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An interaction mechanism is proposed that can account for the anomalous Hall effect in different magnetic
materials. In particular, the sign and the temperature dependence of the anomalous Hall resistivity are ob-
tained for ferromagnetic metals. Moreover, a partial explanation is provided for the anomalies in the para-
magnetic region of antiferromagnets. The difficulties of the present theory are discussed.

I. INTRODUCTION

HE present paper contributes to the theory of the

Hall effect in magnetic materials. The Introduction
briefly reviews the pertinent experimental evidence
and the existing theories and presents an outline of
the paper.

Anomalies of the Hall effect were observed long ago
in ferromagnetic metals and more recently in anti-
ferromagnetic metals and semiconductors. The behavior
of the Hall resistivity as a function of temperature and
type of conduction in representatives of each of these
types of materials will be discussed. Iron and nickel
are typical ferromagnetic metals. Jan,! among many
other authors, reports that in these materials a strongly
temperature-dependent effect is superimposed on the
normal Hall effect. It is apparently possible? to sub-
divide the observed Hall resistivity into a normal and
an anomalous contribution, by measurements of the
Hall effect as a function of the external magnetic field
at temperatures that are low with respect to the Curie
point. Indications of the type of conduction can be
derived then from the normal Hall effect: Iron shows
p-type conduction, nickel n-type conduction. At the
same time, the anomalous contribution shows the same
sign as the normal contribution? i.e., the effect is larger
both in Fe and Ni than one would expect if only the
Lorentz force were effective. The anomalous contribu-
tion is phenomenologically written as the magnetization
times a coefficient. This anomalous Hall resistivity has
experimentally the following temperature dependence:
It tends to zero as T tends to zero in perfect lattices,
and it increases with temperature up to a maximum
occurring just below the Curie temperature. This was
observed in Ni by Jan.!

Chromium is known to be an antiferromagnetic
metal.* The Hall constant as a function of temperature
decreases rather abruptly at about the Néel tem-
perature for increasing temperatures.® The sign of the
Hall constant is found to be positive.

1]J. P. Jan, Helv. Phys. Acta 25, 677 (1952); J. P. Jan and
H. M. Gijsman, Physica 18, 339 (1952).

2 See, for example, M. Pugh, N. Rostoker, and A. Schindler,
Phys. Rev. 80, 688 (1950).

3 This is not true in general for alloys.

4 See, for example, G. E. Bacon, Acta Cryst. 14, 823 (1961).

5 G. de Vries and G.” W. Rathenau, J. Phys. Chem. Solids 2,
339 (1957).
160

Finally, MnTe and NiO are known to be anti-
ferromagnetic semiconductors. MnTe appears to be a
broad-band semiconductor,® whereas the other com-
pound is likely to be a narrow-band semi-conductor.’
The type of conduction in these materials is determined
by the valence of the impurities incorporated into the
lattice and/or by deviations from stoichiometry. The
sign of the Seebeck coefficient?” is positive, as expected.?
The Hall coefficient of MnTe® and NiO? in the anti-
ferromagnetic phase has the same sign as the Seebeck
coefficient. However, the Hall coefficient of MnTe
single crystals drops to zero in the vicinity of the Néel
point and changes sign if it is measured with the mag-
netic field parallel to the crystallographic ¢ axis; if the
measurement is performed with the magnetic field
perpendicular to the ¢ axis, the Hall constant of MnTe
decreases sharply but remains positive.® In NiO® too
a sign reversal of the Hall coefficient is found in the
vicinity of the Néel temperature. Above this transition
point the Hall and Seebeck coefficients have opposite
signs. The law of the inverse proportionality of the Hall
constant to the charge-carrier concentration has been
verified® in NiO in the paramagnetic region too. Dis-
regarding the anomalous sign of the Hall coefficient,
the proportionality constant for NiO is two orders of
magnitude smaller than the normal value. Further
interesting evidence of anomalies of the type mentioned
can be found in measurements' on a-FeyOs. a-FesOs is
weakly ferromagnetic in a temperature region lying
between the so-called Morin temperature and the
transition temperature to the paramagnetic region.
Below the Morin temperature, o-Fe;O; is antiferro-
magnetic. The sign of the observed Seebeck coefficient
is negative, as expected, in all temperature regions.

8 J. D. Wasscher, A. M. J. H. Seuter, and C. Haas, in Proceed-
ings of the 7th International Conference on the Physics of Semicon-
ductors, Paris, 1964 (Academic Press Inc., New York, 1964).

7A. J. Bosman and C. Crevecoeur, Phys. Rev. 144, 763 (1966).

8 The existence of magnon drag in MnTe (Ref. 6) does not
prevent conclusions from being drawn regarding the sign of the
ordinary Seebeck coefficient.

9A. J. Bosman, H. J. van Daal, and G. F. Knuvers, Phys.
Letters 19, 372 (1965).

10 The remarkable behavior of the Hall effect in MnTe as a
function of temperature and of the direction of the magnetic field
was the first clear-cut indication of the presence of anomalies in
the Hall effect of antiferromagnetic semiconductors
( 111'-71. J. van Daal and A. J. Bosman, Phys. Rev. 158, 736

1967).
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Notwithstanding this, the sign of the Hall effect is
positive in the paramagnetic region. a-FeyO; provides
an example of a material with expected #n-type con-
ductivity that shows a positive Hall effect, while all
semiconductors mentioned previously showed p-type
conduction. The law of the inverse proportionality of
the Hall effect to the carrier concentration is verified
also in the paramagnetic region of a-Fe;O3. The propor-
tionality constant is in this case a factor of 4 too small,
and, of course, it has the unexpected sign.

