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High-temperature expansions of the free energy of Ising ferro- and antiferromagnets on the square,
simple cubic, and body-centered cubic lattices have been derived directly from the corresponding low-
temperature expansions using a generalization of the technique proposed by Domb. These lattices, being
loose-packed, can be divided into two identical sublattices, a and P, such that every a site has only P sites
as nearest neighbors. The high-temperature expansions treat the 6nite magnetic6elds and magnetic moments
on the n and P sites as independent quantities. With these series, which extend to eleventh order in the
appropriate energies divided by kT, the high-temperature expansions of the magnetization and the loga-
rithmic derivative of the staggered susceptibility have been developed. Pads approximants to these series
are used to obtain the critical temperature and the magnetization at the critical temperature as a function
of applied magnetic 6eld. These are used to determine the order-disorder critical temperature of nearest-
neighbor interaction binary alloys as a function of composition. The results are in good agreement with the
observed values for P-brass at constant pressure. When the experimental values are corrected for the varia-
tion of lattice parameter with composition, the agreement is quite poor. It is concluded that a single volume-
dependent order-disorder interaction energy is insufhcient to describe the transition over the range of
compositions in which it is observed.

I. INTRODUCTION

T is well known that the approximate solutions for
.. the thermodynamic properties of binary alloys which
show order-disorder transitions tend to disagree with
experimentally determined parameters in at least one
of two systematic manners. The simplest approxima-
tion, due to Bragg and Williams, ' focuses attention on
the long-range order only and, consequently, does not
predict the observed specific heat associated with the
breakdown of short-range order above the critical tem-
perature, T,. Theories which take the short-range order
into account, such as the Bethe-Peierls' theory, do
show this high-temperature specific heat. In general,
however, the experiments indicate that the disordering
takes place over a significantly smaller temperature
region, below T„ than is predicted by the theories.
This is particularly true when the transitions are of
higher than first order.

There are two possible types of causes for these
discrepancies. The first is an important failure of the
physical model used in the calculations. It is generally
assumed in the calculations that the dominant inter-
actions which control the thermodynamics of the order-
disorder process are nearest-neighbor interactions, and
that the process can be considered to take place at
constant volume. Various authors have obtained im-
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versity, New Haven, Connecticut.' W. L. Bragg and K. J. Williams, Proc. Roy. Soc. (London)
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proved agreement with experiment by taking into ac-
count longer range interactions, ' the thermal expan-
sion, 4 and the change of the vibrational spectrum with
changes in the state of order. ' On the other hand, it is
possible that the primary source of the disagreement
between theory and experiment is the nature of the
mathematical approximations. Wannier's' comparison
of the approximate solutions, for this model, with the
exact solution in two dimensions of Onsager~ shows
that the mathematical approximations themselves tend
to spread out the temperature range of disordering
below T,. Thus, the large improvements obtained in
the calculated thermodynamic properties by inclusion
of longer range interactions, thermal expansion, and the
changes of the vibrational spectrum may only be the
result of an unjustified fitting of parameters to poor
mathematical approximations. Since the situation has
been described beautifully by Guttman in Sec. 16 of
his review article, this point will not be further labored.
The question then of determining, in a reliable manner,
which are the dominant causes of the discrepancies
between theory and experiment is of paramount im-
portance in the theory of these processes.

This paper describes one of a series of experimental
and theoretical' investigations which should yield more
insight into this problem. It is designed to take advan-
tage of two recent theoretical advances in the study of
the Ising model. The first of these is the development
of methods of deriving and studying the high- and
low temperature expansions of the partition functions.
These developments were put forth in a large number

3 T. S. Chang, Proc. Roy. Soc. (London) A161, 546 (1937).
4 R. Eisenschitz, Proc. Roy. Soc. (London) A168, 546 (1938).
~ P. Wojtowicz and J. G. Kirkwood, J. Chem. Phys. 33, 1299

(1960).
6 G. H. Wannier, Rev. Mod. Phys. 1'7, 50 (1945).
~ L. Onsager, Phys. Rev. 65, 117 (1944).
s L. Guttman, Solid State Phys. 3, 145 (1956).
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of papers, primarily from the King's College, London
group of Domb, Fisher, Sykes and co-workers, and are
partially described in the review article of Domb. ' The
second is a further advance in the study of the expan-
sions, known as the method of Pads approximants,
whose use has been justified and developed primarily
by Baker, " along with the King's College group. As a
result of these advances, it is now possible to locate,
with a reasonably high degree of accuracy, the critical
temperatures associated with various physical models
for the order-disorder process, if it is krone that some
physical property diverges at T, like [1—(T/T, )] 'r,

where p may be unknown, and if a sufficient number
of terms of the appropriate high- or low-temperature
expansion of that property are known. In addition, it
is possible to obtain fairly reliable values of physical
properties which vary slowly with temperature using
the Pade approxirnants to the appropriate series ex-

paiisions.
A particularly convenient. parameter for study by

these techniques is the composition dependence of the
order-disorder critical temperature. As is shown below,
calculation of this parameter simply involves the deter-
mination of the variation of the Ising antiferromagnet
T, with applied magnetic field, and the value of the
magnetization at this T,. The results of the first part
of this program, for the square, simple cubic, and bcc
lattices, have been published previously. "In this paper,
those results and their calculations are discussed in
more detail, and the results of the second portion of
the program are presented. Finally, the implications
of the results of the calculations are discussed.

