Eq. (1), it is not well
defined in general and requires careful analysis. If we
could carry out the Gibbs program, the temperature of
a system would arise as a very complicated function of
dynamical variables and would reduce to the correct
thermodynamical variable in the equilibrium state. Un-
fortunately, this is seldom possible. For rather long-
lived metastable states, ' temperature can be assigned
to the system and is in fact taken to be the same as
that of the surroundings. This provides a clue to a
possible generalization in our case. We are concerned
with long relaxation-time processes, and energy ex-
change of the material under investigation with the
environment is rather slow. Since the environment is
comparatively large and remains essentially unmodified
(the assumption of long relaxation time), we can regard
the temperature appearing in Eq. (1) as that of the
surrounding heat bath. This definition is a natural
extension of the equilibrium definition. In equilibrium,
of course, the two temperatures are equal and in Eq. (2)
one can regard the temperature to be of either the bath
or the material.

This de6nition of temperature is used in the so-called
isothermal relaxation processes. So our Eq. (1) may be
regarded as formally providing a mathematical descrip-
tion of such processes.

The introduction of the heat bath for defining the
temperature immediately raises the question of unique-
ness of the determination of H/gj from the equilibrium
conditions. The problem cannot be answered in its
entirety without a more fundamental approach. We
shall attempt to make it plausible that for isothermal
processes the problem is not very serious.

In order to do this, we shall utilize an idea introduced
by Bragg and Williams' in their work on the attainment
of equilibrium of an alloy and regard temperature itself
as a variable in time. However, we shall use a consider-
ably simplified version of their procedure. Since the
rate processes are assumed to be slow, we suppose that
the system can be thought of as passing through suc-

For second-order transformations, metastability is impossible,
although the time for actual rearrangement of atoms may be
long. See Ref. 4.

7 W. L. Bragg and K. J. Williams, Proc. Roy. Soc. {London)
96I 699 (1934).

cessive equilibrium stages, each stage characterized by
a temperature T. Initially the system is at a temper-
ature T; attained by keeping it in contact with a heat
bath at that temperature; it is then brought in contact
with another heat bath at a temperature T~. T, and
Ty both lie in the neighborhood of the transition temper-
ature T,. Following Bragg and Williams, the temper-
ature of the body changes according to an equation

d T/dr= —( T Tr) /—r. (3)

Here r is a phenomenological temperature relaxation
time and depends on the coupling between the bath
and the material under investigation, as well as on the
state of the material, i.e., on q. Therefore, (1) and (3)
become coupled equations when we use T of Eq. (3)
as the temperature in (1).However, in the vicinity of
the critical temperature the value of g even in the
ordered state is small and, in the spirit of the Landau
theory, the dependence of r on q can be neglected.
It is then possible to solve (3) independently of (1).
We obtain

Introducing this T in Eq. (1), the resulting equation
can be solved under some circumstances (see the
Appendix). However, for isothermal relaxation proc-
esses two limiting situations are seen to be of im-
portance. First, the rate of temperature change is so
fast compared with other physically interesting rates
("quenching") that the limit v~0 in Eq. (4) is relevant.
This gives

Secondly, the rate of temperature change is extremely
slow ("annealing" ) in comparison with other rates,
and we may take the limit 7~~ in Eq. (4). This yields

T T. (5')

III. A SIMPLE EXAMPLE

We start with the case treated by Landau and
Lifshitz. ' The total free energy as a function of p
regarded as independent of spatial coordinates is written
as

4'(g) = CN+aq'+by' (6)

C~ is the free energy of the normal or disordered state.

Equations (5) and (5') are the conditions for isothermal
relaxation. In these limiting cases the actual value of r
is unimportant, and the coupling of the material and
the bath formally disappears. One should add that the
assertion rests on the assumption that the effect of
the surroundings is felt in the temperature variable
alone. In any case all the rates are assumed to be slow.

Finally, the sign of the left-hand side of Eq. (1) is
not determined by (2). It is 6xed by the physical
requirement that above the transition temperature
the perturbations decay toward the normal state.



CHANCHAI. K. MAJUMDAR 160

Then
Ti+= 1/2'= 1/2aoy(T —T.),

Ti+(T T,)—=const.
(7) ora(T,) =0,

(20)a(T)~(0 for T~(T„ (8)

and in the neighborhood of the critical temperature T,
A similar equation holds for the relaxation time T~

below T, except for a factor of 2. An analogous relax-
ation time was actually derived by Landau and Khalat-
nikovP Equation (20) is reminiscent of the Korringa
relation for paramagnetic relaxation. ' This relaxation
time gets long as T—+T,. However, the rate of change
for short time interval is not really a pure simple
exponential.