The present state of the theory of the Hall effect in
magnetic materials will now be reviewed by referring
only to authors who have proposed new interaction
mechanisms to which the anomalous Hall effect could
be attributed. No mention is made of later refinements
within these models concerning, for instance, detailed
band structure, etc. All available calculations refer
exclusively to the case of ferromagnetic metals.

Karplus and Luttinger? constructed the following
model: A gas of charge carriers is free to move in the
periodic potential of magnetically inert ions; the
carriers with spin up are more numerous than the
carriers with spin down. This temperature-dependent
difference in the occupation of spin states is the cause
of the spontaneous magnetization of the ferromagnet.
In this model the very same itinerant particles are
responsible for the electrical and magnetic properties of
the solid. The carriers are subject to the interaction of
their spin with their orbital angular momentum which
produces, in the opinion of Karplus and Luttinger, a
stationary current of the right order of magnitude with
the symmetry of a Hall current. Smit®® criticized the
theory of Karplus and Luttinger on the grounds that a
periodic potential, such as the spin-orbit interaction,
cannot cause scattering, nor consequently a current
perpendicular to the external electric field. Only the
presence of impurities disturbs the periodicity of the
spin-orbit field. In the vicinity of the impurities a force
acts on the charge carriers, and the charge carrier is
scattered asymmetrically with respect to a plane
defined by the carrier’s incoming direction and the
direction of its spin. This scattering process, skew
scattering in Smit’s terms, provides a mechanism by
which a Hall current is produced of the right order of
magnitude. Even though Luttinger, in a succeeding
paper,* would not accept many of Smit’s objections, he
also obtained a cancelling of the effect he had previously
considered, at least in the effective-mass approximation.
Smit’s calculation itself is open to criticism: His equa-
tion for the anomalous Hall angle changes sign accord-
ing to whether the perturbing potential of the impurity
is attractive or repulsive. This prediction is disproved
by Smit’s experiments with different impurities in Ni:

2R, Karplus and J. M. Luttinger, Phys. Rev. 95, 1154 (1954).

18 J. Smit, Physica 21, 877 (1955) 24, 39 (1958) ; thesis, Univer-
sity of Leiden, 1956 (unpublished).

14 J, M. Luttinger, Phys. Rev. 112, 739 (1958).
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Whether the impurities had higher or lower atomic
numbers than Ni (Al or Si on one side, Sn or W on the
other), the anomalous Hall effect remained negative.
It should also be observed that the role of impurities is
fundamental in Smit’s calculation, while Lavine’s
measurements’® on different Ni specimens indicate no
essential change in the effect at temperatures near the
transition point. Only a residual anomalous contribu-
tion to the Hall effect at low temperatures seems to be
dependent upon the impurity concentration.

A different model has been considered by Kondo':
The charge carriers (which will also be called “s” elec-
trons) are equally distributed between states of opposite
spin. The ions then have a nonvanishing total spin,
which accounts for the magnetic properties of the
material. This is due to the spin of the d electrons, which
are localized on the ions. The spins of the magnetic
ions are disordered by temperature and the charge
carriers are scattered by the nonperiodic potential
which is thus generated and which acts on their spins.
In this model periodicity is destroyed by the disorder
of the ionic magnetic moments, rather than by the
introduction of impurities. The mechanism described is
the s-d spin-spin interaction (Ruderman and Kittel”?
and Kasuya') which accounts in principle for the
resistivity of magnetic materials in terms of scattering
of s electrons by d electrons. The s-d interaction provides
no skew scattering by itself, even though Kondo shows
that it is anisotropic, if the orbital ground state of the
d electrons is degenerate. (Skew scattering is, in this
model, a scattering which produces a wave function of
the scattered charge carrier which is not invariant with
respect to mirroring along a plane defined by the
incoming direction of the s electron and the direction of
the spin of the scattering ion.) This anisotropy of the
s-d interaction disappears in fact if the ground state
mentioned is nondegenerate. If, however, the spin-
orbit interaction of the d electrons within the magnetic
ions (not the s charge carriers) is added, skew scattering
takes place and a Hall current appears. It must be
stressed at this point that in Kondo’s opinion the skew
scattering is caused by an anisotropy of the s-d inter-
action. The function of the spin-orbit interaction of
the d electrons within the ions is to permit an odd
power of the s-d interaction proper to a degenerate
ground state to appear in the transition probabilities.
Kondo’s calculation provides the correct temperature
dependence of the anomalous Hall effect in metals.
The right order of magnitude and the sign of the effect
is obtained by determining ad hoc the value of an
available parameter. With reference to Kondo’s calcula-
tion, it should be observed that the anisotropy of the
s-d interaction and the spin-orbit interaction within an

15 7. M. Lavine, Phys. Rev. 123, 1273 (1961).

16 J. Kondo, Progr. Theoret. Phys. (Kyoto) 27, 772 (1962).
1'M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1955).
18 T, Kasuya, Progr. Theoret. Phys. (Kyoto) 22, 227 (1959).
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ion can exist only if the orbital angular momentum of
the electrons within the ions is not quenched. This
momentum appears to be quenched in the transition
metals and in gadolinium, where the effect found
experimentally is nonetheless particularly large. This
remark is due to Kondo himself.