II. THE PHYSICAL MODEL AND ITS RELATION
TO THE ISING MODEL

The relationship between the Ising model of anti-
ferromagnetism and the binary alloy problem has been
presented by a number of authors. " In this section we
present definitions and relations which will be needed
later.

We consider a system with E atoms and lattice sites,
E~ atoms of type A and S~ of type 8, where

Ng+Nii =N. (2 1)

V= Vgs --', (Vgg+Vsii) (2.3)

C. Domb, Advan. Phys. 9, 149 (1960).
'0 G. A. Baker, Jr., Phys. Rev. 124, 768 (1961)."A. Bienenstock, J. Appl. Phys. N, 1459 (1966).
"See, e.g. , Kerson Huang, Statistical Mechanics (John Wiley

k Sons, Inc. , New York, 1963), Ch. 16.

The lattice is taken to be loose-packed, so that it can
be split into identical sublattices, or and P, such that
every nearest neighbor of a site on the n sublattice is
on the P sublattice. The energy of any configuration
is then given by

E=Nycti V+Ng V'+ ', (sN Viiii) ) (2—.2)
where

V'= s [&(V~~ —Vsa) 7 (2.4)

Here, Ã~~, S~~, and Ã~~ are the number of A-A,
8-8, and A-8 nearest-neighbor pairs, respectively, and

U~~, U~~, and U~~ are the associated pairwise inter-
action energies.

Equation (2.2) yields the energy of any configura-
tion as a linear combination of the three variables
lV~~, E~, and E. Since E is the same for all configura-
tions, we may normalize the energy to eliminate the
third term of Eq. (2.2) .

The conversion to the Ising model is then performed
by introduction of the variable cT; where

&i= +1 for an A atom on site i,

for a 0 atom on site i. (2.5)

In addition, we chose to work with an ensemble in
which all possible values of A~ and E~ consistent with
a fixed S are allowed. In this case, the partition func-
tion is given by

Z= g ~ ~ ~ P exp[( J/kT) go;o.,—( mH/kT) Qo,].

J=-,'U. (2.7)

H is determined by the condition

M/m= —(kT/m) (8 lnZ/cjB) = go;=2N~ LV, (2.8)—
where M is the expectation value of the magnetization
and m is the magnetic moment per spin.

The justification for the use of such an ensemble is,
as usual, that only configurations with the desired
value of M contribute appreciably to the partition
function in the thermodynamic limit. Since, however,
we are dealing with a critical phenomenon, this should
be proved explicitly.

If the fluctuations are to be small, then we expect
((M') —(M)')/(M)' to be of the order 1/N. It is
easily shown that

(M') —(M )'= kTxr, —(2 9)

where pz is the isothermal susceptibility of the Ising
antiferromagnetic system. Thus, the Quctuations will

be small if x& remains finite at T,. The work of Sykes
and Fisher" indicates that this is the case at H=O.
They find that Bxr/BT= ~ at T„but that x itself
remains finite. This work is based on studies of finite
numbers of terms of the high-temperature series
expansions of the partition function. Similarly, Ziman's"

"M. F. Sykes and M. E. Fisher, Physica 28, 919 (1962); 28,
939 (1962)."J.M. Ziman, Proc. Phys. Soc. A64, 1108 (1951).

(2 6)

Here, the angular brackets (s, j) indicate that the
summation is over nearest-neighbor sites, and
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Bethe —Peierls analysis of the Ising system indicates
that yr remains finite at T, ()O'K) for finite H. On
the basis of these studies, we will assume that xz is
finite at T„so that Eq. (2.8) does correctly yield the
composition and that spin configurations correspond-
ing to other compositions make a negligible contribu-
tion to the partition function.

III. ISING ANTIFERROMAGNET IN A MAGNETIC
FIELD

As indicated above, the calculation consists of two
parts. The results of the first part, the calculation of
the magnetic Geld dependence of T„have been pre-
sented in an extended abstract elsewhere. " Since the
methods of obtaining the results and their accuracies
were not described in sufhcient detail, we present some
necessary additions here.