Exactly at T= T„a=0, and then the nonlinear part
determines the rate. We have

a(T) =ap(T T.), — ap)0,

b(T,) )0,
and by continuity

b)0
in the vicinity of T,. Note that the assumptions that
u and b are well-behaved in the temperature range
considered may be quite restrictive for actual physical
applications. p In (8), (9), and (11) the temperature T
may be T; or Tf, depending on the situation.

The minimization condition is

(21)dg/d t= 4byvP. —

The solution with the initial condition (15) is

The properties of the coeKcients a and b of interest to
us are

dC/dpt= 2apt+—4bpts= 0. (12) it'= q'/(8bytfto+1) . (22)

Above the critical temperature, the only solution is
q=0. Below the critical temperature, besides q=0,
there is a new solution,

go'= —a/2b.

'Qp is real, because a is negative below T,. Equation
(13) gives C(g) =C~—(a'/4b), which is lower than
the free energy with p=0.

Corresponding to Eq. (1) we can now write for the
time-dependent case

dpi/dt = y(2apj+4b—qs) . (14)

Equation (14) is an ordinary first-order nonlinear
equation in time and can be easily solved with the
initial condition

at 1,=0. (15)
The solution is

qp' exp (—4ayt)

exp (—4ayt) —1+(ptp/pt)
' (16)

Observe that above T„a&0, q' diminishes to zero, the
correct equilibrium value; below T„a(0, and the
exponentials cancel out for large t, giving g'=gp', the
correct equilibrium value. These are independent of
the initial condition (15) as they should be. The long
time behavior is governed by an exponential;

pt= fqo'pt'/(pto' t )5p"P' ex—p( —2ayt), T) T„.

~ =no+Lie(~' e') exp(4a~—t) /8'3, T& T,. (17)

Note that as formally defined by (13), ~too above the
critical temperature is a negative quantity. We can
introduce a relaxation time Tq+ above the critical
temperature by

p decays to zero as it should at the critical temperature,
and the decay rate goes essentially as t—'~'.

Since a and b are determined from thermodynamic
measurements, the relaxation time T~ determines the
kinetic coeS.cient y.

It turns out that using Eq. (4) itself for the temper-
ature T, it is still possible to reduce Eq. (14) to quad-
rature. Details are given in the Appendix.

I7. A COMPLICATED EXAMPLE

We now pass over to a much more complicated case
and examine the situation that the free energy may
also depend on the gradient of the order parameter.
This leads to a nonlinear elliptic equation in the equi-
librium case and to a nonlinear partial differential
equation of the parabolic type for the time-dependent
case. We shall discuss the latter part only in a linearized
version.

Consider the total free energy

o[g]=j p[g]d'x,

where the free-energy density is

I'L j=~ +A ( )'+& ( )'+lcl ~ I'. (23)

The coeKcients A and 8 have the dimensions of energy
per unit volume and C has the dimension of energy over
length. The coefficient C which will be found to be
connected with the diffusion coeKcient is positive in
the neighborhood of T,. The free energy is now a
functional of g(x) and the Euler-Lagrange variational
equation gives

BP 8 BIi 8 BF 8 BI'

Bpt BxB(Bit/Bx) ByB(Bpt/By) BzB(Bp/Bz)

exp( —2ayt) —= exp( t/Ti+) . — (18)
For a critique of the Landau theory, see M. E. Fisher, J.Math.

Phys. 5, 944 (1964).

ol
2A pt+413rto CV'rt =0—

' J. Korringa, Physica 16, 601 (1959).

(24)
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Before we use (24) in (1), however, we must multiply

A, 8, and C by a quantity of the dimension of volume.
This may be taken to be the volume of the system; but
then the relaxation time will be inversely proportional
to the volume. In actual practice the order parameter,
even if it is uniform in the equilibrium stage as in Sec.
III, remains so only over a certain effective size de-
termined by such things as domain size, impurity con-
centration, etc. Quite generally we may call this region

P and define

a= AP, b=BP, c= Ct3. (25)

