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Excitation of Atomic Hydrogen by Protons
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Excitation cross sections for protons incident on atomic hydrogen are calculated by a nonadiabatic method.
This consists of expanding the wave function in the spherical harmonics of the target, giving rise to an in-
6nite set of coupled two-dimensional equations. These are solved numerically in the approximation which
retains only S and P states of the target.

INTRODUCTION

LARGE discrepancy exists between the theoretical
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~.L and experimental cross sections for the 1s—2p
excitation of atomic hydrogen by proton impact.
Measurements, ' which have been made in the 1—30-
keV energy range, give cross sections about twice as
great as those of the most elaborate theoretical cal-
culation' which uses the close coupling method with
1s, 2s, and 2p states in both direct and rearrangement
channels. Since the computed cross section is little
altered by the inclusion of the 3s and 3p states it
appears likely that coupling with further bound states
will be small and that the continuum may play a
crucial role in the excitation process. This possibility
is investigated in the present paper using a variant of
Temkin s nonadiabatic theory, ' which consists of ex-
panding the total wave function in spherical harmonics
about the target proton. This gives rise to an in6nite
set of coupled two-dimensional equations. The non-
adiabatic method consists of solving these equations
sequentially as an increasing number of terms are re-
tained in the expansion.

At high energies the method should converge reason-
ably rapidly since the continuum is well represented in
the two-dimensional amplitudes. However, at low
energies, where charge exchange is important, the con-
vergence will probably be slow since an adequate de-
scription of rearrangement requires a large number of
angular momenta.

The original application of this technique to a scatter-
ing problem was made by Temkin who considered the
s-wave electron-hydrogen collision. Here, the "in-
finitely" massive proton is taken as the origin of a
coordinate system so that a single two-dimensional
function can describe both direct and rearrangement
amplitudes, 4+(ri, rs) =C(ri, rs) &C(rs, ri). This, to-
gether with the symmetry of the Pauli principle,
greatly enhanced the convergence of Temkin's expan-
sion. Unfortunately, in the proton-hydrogen problem,
direct and rearrangement amplitudes must be centered
about different origins (the two protons), and the
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We use the well-known impact parameter method in
which the protons are treated as classical particles of
infinite mass. Let r=(r, g, P) and R=(R, O~, C) be
the position vectors of the electron and incident proton
relative to the stationary target proton which is located
at the origin of a fixed coordinate system. The incident
proton moves along a line parallel to and at a distance

p from the s axis, with a constant velocity e.
The time-dependent Schrodinger equation for the

electron is (in atomic units)

(-', V +si(B/gt)+r '+j r —R
l

'—R ')%(r, t) =0. (1)

We have retained the interproton potential so that
at large separations the perturbation tends rapidly to
zero.

Taking advantage of the fact that the spherical
harmonics 7'i (g, p) are eigenfunctions of

((sin'g) '(cP/gy')+(sing) '(g/gg) sing(g/Qg))

X&.(g, e) = &(&+1)I—'.(g, y), (2)

we expand the wave function

e(r, t) =r-ig g Z,„(r, t) J,„(g, y)
l~0 m l

and the perturbation

(3)

yt(r) R)—lR —rl '=4 g g '
V,„(g, y)J,„*(G,C),

i=o =t 2&+1

(4)
where

yt(r, R) = r'/R'+' for r(R—
= —R'/r'+' for r) R.

Substitution of these expressions in (1) gives, after
some conventional manipulation, an infinite set of
coupled equations

t'1 gs l(l+1) . 8&
l

——+r-i —R-i- +i —
l zt„(r, t)

&2 grs r~ Btj

=Z Z ~l l«-(r, t), (6)
m

symmetry of the problem cannot be exploited in a
simple way.
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(l lp i, g „R (1 li lp

1=4~ Z Z ' '
Vi (o C')~l

m)

(l ll /2) i 2cc

d(coed) f dd V,„'(d, d) Yc(d,d) ,Vi(d, d, ),
m mq 0

((2l+1) (2li+1)=(—)-I (ll,OO
~

l,O) (ll, ~~, ~1 —~,).
4s.(2lp+1)

P„i ——lim ) n„d„(t) )'

and the corresponding cross section is

The second expression of Eq. (8) is in terms of Clebsch- quantum numbers nil is
jordan coefficients.

For a collision in which the hydrogen atom is initially
in a state with quantum numbers eplps1p Eq. (6) must
be solved subject to the boundary conditions

Z,„(O, t) =lime, „(», t) =O, Q , 2ccf„„d=' r pdp
0

(12)

where R„p«(») is» times the normalized hydrogemc
radial function.