To determine the critical temperature with a high
degree of accuracy with the Pade approximants it is
valuable to study a series expansion of a physical

parameter which diverges at the critical temperature
like L1—(x/x, )] & where x is the power series variable,
x, is its value at the critical temperature, and y&1.
For the reasons presented by Rushbrooke and Woad, "
we chose the staggered susceptibility and assumed that
these reasons remained valid for the Ising antiferro-
magnet in finite H.

To obtain the staggered susceptibility, it is necessary
to generalize the Hamiltonian from that which led to
Eq. (2.6) to one of the form

3t'. = —jQ ~,a; Hm Q—(r, Hpmp Q 0—;. (3.1)
i on p

Our procedure then is to derive a high-temperature
expansion for the Helmholtz free energy per spin on
the square, simple cubic, and bcc lattices with the
Hamiltonian of Eq. (3.1), to obtain a staggered sus-
ceptibility from this free energy, and to use the Pade
approximants to determine the locations of the singu-
larities. "

Our task is considerably simplified, however, because
Sykes, Essam, and Gaunt'" Lhereafter denoted as
(SEG)] have recently presented an elegant method
for obtaining the low-temperature expansions of the
free energy for the Hamiltonian. In this paper the
low-temperature expansions obtained from their work
are used to derive the high-temperature expansions.
The resulting high-temperature expansions are more
generally applicable than the low-temperature expan-
sions from which they were obtained. To make this
clear, the nature of the low-temperature expansions
must be examined.

"G. S. Rushbrooke and P. J. Wood, Mol. Phys. 6, 409 (1963)."C.Domb and M. F. Sykes, J. Math. Phys. 2, 63 (1961).
"M. F. Sykes, J. W. Kssam, and D. S. Gaunt, J.Math. Phys.

6, 283 (1965).

p=exp( —2m H /kT),

v= exp( —2nzpHp/k T),

si = exp ( —4 J/k T) .

(3 2)

(3.3)

(3.4)

For antiferromagnetic coupling, a spatially constant
magnetic field (H =H~), and m =ms, the problem is
a bit more complicated. There exists a critical Geld,
H„such that H(H, implies an antiferromagnetic
ground state, and H&H, implies a ground state in
which all the spins are aligned parallel to the magnetic
Geld. This critical field is easily shown to be given by

H, = —y J/m, (3 5)

where p is the number of nearest neighbors of any
lattice point.

The existence of these two unique ground states im-

plies the existence of two forms for the low-temperature
expansion. For H(H„ the expansion is in terms of
spins overturned from the antiferromagnetic ground
state, while for H&IX„ the expansion is in terms of
spins overturned from the parallel spin ground state.

Finally, there is the case in which the magnetic Geld

is staggered. That is, the sign of the magnetic field is,
say, positive on o. sites and negative on P sites. In this
case, there is a unique antiferromagnetic ground state
for all values of H, and J(0. For J&0, the ferromag-
netic ground state remains for H(H„while an antipar-
allel arrangement comprises the ground state for H& H, .

As long as H(H„ the ground states are determined
by the sign of J. Thus, for arbitrary H 's and Hp's,
whose magnitude is less than H„we need not know
the magnjtude or sign of H and Hp to determine the
ground state and the form of the low-temperature
expansion. Moreover, the ferro- and antiferromagnetic
problems can be brought into complete equivalence
by changing the spin variable on one sublattice. That
is, for J(0, we can set

&a = Oa

(3.6)

The Hamiltonian, expressed in terms of o- ', 0-p', and
J' is completely equivalent to the ferromagnetic Hamil-
tonian expressed in terms of 0-, O-p, and J.

As a result of this equivalence, (SEG) derive a
general low-temperature expansion for the Ising spin

A. The Low-Temperature Expansions

The nature of the low-temperature expansions of
(SEG) is readily visualized. Consider the Hamiltonian
of Eq. (3.1).For J)0, m = ms, and H =Hs, the cou-

pling is ferromagnetic and the ground state is one in
which all the spins are aligned parallel to the magnetic
Geld. Excited states of the system can be grouped in
terms of the number of overturned spins, leading to a
low-temperature expansion in powers of the variables
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system for the general case of H WHp/0. It is under-
stood that when H, Hp, and J have the appropriate
signs, the corresponding magnetic 6elds are less than
H, . Thus, in establishing a relationship with this ex-
pansion, we may consider the case in which J, H, and
Hp are all positive. It is convenient to work with a
system containing N spins per sublattice, and to write
Eq. (3.1) as

temperature expansion to a given order is sufFicient
for generating the high-temperature expansion to the
same order. To obtain the &z's, we differentiate Eq.
(3.11) e times with respect to I, and to evaluate the
result at I= i. We obtain

X=Ep+X',

where the ground-state energy is

E0= —JNs —XH„m —XHpmp.