2ag+4bq' cV'g =—0. (26)

f is a characteristic length. The existence of such a
characteristic coherence length is implicit in the very
fact that F$g) depends on the gradient of g(x). That
the relaxation time either decreases with volume or is
independent of it was argued by GriKths, Weng, and
Langer. ' Consequently, we consider the equation

otherwise E~ decreases as the reference point moves in

the un plane (Fig. 1) .
For E~=0 and small v, u, we get v' —u'=0, or a pair

of straight lines at 45' to the u, v axes. For large v,

we have v' —-', u4=0, i.e., two parabolas. The entire

phase plane is divided by these lines into four distinct

parts. The two parts containing the v axis have E~&0,
and E~ increasing outward. The other two parts con-

taining the u axis have E&&0 and the phase energy
diminishes as we proceed along v=0 away from the
origin. Consequently, if we start from any finite value

of u and v=0, the representative point is constrained
to move outward and u becomes unbounded. Starting
at any finite value of v produces a singularity at the
origin. The only acceptable solution is &=0, which is

the point u=0, v=O, the crossing point of two "equi-
potential" curves. This case is rather trivial.

(ii) Below the critical temperature, Eq. (31).
We construct again the phase energy function

We consider solutions depending on radial distance
only and no angle-dependent solutions. We have there-
fore

and as before

E,= 2iv'+i2u' —-', u4,

dE2/dp(0.

(35)

(36)
d'g 2 dg 2' kg'+——— — =0.
dr' r dr c c

(27) Start with E2=0; for v=0

We have to specify the acceptable class of solutions.
Obviously we must have g bounded everywhere, suffi-

ciently smooth, and by definition positive everywhere.
A constant g is perfectly acceptable, since it leads to
the total free energy in (23) proportional to the volume
of the system.

Now we are ready to discuss the solutions of Eq.
(27). Put

F= np& (28)

and the phase energy

v =du/dp, (32)

Ej=—v2 —u ——u2 2 4 (33)

Then from (30)

dEi/dp=~td u/dp' u u'j= (—2/p—). &0 —(34).
dEi/dp is zero only when e remains zero as p changes;

where
0.'=c/2

i
a i, P'=

i
a [/2b (29)

Above the critical temperature, a is positive, and we get

d'u/dp'+ (2/p) du/dp u u'= 0—. — (30)

Below the critical temperature, u is negative, and we
obtain

d'u/dp'+ (2/p) du/dp+u —u'= 0. (31)

We shall employ the standard phase plane plots to
discuss the solutions of Eqs. (30) and (31).

(i) Above the critical temperature, Kq. (30).
Let us define

-', u'(1 —-,'u') =0, (37)

and there are three solutions u=0, &v2; u=0 is de-

generate. For small but positive E2, there are essentially
circular equipotential curves around the origin (Fig. 2),
which collapse at the origin. Considering v=0 and

E,&0,

or
u2 =.1~L1—4E2]~12

So long as 0&E2&4' we have 4 real u solutions, two
smaller and two larger than 1 in absolute value. E2= ~~

is the critical value, when we have only two solutions
u= &1, a degenerate situation requiring careful study.
For E2 negative, there are always two real u solutions,
but these equipotentials never cross the v axis, because
for u=0, v cannot then be real.

Examining E2——
~ we find for u= 0, n= &~%2. Hence,

this equipotential separates a diamond-shaped region
about the origin, inside which the equipotentials are
closed curves with energy values diminishing toward
the origin. Beyond u=&1, the equipotentials have
lower and lower energy values as we move out along
the u axis. Along the v axis the energy is steadily in-
creasing as we move out.

We have thus found two solutions u=0 and u= i.

which are presumably stationary (u= —1 is neglected,
because a negative order parameter is meaningless).
u=O, or p=0 gives the normal-state free energy. u=1
or ito2=P'=

~
a )/2b gives us the same ordered state as

we obtained in the example of Sec. III.
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Fzo. 1. The phase plane for
&o Eq. (33).m=0, p=0is the only

critical point.

There are other well-defined bounded positive so-
lutions, in fact an entire continuum of them, in the
fourth quadrant inside the diamond-shaped region.
These start with finite I, v=0 at p=0 and then go to
zero as p varies, in accordance with Eq. (36). Such a
possibility is indicated by the dashed line in Fig. 2.
Since I—A as p increases, such solutions do not have,
so to speak, any long-range order.