Summarizing, it can be concluded that the mechanism
responsible for the anomalies of the Hall effect in
magnetic materials is not completely understood. This
applies in particular to antiferromagnetic solids for
which no theory exists.

An interaction mechanism is proposed in the following
as a possible cause of the anomalous Hall effect.”® The
model adopted by Kondo is utilized here: The ions
possess a nonvanishing magnetic moment due to
localized d electrons, which accounts for the magnetic
properties of the solid; the charge carriers (s electrons)
are equally distributed between states with spin up and
spin down, and they are scattered by the disorder
induced by temperature in the system of magnetic
ions. In addition to an isotropic s-d interaction, which
is responsible for the resistivity of the material, an
interaction is considered here which, in combination
with the s-d interaction, gives rise to skew scattering.
This interaction describes the force acting on the
moving electrons as a consequence of the magnetic field
produced by the presence of the magnetic moment of
the ions. This interaction could be called a d-spin-
s-orbit interaction. Such an interaction is of necessity
present in all magnetic materials, and in the model of
the localized moments it describes the same interaction
between moving charges and magnetization that is
written in terms of the spin-orbit interaction in the
models proposed by Karplus and Luttinger and by
Smit. It will be shown in the following that this inter-
action mechanism produces the following results:

(a) The temperature dependence of the anomalous
Hall resistivity agrees with experiment in the case of
ferromagnetic metals (iron and nickel) ; the anomalous
Hall resistivity has a maximum below the Curie tem-
perature and drops rapidly to very low values; the
anomalous Hall coefficient does not.

(b) The difference in the sign of the anomalous Hall
effect in Fe and Ni is attributed to the fact that Fe
shows p-type conduction and Ni #-type conduction.
In general, the anomalous Hall effect in ferromagnetic
metals has the same sign as the normal Hall effect
within the limitations of this theory.

(c¢) An abrupt decrease in the Hall coefficient is
predicted in antiferromagnets near the Néel point, when
the external field is parallel to the axis of easy mag-

19 The same interaction mechanism has been considered indepen-
dently by A. N. Voloshinskiy {Fiz. Metal. Metalloved. 18, 492
(1964) [English transl.: Phys. Metals Metallog. (USSR) 18, 13
(1964) 1} for the case of ferromagnetic metals. See also the refer-
ences included in the cited article.
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netization (the complementary case, H normal to the
axis of easy magnetization cannot be treated simply).

(d) In the paramagnetic region of antiferromagnets
an extraordinary Hall effect is subtracted from the
ordinary Hall effect. This applies to both orientations of
the magnetic field mentioned in (c). For antiferro-
magnetic semiconductors this extraordinary effect
is almost temperature-independent above the Néel
temperature.

(e) The Hall coefficient remains inversely propor-
tional to the carrier concentration in the paramagnetic
region of antiferromagnetic semiconductors.

On the basis of these results it would appear that a
unified explanation may be provided for the experi-
mental observations on materials of varied magnetic
and electrical properties. Some caution must be exer-
cised, nevertheless, when judging the general applica-
bility of the theory. It appears, first of all, from the
measurements of Foner? on cobalt at room temperature
that the anomalous and the normal Hall effect in this
metal have opposite signs. These observations are at
variance with the present theory, which is incapable of
explaining them. More recent measurements® of the
Hall effect in Co show that the mentioned difference in
signs is temperature-dependent. The explanation of the
Hall effect in Co obviously requires further study. The
sign of the effect in alloys, on the contrary, can be
understood within the present theory.

There remains moreover a dubious point relating to
the s-d interaction. The description of this interaction
in terms of a spin-dependent potential [Eq. (6) of this
paper, for instance] can be a questionable procedure. A
rigorous treatment of the electron-electron Coulomb
interaction should make use of electron eigenfunctions
antisymmetrized with respect to all coordinates of the
carrier electron and of the electrons residing on localized
orbitals of the ion. In this way the Coulomb interaction
between pairs of electrons would be explicitly taken into
account. However, it seems probable that the standard
procedure, followed also in this paper, is adequate.

Special attention had to be devoted to order-of-mag-
nitude considerations: The present effect is approxi-
mately two orders of magnitude too small both for
ferromagnets and antiferromagnets. The origin of this
serious discrepancy is discussed in the third section of
this paper.

The interaction to be considered in the following
along with the s-d interaction will now be derived.?
Gaussian units are utilized throughout this paper. A
magnetic moment M situated at the origin of coordi-
nates generates a magnetic field whose vector potential

20 S. Foner and E. M. Pugh, Phys. Rev. 91, 20 (1953).

21 N, V. Volkenshtein and G. V. Fedorov, Zh. Eksperim. i Teor.
Fiz. 38, 64 (1960) [English transl.: Soviet Phys.—JEPT 11,
48 (1960) .