If we make the expansion

(
n„, (t) =exp

~ —,
~

R„i(»)Zi„(t)d», (13)
2»i't

or by substituting (10) into (6) and making use of the
relationit

Z, (», t) =
I Q+ dk

~
n.i„(t) exp R.i(»),

&a=i+i 2' (1 8', l(l+1) .8 (it &

(10) &2 8»' »' Bt &2N'j
~

——+» ' +—i —R„i(») exp~
~
=0, (14)

then the probability of excitation to a final state with which gives the integral formula

(» t) —R i (») exp(it/2+p&) g««g, (9) The exPansion coeKcients may be obtained from a
gazoo knowledge of Zi (», t) either by direct projection from

Eq. (10),

n i (t) =8 Qliip8 Q
i

(l lp)
R.i(»)&» R-'+g g &I

~
«, ,(», t)

l2=0 m2 l2 m 2/

It is clearly impossible to solve the above set of
equations without making some drastic approxima-
tions. The most natural way to proceed is to neglect
all but a very few of the functions Z&„(», t) in Eq. (6)
and to solve this finite set of equations numerically
with the appropriate boundary conditions. The simplest
case is the zeroth-order or 5-wave problem in which
only happ(», t) is retained. In the first-order or p-wave
problem we neglect all the Zi (», t) except those with
l = j and l =0. In general the nth-order problem is that
in which only those functions with /=e or less are
retained in Eq. (6) . The assumption of the nonadiabatic
method is that the excitation probabilities I'„~ will
eventually converge to the correct result as the order
of the problem is increased. At low energies, where
charge exchange becomes important, the convergence
may well be slow since an adequate description of re-
arrangement requires very many angular momenta in
the present formulation.

ZEROTH-ORDER APPROXIMATION

Neglecting all terms in (6) with l =1 or greater gives
the s-wave equation

p(a'/a»')+p(a/at)+v(», t) $z~' (», t) =o, (16)

where

V(», t) =1/» for»(R
=2/» 1/R for») R. —

The aPProximation defined above for Zpp&P&(», t)
closely resembles the zeroth-order problem of Temkin's
nonadiabatic theory. ' As in Temkin's application, Eq.
(16) has a clear physical interpretation. Initially the
electron sees only the charge of the target proton. When
the electron cloud is penetrated by the incident proton,
the electron sees a doubly charged nucleus. Thus a
temporary helium ion is formed which decays as the
moving proton emerges from the electron cloud.
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FxG. i. The is-2s excitation
cross section for protons incident
on atomic hydrogen. (1) Close
coupling from Wilets and Gal-
laher (Ref. 2). (2) Nonadiabatic
zeroth-order results. (3) Nonadi-
abatic first-order results.
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The boundary conditions at infinity (9) are awkward The finite (central) difference equation corresponding
to handle numerically and it wa, s found more convenient to (16) is
to make the transformations Ax=E

7t(0, r) =, (-',sr, r) =0. (19)

est(or, t) =exp(it/2) x(&, r),
r = tan —'(et/p), &

= tan '(r),— (18)

thus placing the entire problem within a box —-', +&
r&-', e., 0&(&-',e.. The boundary conditions at infinity
may now be simply stated

x($, ——,'z.) =2 tan(() exp( —tan)),

where A is a complex tridiagonal matrix, x is a column
vector representing the solution at some value of v.,
and K depends on previous values of r. Using a non-
iterative technique developed by one of us, 4 Eq. (20)
may be directly inverted and 7f(j, r;) obtained from a
knowledge of x($, r; i). Since the initial condition at
r = —-', s. is given by (19) a numerical solution may be
developed over the entire region —

~m &v.&—,'+.
Calculations were performed on the laboratory's
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Fro. 2. The is-2p ex-
citation cross section for
protons incident on atomic
hydrogen. (1) Experimen-
tal results of Stebbings
et at (Ref. 1). (2) . Close
coupling (1s ( 2s ) 2p) with
rearrangements from Wilets
and Gallaher (Ref. 2). (3)
Present nonadiabatic cal-
culation. (4) Charge ex-
change from Wilets and
Gallaher (Ref. 2).
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A. Temkin and E. C. Sullivan, National Aeronautics and Space Administration Technical Note No. D-1702, 1963 (unpublished) .
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a.a- the entire history of x rather than upon its instan-
taneous value at v = &x.

Cross sections were computed using (11), (12),
a,nd (15), and the results are given in Table I. Qr
corresponds to the s-wave contribution to the ioniza-
tion cross section and was computed from

(22)

0.6— 0 where the complete sum was formed by extrapolating
above n =7. Since the zeroth-order problem corresponds
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»o 3. L2'Q(»}g/L3'Q(2z) 7. (1) z=s in the zeroth-order
approximation. (2} z=s in the first-order approximation. (3)
z=ps in the first-order approximation. (4) z=p+I in the first-
order approximation.
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IBM 7094/7040 computer using a 400)&400 point mesh
on the $, r plane. The unitarity requirement

x/2

(21)

0.1—

was conhrmed to a very high degree of accuracy except
for values of v close to —,'m where it was occasionally
violated by as much as 2%. This was due to an ac-
cumulated instability in g which greatly inhibited the
convergence of the excitation probabilities P„~——

I rr„ss(r) I' when computed using Eq. (13). However,
the instability had an insignificant effect on the values
of Irr„ss(&) I' computed from (15) which depends on
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TAnLE L Excitation cross sections in units of (s ass/Ns) calculated
in the zeroth-order approximation.