We now show that the solution qo gives a minimum
of the free energy. Write

and keeping terms up to order e',

C I ti]= F~d'x+ d'x)Atop'+Br''+2etlpp(A +2Btip')

+ep(Ayp+6gq pqpy~(
I qy Ip)]

F~d'x VA'/48—

n=np+e4 (X). (38) +" L-', C
I

~7y I'—2Ay']dsx. (38')

Here @(x) is a bounded spatially varying function,
and e is a small parameter. Considering the free energy
of Eq. (23),

C Lpi] = Fed'x+ d'xI A (qp+el) '

+&(op+~4)'+ p c I ~(gp+4) I'],

The coeKcient of e vanishes. The coefficient of e' is
positive, since A is negative. The value of free energy
for go is lower than that of the normal state. The
short-range order solutions have higher free energy.
Note that in (38') no statement about the angular
dependence of p(x) is necessary. The fact that the
thermodynamic solutions are again the same as those
of the previous example is not surprising, since we have
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FIG. 2. The phase plane for
Eq. (35). e=0, zz=0, a1 are
three critical points.

provided no stabilizing agency for the spatially varying
solutions.

Ke now write the equation for the time-dependent
problem from Eq. (1):

Brt/Bt =cV'rt 2art 4brlz, — —(39)

where a=ay, b=by, and c=cy. The recognition of c
as a diffusion-like term is immediate. Equation (39) is
a nonlinear partial differential equation of the parabolic
type. Recently, much progress has been made con-
cerning the solutions of such equations. "However, we
shall simply con6ne ourselves to considering pertur-
bations about the stable solutions we have obtained
and study how these decay.

"F.Browder, Ann. Math. 80, 485 (1965).

r)$(x, t)/Bt=cV'1t (x, t) —2ap(x, t) .
Put

P(x, t) =y(x, t) exp( —2at);
then

ay(x, t)/at=cV'y(x, t).
Given p(x, 0), the solution of (40) is

exp( —2at)
P(x, t) = dkfexp( —Pct)

(2zr) '

(40)

(41)

(42)

&& expLzk (x—x') jp(x', 0)dx'. (43)

Above the critical temperature p=0 is the stationary
state. Hence, linearization means directly dropping the
nonlinear term;
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If we choose for g(x', 0) a simple impulse function

we get
p(x', 0) = Ab(x'),

2 exp( —2m)
P(x, t) = exp( —r'/4ct).

(4srct) si'

(44)

(45)

The perturbations decay essentially by the exponential
factor, exp( —2at) . However, below the critical temper-
ature, q =0 is unstable.

Similarly, we consider linearization about the solution
qo below T,. Write

st=sip+it (x, t). (46)

By taking into account (13), the linearized equation
from Eq. (1) is

plat (x, t)/Bt=cV'p(x, t)+4+( xt). (47)

The solution for an initial impulse is immediately
written;

A exp(4N)
g(x, t) = exp( —r'/4').

(4srct) @'

Remembering that a is negative, we again Gnd an
exponential decay to the equilibrium value po, except
for a factor of 2 difference from Eq. (45). The decay
is not purely exponential, but if one defines a relaxation
time T~* corresponding to the exponential term, we
have the behavior

Tg* 1/i T T. i. —

Exactly at the critical temperature, the term with a
vanishes. Recalling that q=0 at equilibrium at T„
we get as the linearized version the ordinary diffusion
equation

8$/Bt =cV'P

A dependence of the type of Eq. (19) is qualitatively
known to be present.

Many physical properties that change at the tran-
sition can be measured for the observation of the rate
of the process. For instance, one can observe the Moss-
bauer splittings in the paramagnetic and the ferro-
magnetic phase. " It would be interesting to analyze
the data by allowing for the diffusion term. The simple
tempera, ture dependence of Eq. (19) is typical of the
Landau theory or the so-called mean-Geld theories.
In thermodynamic equilibrium, deviations from these
are known. ' One can expect deviations from Eq. (19)
in time-dependent processes. It would be interesting
to know whether these follow the same pattern as in
the equilibrium case.

On the theoretical side, the problem remains to derive
Eq. (1) or similar equations from erst principles. Pre-
sumably one starts from the density matrix of the
entire system —the material and the heat bath —and
looks for an equation of motion of the partial density
matrix of the material. The coordinates of the bath
can be treated as essentially in an equilibrium con-
dition, provided that the long relaxation-time approxi-
mation holds. While the diagonal elements of the den-
sity matrix determines the thermodynamic part, the
transitions are taken care of by the kinetic coeS.cient,
but one must be able to recognize from a general
standpoint the existence of an order parameter.

APPENDIX

We want to show that the solution of the equations

drt/dt = 2ayrt 4by—rt', — (A1)

d T/dt= —(T Tr) /r, — (A2)

can be reduced to quadrature, if one neglects the
dependence of ~ on q. Then we have

P(x, t) = $A/(47rct) @'] exp( —r'/4ct) . (49)

Incidentally, such diffusion terms cannot be obtained
in any obvious way in Tempereley's mechanical analogy.