22 A, Messiah, Mécanique Quantique (Dunod Cie., Paris, 1964),
p- 809.
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Ais
A=MXr/r*= curl(M/7). (1)

This vector potential introduces a new term in the
Hamiltonian describing the motion of a charge carrier
(e, m, p; carrier’s charge, mass, and momentum,
respectively) :

$=—5— (PA+AP == " (p-A); (divA=0).
e mc

(2)

If the orbital angular momentum L of the charge
carrier around the origin is introduced, this final result
is obtained:

O=—(¢/mc)M-L/7* 3)

In the case under consideration, M is the magnetic
moment proportional to the sum of the spins of the d
electrons. M equals guS, where S is the total spin of
the ion, g is the Landé factor, and u is the Bohr mag-
neton. As indicated previously, (3) is a d spin, “s” orbit
interaction. It is apparent that (3) changes sign if the
coordinate r is changed into its specular image by
mirroring along a plane containing M and p. This
implies that the matrix elements of (3) between quasi-
free-electron states of wave vectors k and k' are anti-
symmetric under anfexchange of k and k'. If an odd
power of such a matrix element appears in a transition
probability, skew scattering results.

In the following section a perturbation calculation of
the skew scattering;due to Hamiltonian (3) in com-
bination with the s-¢ Hamiltonian and a transport
calculation are carried out to obtain an expression for
the anomalous Hall resistivity. The third section dis-
cusses the equations obtained with reference to experi-
mental evidence. Finally, the fourth section emphasizes
the limitations of the theory.

II. CALCULATION OF THE HALL RESISTIVITY

A. Transition Probabilities

The transition probabilities between quasi-free-
electron states will be obtained by the application of
the methods of S-matrix theory.®® The first-order
S-matrix element will be considered to obtain an
expression for the isotropic transition probability
leading to resistivity, the second-order S-matrix
element will be considered in combination with the
first-order matrix element to obtain an expression for
the transition probability leading to skew scattering
and to a contribution to the Hall effect. Higher-order
S-matrix elements will be disregarded. This is per-
missible only if the interaction energies under con-

23 See, for example, A. S. Davydov, Quantum Mechanics
(Pergamon Press, Inc., New York, 1965), p. 330.
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sideration, namely the energies related to the s-d
Hamiltonian and Hamiltonian (3), are small with
respect to the kinetic energy of the scattered charge
carriers. The results of the calculation sketched will
then be utilized to calculate the Hall resistivity for
metals and semiconductors by introducing them into
the transport equation. This calculation follows rather
closely the method used by Kondo.® The essential
difference between the two calculations resides in the
fact that the perturbation Hamiltonians are different
in the two cases. Expressed in equation form, the
following first- and second-order S-matrix elements
shall be computed:

(| SO | a)=—2ixd( Eas— Eo) (' | D1+ D2 ] @), (4)
(@ | §9 | ay=—2ird( Ex— E,)
X X”I (a| &1+9: | ')

X" | 91492 | &)/ (Ea— Earrtin), (5)

where
Bim— 2 Ja-R)eS, (©)
and "
Da=(—eg/m) 33 (SwL)/[ =R (1)

represent the interaction terms. §; is a formal repre-
sentation of the s-d interaction between the spin é of
the carrier and the spins S, of the N magnetic ions
present in the solid. J(r—R,), the exchange integral,
is assumed to be isotropic.?t In Eq. (7) L, is the angular
momentum of the charge carrier with respect to the
nth ion, m is the effective mass of the carrier, and R, is
the position coordinate of the carrier. The interaction
Hamiltonians (6) and (7) cause transitions between
states that are the products of a quasi-free-electron
eigenfunction V12 exp(sk-r) (V is the volume of the
specimen), of an eigenfunction

0 1
or

1 0

of the z component of the spin 8, and of eigenfunctions
of the operators S,? relative to each ion. The spins of
all ions have modulus equal to [ S(.S+1) J¥/2. These un-
perturbed states are labeled |a)=| k, o, m;, * -+, my),
where m, is the magnetic quantum number relative to
the nth ion. The direction of quantization of angular
momentum is chosen to coincide with the direction
¢ of the external magnetic field H. The spin ¢ can take

2¢ The difficulties relative to this exchange integral have been
mentioned in the Introduction.



160

ANOMALOUS HALL EFFECT

425

values ==1. The transition probabilities obtained from (4) and (5) are

Wi(K, k) = (2n/R) §( Ex— Ew) | (o' | ©1+D2 | @) [%

®

Wy(K', k) = (2r/R) 8( Ex— Ei) {{o | $1+D2 | @) ; [l | 91+De| o'W | O1+D2| &)/ (Ex— Exrrtin) ]+ c.c.}.

The matrix elements (&’ | D149z | @) are easily calculated; it appears that the only nonvanishing ones are

(k,) =+, my, o0, My l @11 k, =+, my, o0, mN>=:F(](k: k')/V)Z CXp[’L(k—k,) 'Rﬂ]m’h

<k,’ T+, my, "')mﬂ:*:l; ""le‘Séll k) ==, My, oo, Ma,

(kly &+, my, oo, My | ‘@2 l k) =+, my, 0, mN>= —(%ieg”ﬁ/mCV) (kx kl)i’ l k—k [_22 eXPD(k'"k') 'Rﬂ]mm

9)
(10a)
oo, my)
=—(J(k, kX)/2V) exp[i(k—K') R, [ S(S+1) —m,, (m,£1) ] for every #, (10b)
(10c)

<k1a =+, m, '”Jmn:tly "':mN]*SjZIk):tyml; °c

Here J(k, k') =f exp[i(k—Kk’) -r]J (r)dr. The expres-
sion (kXk'); indicates the component of kXk' in
the direction {. £ and n are unit vectors normal to &.