The free energy per spin can then be written as

(3 7)

(3.8)

Similarly, from Eq. (3.13),

&"»A/&I"!.=r=4 (jr, v)/t (1+jr) (1+v)$". (3.17)

Combining Eqs. (3.14), (3.16), and (3.17), we get

where

Ii= Ep/21V (kT/2—) lnA, (3 9)
n

g. . .0 IJ l gyp ps 4+Jys
i=1 j=0

(3.11)

with

j,L= I,j' ~ (3.12)

The f;, ,(I) can be calculated directly from the gener-
ating relations presented by (SEG) to orders which
are determined, for each structure, by the completeness
of the enumeration of diagrams. We have calculated
the f, ;; to order 5 in J using data in (SEG). Sykes
later supplied us with the f;;,; to order 6.

B. The High-Temperature Expansions

For certain applications of these expansions, which
will be discussed below, it is convenient to work with
high-temperature, rather than low-temperature, expan-
sions of lnA. . Sykes has shown, " in analogy with the
case H =Hp, " that the high-temperature expansion
has the general form

»&=&-' ln Q exp( —SC'/kT). (3.10)
configurations

Then lnA. de6ned by Eq. (3.10) is almost equivalent
to that used in Sec. 3 of (SEG). The low-temperature
expansion of ink then takes the form

H1+j ) (1+v)3"

d"fi j,j-
p& Dye

~=0 dQ
(3.18)

Equation (3.18) should be viewed with extreme
caution. We are equating power series which are valid
for different values of T. It is highly likely that there
are points of nonanalyticity of the functions which
these power series represent. Nevertheless, physically,
there is one situation in which we expect the regions
to overlap. Let H and Hp diBer by in6nitesmal quanti-
ties and mH &)kT, where H &0. Then, for very small
J (i.e., I 1) the low-temperature expansion around
the ferromagnetically ordered ground state should be
valid for both positive and negative J. In this case,
both p, and y are small quantities. Under the same
circumstances, the high-temperature expansion of Eq.
(3.13) owes its convergence to the small value of
(I—1). In this case, the denominator of the left-hand
side of Eq. (3.18) can be expanded by means of the
binomial theorem to yield

I—ml f—n'l
. .n(+i jvj++n i+jvn j) ! !!

—
! +0v—i-

i=1 j=pp 0 i 0 k ~ )k ~ i

" (I—1)" A(j, v)
lnA= ln(1+ji) (1+v)+Q

X! 1+ji 1+v

(3.13)

In this expression, &(jr, v) has the general form

Here,

n,g.
Q ji' 'v' " " . (3.19)

dQ

(—I) (—~—1) ~ ~ ~ (—~—1+1)
!l j 1!

(3.20)

y„—Q Q g. . .'k(~i jvj+~x i jvk j—) (3—]4—)—
i=1 j=0

where the syxnxnetry of the problem implies that

(3.15)

Since the pq have this form, a knowledge of the low-

'8 M. F. Sykes (private communication).
'0 C. Domb, Proc. Roy. Soc. (London) A199, 199 (1949).

The coeKcients a;;,;" have been determined by
matching powers of p, and y on the two sides of Eq.
(3.19). The coeflicients so obtained are tabulated in
Appendix A. It should be noted that although there
are an infinite number of equations resulting from
Eq. (3.19), there are only N(jr+3)/2 variables a, j,j".
Of these variables, only slightly more than one-half
are independent, as a result of Eq. (3.15). These
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coefficients are determined by a knowledge of the
(d"f;;,;/dzz") evaluated at zz= 1, for values z&N.

For Eqs. (3.13) and (3.14) to be correct forms for
the high-temperature expansions, the remainder of the
equations associated with Eq. (3.19) must be satisfied
as well. Since we know the low-temperature expansions
to some finite order, i=zzz, the validity of Eq. (3.13)
can only be checked to that order. The checks have
always indicated that Eq. (3.19) is satisfied. Thus, the
high-temperature expansions are determined and cor-
rect to order ns.

It has been claimed above that the high-temperature
expansions are of more general validity than the low-
temperature expansions from which they were derived.
This statement appears to contradict the fact that
they were derived from a low-temperature expansion
in which the magnetic field was strong (zzzH))kT)
and of a form which reinforced the tendency to order
in a ground state determined by the sign of J. The
reason for the generality is as follows. The high-
temperature expansion owes its convergence entirely
to the fact that mH, nzHp and J are very much less
than kT. In its final form, i.e., in powers of zzzH /k T,
zzzHp/kT, an'd J/kT, it is purely a function of the
geometry of the lattice. There is no difference in the
form of the series for, say, J(0 or J&0 until explicit
values of J are used. Similarly, for suKciently large T,
the magnitude or form (staggered or uniform) of the
magnetic field does not change the coefficients of the
series. This is because the high-temperature expansion
is strictly an expansion in interaction energies divided
by kT. In contrast to this the low-temperature expan-
sion depends on the energy ordering of the states.