Energy (keV)
50 100 200 400 800

2
3

5
6
7
QI
ga

1.68
1.22
1.10
1.05
1.03
1.01
0.269
0.665

1.17
0.827
0.741
0.705
0.687
0.676
0.222
0.853

0.718
0.495
0.445
0.412
0.402
0.394
0.133
0.928

0.395
0.269
0.238
0.225
0.219
0.215
0.0718
0.970

0.209
0.141
0.125
0.118
0.114
0.113
0.037
1.03

0.108
0.0725
0.0639
0.0604
0.0587
0.0576
0.0188

&=(Close coupling 1s-2s cross section)/(Nonadiabatic 1s-2s cross
section). See Ref. 5.

»o 4 p'Q(») J/(7'Q(2z) g. (1) z=s in the zeroth-order
approximation. (2) z=s in the first-order approximation. (3)
&=po fn the first-order approximation. (3) g= ps in the first-order
approximation. (4) z= p+q in the first-order approximation.

to the complete expansion in target s states it is clear
that any close coupling calculation which retains only
s states of the target must be an approximation to the
zeroth-order problem. Table I should therefore be useful
in studying the convergence of the close coupling ex-
pansion. Lovell and McElroys have calculated the
is—2s excitation cross section in the 1s/2s close coupling
approximation and the ratio of their results to those
of the nonadiabatic theory form the bottom row of

' S. E. Lovell and M. B. McElroy, Proc. Roy. Soc. (London)
A283, 100 (1963).
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Table I. Unfortunately the corresponding 1s/2s/Bs cal-
culation has not been reported.

FIRST-ORDER APPROXIMATION

Here we retain only those terms of (6) with /=0
and 1=1.This gives four coupled equations linking the
amplitudes Zf), 0~ ~ Z],0~ ~, Zy, y~ ), and Z],+y~ ~. However,
the combination Zi, i&'& exp( —iC')+Xi+i '& exp(+iC)
is not coupled to the other functions and since the

hydrogen atom is initially in a 1s state we have

Zi io& exp( —iC)+Zi, ~i&'& exp(+iC) =0. (23)

Taking the linear combination Z&+&&') defined by

Zi, ~i&'& = (1/V2) (2i, i&'& exp( —iC) —2i, i&'& exp(+oC) ),

(24)

we find that the remaining functions must satisfy the
equations

/1 e&' . 8 '& yi li&t 71 P
I

——+o —+l (r, R)
~
&o o'"=—

~

— &i,o'"+——&i,bio&,
&2e&r' 8t

'
i '

v3 &R
' ~BR

l1 8' . 8 1 po (2o2t' —p') &, vi (&~I o p&~+i —+V (r—, R) ———
~
&i,o"' =—

I

—
~
&o,o+ ohio

—~i,yi"',
(2 ar' ar ' r' 5 R' J

' ~3 IRi

18 8 1 y2(2p —A'I yy p p&~ ()+—i +V(r, R) ———
~ ~

&igi'i& =——&o,o+ovo —,&i,ou&.
to 5 ( Ro ] %BR R

(25)

TABLE II. Cross sections for excitation of the X=2 level of
the atomic hydrogen by protons calculated in the Qrst-order
approximation.

Energy
(kev) 1$-2$

2oX~/(~so~)
1$-2P0 1$-2PP1

10
20
25
50

100
200
400
800

6.6
5.9
4.9
2.4
1.07
0.50
0.24
0.114

2.0

5.1
5.7
5.1
3.8
2.5
1.55

3.7
5.0
5.2
4.5
3.3
1.83
0.97
0.46

Since Eq. (25) retains all target P states it accounts
for the entire long-range polarizability of the hydrogen
atom. Again, any close coupling calculation which re-
tains only 8 and I' states of the target must form an
approximation to (25). The first-order approximation
should provide an accurate representation of the exact
wave function at energies where coupling with rear-
rangement states is unimportant. As illustrated in Fig. 1
this circumstance should hold at energies slightly in
excess of 100 keV.

Equation (25) was solved ni&merically by a method
similar to that described above for the zeroth-order
problem and the results are shown in Figs. 1 to 4,
and in Table II. That the experiinental. cross sections
of Fig. 2 lie between those of the noniadiabatic and
close-coupling calculations is consistent with the ob-
servation that the two theories take account of quite
different effects. The nonadiabatic calculation takes
full account of coupling with higher bound states and
ionization states of the target but completely neglects
coupling with rearrangement states while the close-
coupling calculation does precisely the opposite. More-
over, at low energies, charge exchange removes a sub-
stantial portion of the available probability so that
the nonadiabatic cross sections may be expected to be
too large.

The similarity of Figs. 3 and 4 shows that the e'
law holds fairly well over the entire energy range.

ACKNOWLEDGMENTS

%e would like to thank Dr. A. Temkin for many
helpful and stimulating discussions. The major part
of this work was performed while one of us (I.M.C.)
held a Resident Research Associateship of the National
Academy of Sciences—Na, tional Research Council.