In the following calculation only those matrix ele-
ments which induce no transitions in the system of
magnetic ions [namely matrix elements (10a) and
(10c) ] shall be retained. This approximation was also
adopted by Kondo. Furthermore, only $; shall be
retained in Eq. (8) because it is argued that the square
of the matrix element of , is but a small correction to
the square of the matrix element of ©;. The cross
products cancel in (8), as it is apparent from Egs.
(10a) and (10c).

The transition probability of Eq. (9) is the sum of
eight terms containing different combinations of three
matrix elements of either O; or .. All the terms con-
taining the square of the matrix element of . are not
relevant because they cannot cause skew scattering.
Only three terms contain linearly the matrix element
of §,: Two of them contain a matrix element of H,
which must be summed over &’’; one term contains
(o' | D2| @). Only this last-mentioned term shall be
retained in the calculation. The two other terms linear
in the matrix element of 9, are believed to be smaller
than the one to be retained. The term containing the
third power of the matrix element of ©, is neglected
because it is small with respect to terms containing
linearly the matrix element of .. The calculation of
the transition probabilities can now proceed. Substitu-
tion of (10a) into (8) gives, if J(k, k') is real,

Wi(K', k) = (2r/h) 8( B — Ex) (J (k, X') J(K', k) /V*)
> tumys expli(k—k) - (R,—R,)]. (11)

nn/

If correlations among different magnetic momenta are
disregarded, with the exception of the cumulative

. mn’ ...,ﬂiN>

= — (2mieguh/mcV) exp[i(k—K') -RyJLS(S+1) —mn(m,£1) ]2 | k—K' |2(kX K') - [EFin]

for every n.
(104d)

influence on one momentum of all the others as de-
scribed by a molecular field, then the sum in (11) can
be computed; it equals

N{(m—(m))*)+N*(m )5 (k— k')

for a ferromagnet,

(12a)
NV (((ma— (ma)) )+ (ma— (ma2))?))

+(3N) 28 (k—K') [{m1 )+ (mz )+ (m )(ma) ]

for an antiferromagnet. (12b)

In the case of a ferromagnet, (m*) is defined as the
average value of the nth power of the magnetic quan-
tum number of an ion. This is calculated within the
molecular-field approximation and it is the same for
all the ions. {(m—{m))?) is defined in terms of {(m")
by the algebraic relation ((m—{(m))?)=(m?)—(m).
The antiferromagnet to be considered here is made up
of two sublattices. All the ions belonging to the first
sublattice have an average magnetic quantum number
equal to (my); all the ions belonging to the second sub-
lattice have an average magnetic quantum number
equal to (ms). Within each sublattice the same defini-
tions given for ferromagnets apply.

The terms containing §’s in Eqs. (12) do not describe
a scattering process. They rather describe the modifica-
tion of the carrier band as a consequence of the presence
of the interaction terms (6) and (7). Such a modifica-
tion is considered small and it is neglected. The transi-
tion probability W1 (k’, k) then equals

Wi(K', k) = (2r/h) §( Ex — Ex)

where My=N{((m—(m))%) for a ferromagnet and
Me=2N ({(m1— {(m1))2)+{(ma— (m2))?)) for an anti-
ferromagnet.
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Substitution of (10c) and (10a) into (5) gives the second-order S-matrix element:

(| S® | a)y=—(27i/V)$(Ear—Ea) D, Mattn I (k, K') exp[i(k-R,—KR,)],

where

(14)

L. (k, k) =(2m)*[dk" J(k, k") J (K", K') exp[ik"+ (Ry—Rn) 1/ (Ex— Exr+11) = Run (K, K') +1S e (K, k).

Then the transition probability (9) equals

(15)

Wz(kla k) = (21r/7i,) B(Ek'—Ek)iQ(kx k,)f [ k—k 1—2 Z MMM g1

nn/n’!

X { R (k, K') [exp(ia) — exp(—ia) 1/ V+iJun (K, ') [exp(ia) + exp(—ia) /V},

where
Q=4megufi/mcV,a=(k'—k) R, —Kk -Rnp+k-R,.

R, (k, K') and §, (K&, k') are now substituted by the
values of R(k, k') and &(k, k') that they have when
n and #' label ions that are nearest neighbors. This
approximation eases the progress of calculation and it
does not change the order of magnitude of the effect.
This approximation is essential to let 9% appear in
the following equation. Then Eq. (16) reduces to

Wa(K, k) = (2r/h) §( Exw— Ex)
X (—Q) (XK); | k—K |3 (k, K) D/ V,  (17)

where =N {((m—(m))?) for ferromagnets, P;=
IN( (zm— {m1 )3 )+ (ama— (ms)2*)) for antiferromag-
nets. Also in the case of Wy(k’, k) the molecular-field
approximation has been adopted and the é’s which
should appear in )t; have been neglected for the reasons
given above Eq. (13).