C. Determination of the Magnetic Field Dependences
of the Critical Temperatures

e= exp( —2zNH/k T),

q = exp( —2mk/k T),

(3.21)

(3.22)

and

(3.23)

(3.24)

Here, H represents a uniform magnetic field, while h

represents the staggered field. The susceptibility per

It is implicitly assumed in this work that the transi-
tion from an ordered to disordered state characteristic
of the zero-field case exists for finite uo, iform magnetic
fields less than B„and that the staggered susceptibility,
xz„diverges at T, with a form [1—(T,/T)] & for
T& T,. In this case, the techniques of Baker" can be
used directly to determine the value of T,.

To obtain the staggered susceptibility, we write

spin is then obtained using the relation

xi, ——kT(8'in'/Bjz') ~i 0

4m' ( Olney ()'lnA

kTI. Biz 8'
4ns' 2e

k T (1+&)'

where
(3.25)

(3.26)

In the form of Eq. (3.25), xi, cannot be subjected
easily to Pade analysis. This is because of the existence
of the two independent variables I and e. Hence, two
means were used to re-express the series in terms of
one variable. In type-I series, the variable H was
expressed as

H= cJ/zzz (3.27)

and the series was constructed in powers of the variable

x= J/kT, (3.28)

for constant values of c. In type-II series, e was held
constant and the series variable was (I—1). Pade
approximants, [zz, n$, zz= 1, to 5, as well as [5, 4) and

[4, 5j, in the notation of Baker, "were fitted to both
types of series expansions of d lnxq/dx. The critical
temperatures so obtained for H= 0, T,(0), showed good
convergence to those obtained by Baker. '

The tendency of T,(H) to go to zero for increasing
H leads to a basic problem associated with the use of
high-temperature expansions for the solution of this
problem. The high-temperature expansion is a power
series in the variables x or I—1. As H increases, the
susceptibility singularity moves towards larger values
of x and I—1. Thus, we may expect a finite number
of terms in the small x or (zz —1) expansions to contain
a decreasing amount of information about the position
of the singularity, with increasing II. As a result, the
successive approximants show a decreasing rate of con-
vergence with increasing II.

For some reason which is unknown to us, the x
expansion shows better convergence for the square and
bcc lattices, while the (I—1) expansion is better for
the simple cubic. For each of the lattices, there is a
value of H/H, beyond which no convergence is ob-
served. For larger values of B, there is either no con-
vergence, or there are no singularities in the expected
region. In all cases, T,(H) has been taken as the
a~erage of the values obtained froin the [5, 5) and

[5, 4] approximants, since these might form upper
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(H/H, I
&0.7

&0.9

square and simple cubic

body-centered cubic. (3.30)

D. Calculation of the Magnetizations at the Critical
Temperatures

As indicated in Eq. (2.8), the deviation from AB
type stoichometry is obtained from a knowledge of
the magnetization. Thus, it was necessary to calculate
the magnetization per spin at the critical temperature
associated with each value of II, with k=0. Using
Eq. (3.9) and setting m =ms ——1, we have

or
m= —(a~/aH), ,~p

M= 1+(k T/2) (r) lnA/r)H) r, s=p. (3.31)

Substituting Eqs. (3.13), (3.14), and (3.21) into
Eq. (3.31) and performing the required differentia-
tion yields the expression

(1—e) (I —1)" " [ze'+ (2X—1)e'" ']
(1+e) ), )!;=,' (1+e)'"

2ye(es+esx —i)
t,
'3 32)

(1+e)sx+1

where

and lower bounds to the true T,(H).' As discussed
previously, "over the entire region in which the results
are judged to be fairly reliable, they are well fit by
expressions of the form

T,(H) /T, (0) = [1—(H/H, )']& (3.29)

with $= 0.87 and 0.36 for the two- and three-dimensional
lattices, respectively. The ranges of reliability are sum-
marized by

In this portion of the calculation, the convergence
of successive approximants to the final value was ex-
tremely rapid. On the simple cubic and square lattices,
however, it was possible to obtain values only for
H/H, (0.40 and 0.55, respectively. This limitation was
imposed by the size of a number which our computer
could accorrimodate. The nonlinear behavior of M for
the square lattice is not understood. Attempts were
made to determine the sensitivity of this calculation
to the estimated uncertainties in T,(H). This wa, s
done by keeping the ratio of the magnetic field to the
ordering energy censtant, and varying T, in calcula-
tions of the magnetization. In particular, for each value
of II, the magnetization was evaluated for the individ-
ual T,'s obtained from the [5, 5] and [5, 4) approxi-
mants. The resulting 3f's differed by approximately
0.03%%u~ of their average at H/H, =0.2. This difference
increased smoothly to 0.2%%ue at H/H, =0.7. These un-
certainties are too small to show on Fig. i. Thus it is
believed that the major uncertainties in the work
presented below come from the uncertainties in the
calculation of T, versus H.