V. DISCUSSION

Hence
T= Tr+(T, Tr) e 'i'—

T T.= (Tr T,) + (T—,—Tr) e 'I', — —

and

2pgp( T T) = 2pap( Tf T) +2—pap( T Tt) e— —

(A3)

(A4)

Quite apart from the limitations inherent in the
examples discussed, a general theory of this type can
explain only qualitative features of various experi-
mental observations. It is apparent from Eq. (45) that
the rate of transformation is not a pure exponential.
This feature has been known for quite a long time. "
There is an interplay of diffusion, and nucleation and
growth. The diffusion term appears in our treatment
to be temperature-independent only because we have
restricted outselves to the neighborhood of T,. Here the
temperature dependence is naturally manifest in a term
which is, so to speak, driving the phase transformation.

"S.Siegel, in Phase Transformations in Solids {John Wiley tir

Sons, inc. , ¹wYork, 1951),p. 380.

where

= -'X+-,'Ye—'tr
t (AS)

X=47ap(Tr T,), —Y= 47ap( T, Tr) . (A6)—
Hence (A1) becomes

drt/dt= ', $X+Ye '~'—]g-4byrts- —
Putting

(A7)

we get
z= 1/rts,

dz/dt s(X+ Ye "') =Sby— (A9)

which is easily solved. If

at t=0, (A10)
"D. E. Cox, C. Shirane, P. A. Flinn, S. L. Ruby, and W. J.

Takei, Phys. Rev. 132, 1547 (1963).
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we have

rt
—2 exp) Xt+r Ye t—/v7 rt se—rF

t

exp) Xt—'+r Ye "j'7-dt'. (A11)

For the quenching case, v —A, and we get

For the annealing case, r—&ca, and

r Ye "' r—Y(1 t/—r) =r Y Y—t.

st 'expL —(X+Y)t+rY7 rj '—e'~

g 'e x'—g
—'=Shy

e—xt
e x"dt'= Sby X Hence

=Shee'~ e &x+~)" dt'.

so that
rto' expL —4ao( T;—T.)yt7

expL —4aoy (T;—T,) t7 1+—(rto/st)
'sts=e «'/[(Shy/X) (1—e x')+rt '7

rto' expL —4aop(Tf T ) t7
(A12) These are the two special cases of Eq. (16) that are of

interest in isothermal relaxation.
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The Ising-model correlation function C(R») = (totss) is studied in terms of a novel fir-fold integral rep-
resentation. This formula stems from a procedure proposed by Montroll and Berlin. The integral is esti-
mated by maximizing the integrand, an approximation related to the spherical-model assumptions. The
correlation function is not of the Ornstein-Zernike type, just above the critical point, but rather C (R) cc R ' o

for R«1/e, and C(R) cce&R ' exp( —eR) for R»1/e. The correlation length 1/e becomes infinite at the
critical point. The calculated value y=0.646 is too large, reAecting the omission of important terms in the
evaluation of the integral. The unusual mechanism inducing the nonclassical behavior is carefully examined.

I. INTRODUCTION

f lHERE now exists a large body of evidence con-
cerning anomalous behavior of correlation functions

near critical points. For the nearest-neighbor Ising
model, in particular, information has been obtained
analytically in two dimensions, and numerically in
three dimensions. There occur marked qualitative devi-
ations from the correlations predicted by the classical
theory of Ornstein and Zernike. In spite of this wealth
of data, however, there has been very little progress
toward a general analytic theory of the critical point.
In fact, it has so far turned out to be remarkably
dificult to recover anything but the Ornstein —Zernike
correlation function from either soluble models or
systematic approximations. In response to this difB-

culty, we have attempted to 6nd a new formulation
of the theory of critical correlations which might pro-
vide a means for calculating the known nonclassical
behavior. Our attempt has not been completely success-

(1.2)

E=J/21tjsT,

and the pair-correlation function may be written

Cmn. + g ttmttn exp{+ g oijttitsjI ~

f p, i=pl)

(1.3)

(1.4)

ful, but we hope that several of our results may provide
useful clues in the search for a correct theory.

We consider an Ising model consisting of E spins
with values pi=+1, i =1, ~ ~, S, located at sites ri
on an s-dimensional cubic lattice. The energy E is a
simple ferromagnetic coupling of the form

8= —~J Q v;jtt, ttj. (1.1)
i,j=l

Here the dimensionless e;; is a function only of the
distance between the lattice points

~
r;—r; ~, and is of

strictly finite range. The partition function is

Z= Q expIE Q e;stt;ttj},
tungi-All