The ratio | Wo/W1| is a measure of the Hall angle
¢n’ caused by skew scattering. Estimates of the order
of magnitude of the effect considered in this paper will
be based on a comparison of this ratio with the ordinary
Hall angle. The ratio | Wo/W1 | is equal to

o' = | Wo/Wyi | =2Q(EXE); | k—K |7
XV3(k, k) T~ (k, k') J7 (K, K)Des/Me.
An estimate of this ratio is possible if J(k, k') is
independent of k and k' and is equal to J. [J(r) in
Eq. (6) is a delta function times J.] Then Jnn (K, k')
can be computed as
S(nn’(k; k,)
= —(J'm/2x*h2) sin(k | Ry —R, | )/| Rw—R,[.  (19)
If |R,—R,| equals the nearest-neighbor distance
a, then
o’ = (4egu/mwch) (sinka/a) (Des/Dy) 22X 1075MNs/Ms.
(20)
The Hall angle due to the external magnetic field is
roughly ¢~ tang=Hpu/c, where p indicates in this

particular case the mobility of the carriers. ¢ is of the
order of 10~ for H=S5 kOe, u=1 cm?/V sec as it is

(18)

(16)

observed experimentally in the magnetic materials of
interest. The following section contains an estimate of
the ratio of the average values appearing in (20) and
a study based on (20) of the relative magnitudes of the
normal and anomalous Hall effects.

B. Transport Calculations

The transition probabilities obtained in the pre-
ceding subsection will now be introduced in the trans-
port equation in order to obtain an expression for the
Hall resistivity. From now on J(k, k') =J, independ-
ent of k and k. The ordinary Hall effect will not be
calculated in this subsection. The equations that will
be obtained for the Hall resistivity will refer only to
the skew-scattering contribution. The procedure used
follows the article by Kondo.** Attention will be devoted
first of all to metals for which all integrations are per-
formed on the Fermi surface. The carrier distribution
among states of wave vector k? is approximated by

fe=H"—8g(0fi/I Ex). (21)

8u is the external electric field, and ge=g P+ g®,
where g® and g® are the corrections relative to the
transition probabilities (13) and (17), respectively.
il is the Fermi-Dirac distribution. Then the equation
for g is

2 WK, k) (82 —gi®) +(fie/m)u-k=0. (22)

A solution is found for g =¢(u- k), where

¢ =—nheV/m*hk JANM,. (23)
The equation for g, ® is
2 (K, k) {5 —go®)
K/
—Wa(K, k) {5 +g®}]=0. (24)

25 Carriers with spin up and down are assumed to reside in the
same spherical band, with equal effective mass 7. This assumption,
amounting to the neglect of energy corrections due to @1—%—3:32,
has already been used to neglect the &’s in Eq. (12). It is argued
in the usual way that the difference between the two bands is
small enough to be disregarded in the case at hand. Moreover,
the charge carriers are skew scattered in the same direction
whether they have spin up or spin down. The contributions of
the two bands then add up and the small difference between
the two bands does not appear in the calculation in a relevant
way.
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A solution for gi® is found such that g® =y ({Xu) -k,
where

¥/¢=—n""(sinka/a) (egu/ch)Ms/Ms. ~ (25)

Such results lead simply to the calculation of the
current density:

j=(ch&/ mV); (91%/9 Eic) (8:® +8:®)

= — (ekp®/6n%1) pr&[ u+ (Yr/dr) ((Xu)]. (26)

fiky is the Fermi momentum; ¢r and ¢r equal ¢ and ¢
at the Fermi surface. The Hall resistivity is defined by

pu=Es/j)=(—3/ec) (N/V)
X (sinkra/aEr) (m/H2) J*guMa.  (27)

The Hall resistivity observed experimentally is of
opposite sign, because it refers to the electric field that
compensates the field perpendicular to u that drives
j. Then

pa=(3/ec) (N/V) (sinkra/aEr) (m/h2) J2gudts. (28)

A discussion of this result will follow in the next section.
A similar formula for semiconductors is now derived.
If it is assumed that

fd=(16p/ V) (xFi2/2mksT)*2 exp(— Ex/ksT),

where # is the total number of carriers present in the
solid and kg is Boltzmann constant, then, by the same
calculation performed for metals, the following Hall
resistivity is obtained for semiconductors:

o= (45/167) (nec) N exp(—makpT/2h?)
X (1—makpT/6h2) (m3/18) J2guNskpT.
III. DISCUSSION OF THE RESULTS

(29)

It will now be shown that Eqgs. (28) and (29) ob-
tained for the anomalous Hall resistivities in metals
and semiconductors have the features listed in the
introduction.

A. Results (a) and (b)

From Eq. (28) it appears that for metals the tem-
perature dependence of the anomalous contribution to
the Hall resistivity is contained in 3. It will be shown
that this quantity is positive at all temperatures for a
ferromagnet in a molecular-field approximation. Then
pm anomalous has the sign of the charge carriers [u being
negative in Eq. (28)7] if sinkra<0. A ferromagnetic
crystal is considered consisting of one domain. Inter-
actions among nearest neighbors are considered. The
reduced magnetization ¢ (which is negative, ranging
from zero to minus one) is given in a molecular-field
approximation by ¢ =Bg(y), where

y=[38/(S+1) T/ T)o+guSH/kpT.