IV. T, VERSUS COMPOSITION

A. Numerical Results

Using Eq. (2.8), the magnetization versus field rela-
tions can be converted to composition versus H. These
can be combined with the calculation of T, versus H to
yield T, versus composition, c. The results are presented
in Fig. 2. The error bars indicate the uncertainty in

0.5

04—

. . .xt"g =~Cg
j=o

(3.33)

As in the efforts to locate T„ it is necessary to
evaluate a physical property of the system at T, with
a Gnite number of terms of the high-temperature series
expansion. As before, Pads approximants have been
used to continue the series into the region of interest.
Again there is the difhculty of having the two inde-
pendent variables I and e. In this calculation, fixed
ratios of H to T, defined by the value of T, for given
H, were used. This choice makes e a constant and
implies that the right-hand side of Eq. (332) is a
power series in the variable (I—1) . Pade approximants
of the form [e, n], as well as [5, 4] and [4, 5], to the
magnetization of Eq. (3.32) were constructed and
evaluated at the values (I—1) corresponding to the
critical temperature for each~value of H. The results
are shown in Fig. 1.
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0.1—
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~ X

I
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0
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~ BCC
x SQUARE

SIMPLE CUBIC

'P G. A. Baker, Advan. Theoret. Phys. 1, 1 (1965).
Fro. 1. Magnetization per spin at T, as a function of applied

magnetic field, H. Here, te =my =1.
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T, (c)/T, (0.5) obtained from the difference in T,'s
obtained from the [5, 5j and [5, 4] approximants.
This uncertainty is 2.3'g/o at c=0.30 and reduces
smoothly to 0.13% at c=0.41 and 0.06% at c=0.47.
In order to describe the results for the bcc lattice
with an analytic form, we have fit them to an expres-
sion of the type

where
T.(3)/T. (0) = (1—p5') ', (4 1)

(4.2)

The values obtained from a least-squares fit to
ln[T, (3)/T, (0)g are p=9.007, and q=0.739. This ex-
pression fits the calculated points quite well. It should
be noted, nevertheless, that there is no theoretical
justification for the use of an expression of this form.
In addition, it does not fit the results for the simple
cubic and square lattices. It should be regarded as
nothing more than a convenient means of expressing
the results with a two parameter expression.

1.00
~ &g"

b
X

6

0.90-

T, (C )

T,(.50 )

0.80—

B. Beta-Brass

Sykes and Wilkinson's" measurements of T, versus
composition are presented in Table I. In order to
compare these experimental results with the calcula-
tion presented here, it would be best to know T, for
an alloy containing 50-at.% Zn. Unfortunately, pure
P brass does not exist at this composition. Indeed,
Sykes and Wilkinson indicate that even their sample

TABLE I. Measured and corrected critical temperatures T& of
P brass at various compositions and zero pressure. d T, is our
estimate of the shift in T, which would result if the lattice param-
eter of each sample were equal to that of the 0.490-at.% Zn
sample at its T,.

At.% Zn T;K' T,/742. 8'K AT; K ( T,+AT,) /742. 8'K

0.442
0.45i
0.466
0.470
0.490

727 ~ 7 0.9797
730.7 0 ~ 9837
740.2 0.9965
740. 7 0.9972
742 ~ 2 0.9992

—11.6
9 ~ 6
6.1
50 1
0

0.9640
0.9708
0.9883
0 ~ 9903
0.9992

C. Sykes and H. Wilkinson, J. Inst. Metals 61, 22 3 (1937).

containing 49.0 at.% Zn showed traces of y brass. For
our purposes, however, we shall assume that the com-
position was suKciently close to 49.0 at.% Zn so that
we may use the measured T, of that sample to deter-
mine a T, at 50 at.% Zn of 742.8'K. The resulting
values of T, (comp)/T, (50%) are plotted on Fig. 3.
Figure 3 also shows the curve of Eq. (4.1) with the p
and q values appropriate for the body-centered cubic
lattice. The agreement is remarkably good. One could
improve the agreement considerably by matching the
point at 47 at.% Zn and arguing that the sample of
49 at.% Zn consisted of P brass with less than 49 at.%
Zn and y brass with more than 49 at.% Zn. This entire
agreement is, however, illusory.