Bg is a Brillouin function. It is easy to see that
Mz=S*Bs" (y). M5 is easily expressed in terms of the
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spontaneous and induced magnetizations:
Mz = S*[Bs" (30) +Bs" (30) (y—20) ]
= S*[Bs" (30) +(Bs"" (30) / Bs' (30) )0 ]
= SL(Bs" (30) /Bs(30) Yoo+ (Bs"" (y0) / Bs' (30)) 80 ];
$0=[35/(S+1) NTc/T)oo.  (30)

Of the two terms that are present in I, the former
is proportional to the spontaneous magnetization and
the latter is proportional to the induced magnetization.
The proportionality constants are not equal. The sign
of the two contributions to 9t mentioned is the same
near T, but is opposite below 0.887, for S=1%, because
of the signs of Bg"” and Bg"’. The diagram of Fig. 1
displays the temperature dependence of 93/S® for
S=% and H=0; Bs"(y) is positive for all negative .
The appearance of a maximum below T is due to the
presence of two factors in Y)t;: the spontaneous mag-
netization, which is zero at T, and the coefficient of
oo in (30), which is zero at T=0, and which takes care
that, when the magnetic system is ordered, no scat-
tering takes place. It must be remarked that the
spontaneous Hall resistivity vanishes for 7'=17, be-
cause of g9, while the spontaneous Hall coefficient,
which was mentioned in the Introduction, remains
finite. The temperature dependence of Yz should be
compared with the data of Ref. 1 for the anomalous
Hall resistivity. The agreement is satisfactory. The
same temperature dependence was obtained by Kondo';
moreover, this author compares his result with that of
Karplus and Luttinger.!2

B. Results (c), (d), and (e)

o=09+60;

In the case of antiferromagnets the measured
quantity Ry equals the normal Hall coefficient plus px
of Eq. (29) divided by H, the magnitude of the external
magnetic field:

Ry = (nec)'(14«), (31)

where

a=(45/167) N (m®/10) J2guiks T/H.  (32)



428 F.

Equation (31) is the transcription for antiferro-
magnetic semiconductors of the phenomenological
formula mentioned in the Introduction for ferro-
magnets. It will be shown that « is independent of H.
The expression exp ( —mkpTa?/7?) (1 —ma*kpT/612) has
been dropped from (32) because it is practically one in
the temperature regions of interest.

The fact that the anomalous contribution to the Hall
effect in semiconductors is inversely proportional to
the carrier concentration is apparent from Eq. (31).
The temperature dependence of 9ts, which determines
the temperature dependence of «, is now investigated
for an antiferromagnet, for the case of H parallel to
the axis of easy magnetization A.2® The simplest anti-
ferromagnet is considered, consisting of two sublattices
such that all neighbors of an ion in one sublattice reside
on the other sublattice. Nearest-neighbor interactions
only are considered. The following equations apply to
the two sublattices (the index -+ refers to the sublattice
whose total magnetic moment is parallel to the external
magnetic field; the index — refers to the sublattice
whose total magnetic moment is antiparallel to the
external magnetic field) :

o:=Bs(ys), (33)
ye=[3S/(S+1) W(Tn/T)oxtguSH/kpT, (34)
Do, = S*{[Bs" (30) /Bs(30) Joos

+[Bs""(30)/Bs'(y0) Joou}. (35)
The equations apply
0ot = —00,
b0 =d0_=do. (36)
Then
M =Mz, +Ms_=25%0Bs"" () /Bs' (y0). (37)
do is expressed in terms of the susceptibility:
do=x H/NgusS.
Then
- (2S%uH/kpT) Bs'" (y) (38)

T4 (3S/(SH1)} (Tw/T)Bs (y)]

It is clear that « is independent of H. The temperature
dependence of

Bs"" () /[14+{3S/(S+1)} (Tn/T) Bs' (30) ]

is given in Fig. 2. These results are now compared with
the experimental evidence. It shall be observed first of
all that the equations derived above apply in general
only above the Néel temperature, where the spins of
the sublattices are parallel to H; also, the molecular-
field theory is certainly not appropriate much below
the Néel temperature.

26 T. Nagamiya, K. Yosida, and R. Kubo, Advan. Phys. 4, 1
(1955).
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It is, however, possible to say that « is negative?
in the paramagnetic region, after changing sign rather
abruptly in the vicinity of the Néel temperature. This
is in remarkable qualitative agreement with experiments
in MnTe and NiO, provided « is very close to —1 in
the paramagnetic region. It should be emphasized
here that Fig. 2 shows the temperature dependence of
a quantity proportional to «, and that the appearance
of —1 in Fig. 2 does not mean that a=—1. « is very
insensitive to changes in temperature above the Néel
temperature. This is also in striking agreement with
experiment in the mentioned materials.

The anisotropy of the effect in MnTe cannot be
explained because it is not possible to treat the case H
perpendicular to A within the present theory. The
presence of the maximum below the Néel temperature
in Fig. 2 is not very disturbing: This means that the
Hall effect in that temperature region contains an
added term which is 309, of the effect that is sub-
tracted in the paramagnetic region. If « equals —1 in
the paramagnetic region, then the extra effect below
the Néel temperature may be included in the meas-
uring errors with some good will. Moreover, it may be
argued that the maximum falls into a region in which
the molecular-field theory cannot be applied. On the
other hand, it should be mentioned that in the case of
chromium [which is a metal; consequently Eq. (28)
would apply if the model proposed here could be used
for chromium] there are indications of the presence of
a maximum.

Some attention should be paid to the order of mag-
nitude of the effect just calculated. It has been ob-

1.0 -
B{(%)
3s T/
s 7Bs%)
054

S=%

N

0 04 08 12 1.6 29

F16. 2. The temperature dependence of
" 38 Ty ’
Bs" (30) /[1—*——5—{—1738 () |-

27 9ps is positive, u is negative in (32).
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served [following Eq. (20)] that the ratio of ordinary
and anomalous Hall angles is of the order of Is/M..
This quantity is of order one in ferromagnets, and of
order 1072 in antiferromagnets. Experimentally, the
anomalous Hall effect is about a hundred times larger
than the normal effect® in Ni in the vicinity of the Curie
temperature. In antiferromagnets, normal and anoma-
lous Hall effects should roughly be of the same order of
magnitude at the Néel temperature. The computed
effect is, in all cases, two orders of magnitude too
small.?® The following provides a possible explanation
for the difficulty discussed.

Only interaction (7) is relevant in connection with
the estimate of the order of magnitude; in fact
Hamiltonian (6) cancels out in the expression for the
anomalous Hall angle. Interaction (7) describes the
effect of the magnetic field caused by the current of the
s electrons on the total spin of the d electrons. With the
assumption that the s electrons reside in states described
by plane waves, this magnetic field is probably under-
estimated. Suppose in fact that the conduction elec-
trons orbited somewhat around the ions, as described,
for instance, by a tight-binding combination of proper
atomic orbitals. It appears immediately that the
presence of such circular currents around the ions
would produce a much larger magnetic field on the ion
sites than the field generated by a current described by
a plane wave. A refinement of the model in the indicated
direction seems promising. It is not unlikely that the
difficulties in the order of magnitude are a consequence
of the limitations of the model rather than an indication
of the fact that the effect considered is much too small
to be the cause of the anomalies of the Hall effect.

CONCLUSION

A number of objections are gathered in the following
conclusion; these indicate the drastic limitations of the
theory and permit a more objective evaluation of the
remarkable qualitative agreement of the predictions
made by the theory with experiment.

The treatment of a Hamiltonian as a perturbation is
always open to question when the scattering due to

28 In the opinion of the present author, the effect considered by
Kondo (Ref. 16) is also two orders of magnitude too small. If
the parameter appearing in Kondo’s theory is estimated on the
basis of the rough knowledge of the order of magnitude of the
quantities appearing in it, the values obtained by Kondo by
adjusting the parameter to fit experiment are a hundred times
too large. Kondo’s parameter is NFa(F2—4FoF1) / (Ep,— Eo). \ is
the spin-orbit constant; this is approximately 600 cm™! for Ni
and 400 cm™ for Fe. The difference Ep,— E, is of the order of
10* cm™. Fy, F, and Fj are defined by Kondo as exchange inte-
grals in which a Bessel function and the radial part of a localized
wave function appear. It is difficult to estimate such integrals
from the information available in the literature. One may attempt
to establish an upper limit by considering the average 4s-3d
exchange integral for F,. In this case Fg is 0.16 eV. This agrees
with the estimates of Goodings [J. Appl. Phys. 34, 1370 (1963) ]
obtained from optical spectra. F; and Fs should be smaller than
F,. If one takes Fy=F;=F;=0.2 ¢V, and estimates Kondo’s
parameter, a result is obtained of the order 1.6X10™* eV3, while
the values cited by Kondo are 0.03 and 0.12 eV? for Ni and Fe,
respectively.
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this Hamiltonian limits the mean free path of the
charge carriers to distances comparable with the inter-
atomic distance; this is actually the case for all materials
considered here, for temperatures close to the transition
temperature. This fact follows immediately from the
knowledge of the mobility in magnetic materials at the
transition temperature.

Consequently, all results derived here suffer from the
possible consequences of the unjustified adoption of a
calculation technique which is in reality not applicable
to the physical situation at hand.

The major objection now mentioned applies to all
materials cited in the Introduction in the vicinity of
the transition point. Moreover, in the case of the
transition-metal oxides, the mobility is low at all tem-
peratures, so that the consideration of Hamiltonian (6)
as a perturbation is not allowed, in consideration of the
fact that the energy related to Hamiltonian (6) exceeds
the band width in such compounds. Even the formal
expression of Hamiltonian (6) is questionable in such a
physical situation: A different model should be con-
sidered, one in which the interaction between the
spin of the carrier and the spin of the ion is most
relevent, while the kinetic energy of the carrier is
treated in its turn as a perturbation.

The conclusion is, of course, that the theory is by no
means adequate to give a detailed explanation of the
observed phenomena, especially in the case of transi-
tion-metal oxides.

A number of qualitative experimental features are
nevertheless reproduced by the theory, as listed above.
This fact is a clear indication that the mechanisms
described by Hamiltonians (6) and (7) are probably
responsible for the anomalous Hall effect. This is the
only result the theory may claim at present. A different
description of the mechanisms here described by
Hamiltonians (6) and (7), and a different calculation
procedure are to be adopted in general, and in particular
for transition-metal oxides, to produce a more suitable
theory. This approach appears nevertheless extremely
difficult at present.

One more drawback of the theory should be men-
tioned in conclusion: It is experimentally established
that « in Eq. (30) is very close to —1 for all the semi-
conducting compounds considered. In the theory, as it
stands in this paper, this can only be coincidental, while
there is evidence to indicate that, on the contrary, a
more fundamental reason for this interesting behavior
of @ in different materials must exist.
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