The basic assumption of this calculation is that the
ordering energy, V of Eq. (2.5), is independent of com-
position. While there is no direct information indicat-
ing that V is a function of composition, Yoon and
Sienenstock's" measurements indicate a strong volume
dependence of T, ~ This implies that any comparison
between this calcula, tion and experimental measure-
ments must take into account the dependence of lattice
parameter on composition which is indicated in the work
of Seck and Smith. "We now proceed to do this.

Seek and Smith's measurements indicate that, at
29.8'C, the lattice parameter can be approximated
quite well by the expression:

a = (2.8648+0.1869C) A, (4.3)

0.70—
~ BCC

SQUARE
SIMPLE CUBIC

0.60—

0.20
I I

030 0.40
C = ATOMIC FRACTION

050

FIG. 2. Variation of the order-disorder critical temperature
with binary alloy composition for the square, simple cubic, and
body-centered cubic lattices. Error bars show the I-S, 5$ and
I 5, 4g approximant values for T,(c) /T, (0.5), whose average
was used for T,(c)/T, (0.5). The accompanying composition
changes are at most 0.1% at c=0.30.

2& C. Sykes and H. Wilkinson~ J. Inst. Metals 61, 223 (1937).

a= (2.8'/48+0. 1869C) A (4.4)

» D. N. Yoon and A. Bienenstock (to be published)."L.H. Beck and C. S. Smith, J. Inst. Metals 4, 1079 (1952).
'4 E. A. Owen and L. Pickup, Proc. Roy. Soc. (London) A145,

258 (1934)~

where C is the atomic fraction of Zn.
The work of Owen and Pickup" indicates t hat, ex-

cept in the region of T., the thermal expansion coeffi-
cient is independent of composition. Since the bulk of
the actual change of lattice parameter between 29.8 C
and T, occurs over the region in which the thermal
expansion coeKcient is independent of composition,
the small variations of it and T, itself may be neglected.
Thus the lattice parameter at T, is well approximated
by the expression
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1.00

0.99—
Tc (c)
T (.5)

0.98—

0,97—

0.96—

0.95- I i

0.44 045 046 0.47 0.48 0.49 0.50
C= ATOMIC FRACTiON ZINC

FIG. 3. Comparison of the calculated values of the composition
dependence of 2', (solid curve) with experimentally observed
values for P brass at atmospheric pressure (shown as circles).
The crosses indicate our estimates of the critical temperatures at
a 6xed lattice constant corresponding to that of P brass contain-
ing 49 at.% zinc at its critical temperature and atmospheric
pressure.

(4.6)

where Du is the lattice constant at composition C
minus that at C=0.49. That is

0 a= 0.1869C—0.0916. (4 7)

Substitution of Eqs. (4.5) and (4.7) as well as
McManus' value of the compressibility into Eq. (4.6)
yields the expression

(7.20—305.9C+594.4C') 'K,

(1+0.0650C)

The calculated hT, are listed in Table I and the revised

values of T, (comp. )/742. 8'K are shown as the crosses

in Fig. 3. It is seen that this adjustment to constant
interatomic distance completely destroys the agree-

ment between the calculation and the experimental
measurements.

obtained by using the total change in lattice parameter
at one composition.

Yoon and Bienenstock's measurements indicate a
pressure dependence of T, given by

d T,/dP= (—0.078+3.200C) 'K/kbar. (4.5)

McManus" finds a compressibility of 10.5&& 10-'/kbar
for a sample of P brass at T,. He also finds that the
compressibility of P brass varies by less than 3% over
the pure P-brass range of the Cu-Zn phase diagram at
room temperature. Thus, we use his value at T; for all

compositions.
These data can be used to calculate T, for each

composition at the lattice constant of the 49% Zn at
its T,. To each T, must be added

These results leave the following possibilities open:

(1) The corrections applied to convert the results
to constant lattice parameter are inaccurate.

(2) This calculation does not represent the Ising
model to a sufficient degree of accuracy.

(3) A single volume-dependent nearest-neighbor or-
dering energy is insufficient to describe the order-
disorder transformation of P brass over the composition
range in which it is observed.

The first of these possibilities seems highly unlikely.
It is true that it has been necessary to approximate
both the lattice parameters and the compressibilities
of the alloys. Since the compressibility does not vary
by more than 3% over the composition range at room
temperature, it seems doubtful that the variation is
significantly greater than this at T,. Similarly, it is
doubtful that the lattice parameter expression used
is significantly in error. Nevertheless, the picture does
not improve if we assume that there is an error as
large as, say, 15% in the correction to T,. For instance,
if it is assumed that the correction to the data at
C=0.422 should be 15% less than that used, the re-
sulting T,(C)/T, (0.5) is only increased to 0.9663.
This improvement is still quite insufhcient to bring
agreement between theory and experiment. Thus, we
feel that the first possibility is not the cause of the
disagreement.

The second possibility is that the Pade approxi-
mants to the high-temperature series expansions do
not represent adequately the properties of the Ising
model. This possibility is, of course, always open. There
is some indication that this is not the case here. First
of all, the compositions considered here correspond to
rather small departures from the T, associated with
zero-magnetic field. The convergence of the approxi-
mants is quite good for the determination of the T,'s.
The problems associated with the small values of the
critical temperatures appear only at much larger devi-
ations from stoi.chiometry. This, however, only means
that the approxirnant schem. e is consistent. The work
of Huiskamp" indicates that the calculations" of T,
versus 8 for the Ising antiferromagnet, which form
part of the basis of this work, are in good agreement
with experimental measurements on two Ising-like sys-
tems. While there is no analagous data for the mag-
netization at T„ this property should be well repre-
sented by the approximants, since it is a slowly varying
function at T,. Indeed, the convergence of the approxi-
mants is extremely rapid in the T, region of interest.
Thus, although it is not possible for us to evaluate the
order of magnitude of the approximations associated
with the use of the approximants, it appears as if they
are not likely to have caused the disagreement observed.

The third conclusion has already been reached inde-
pendently by Yoon and Bienenstock" on the basis of

"G. M. McManus, Phys. Rev. 129, 2004 (1963). ' ~ J Huisltamp, Ann. Acad. Sci. Fennicae 0, 1g0 (]96d).
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their measurements of the pressure dependence of T,
as a function of concentration. Thus, this. work forms
additional evidence for their conclusion. Since these
authors are preparing a manuscript describing studies
of the cause of the breakdown of the model, we shall
not discuss this matter further.
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APPENDIX A. TABULATION OF THE a, ,q~

This Appendix contains a tabulation (Table II) of the a;,I, of Eq. (3.19) for the body-centered cubic,
simple cubic, and square lattices. Those coeS.cients which can be obtained from the relation a; &"——aI, ," are
not included.

TAsrz II. The a;,& of Eq. (3.19).

1
2
2
2
3
3
3
3
3
4

4

4

5
5
5
5
5
5
5
5
5
5
5
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
7

7
7

1
1
2
1

3
2
1
2

3
2

3
2
1
2
1
3
2
4
3
2
5
4
3

2
1
3
2

3
2
5

3
6

3
1
2
1
3

body-centered cubic

2
12—2—32
24—96—864
4

540
24—744—6528

744
32208—12—8352—41760

0—3360—33600
14880

5 35200—6240—9 42240—37 19040
48

1 26000
21 52320

0—10080—1 20960
1 61280

61 08480—2 62080—286 67520—1024 01280
57600

246 41280
2829 80160—240
-19 26720—904 15440—2825 46240

0—20160—2 82240
il 89440

g. ~X

simple cubic

2
6—2—18
6—42—324
3

225
0—180—1440

288
9144

9—2736—12132
0—360—3600

3240
93600—2160—2 08800—7 50240

36
33660

4 60800
0—360—4320

18000
5 91840—50760—39 78720—131 99760

18000
43 71840

421 35840—180—4 29840—147 61980—426 78720
0
0
0

60480

square

1
2—1—8
0—12—72
2

66
0—12—96

72
1392—6—576—2040

0
0
0

240
5280—480—22800—68640

24
5400

49200
0
0
0

240
7200—3600—1 74240—5 05440
3600

3 56400
24 71760—120—54720—10 68120—26 49120

0
0
0
0
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Txsx.z II. (Cont~mlod)

7
7
7

7
7
7
7
7
7
7
7
7
7

8
8
8
8
8
8
8
8
8
8
8
8
8
8
8

8
8
8
8
8
8
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9

10
10
10
10
10

2

3
2
5

3
6
5
4
3
7
6
5
4
1
2
1
3
2

3
2
5
4
3
6
5
4
3
7
6
5

8
7
6
5

3
2

3
2
5

3
6
5

3
7
6
5

8
7
6
5

9
8
7
6
5
1
2
1
3
2

0

2
0
1
2
0

3
0

2
3
0
0
1
0

0
1
2
0
1
2
0
1
2
3
0
1
2
3
0

2
3

0
0

0
1
0

2
0
1
2
0
1
2
3
0
1
2
3
0
1
2
3

0
1
2
3
4
0
0
1
0
1

body-centered cubic

520 73280—55 23840—5869 18080—20142 66240
44 75520

12429 84960
1 18250 09280—5 84640—6124 60800—1 71364 23360—4 72463 30880

1440
304 31520

33862 04640
2 64217 06080

0—20160—3 22560
64 91520

3407 84640—770 71680—89710 38720—3 05090 15040
1631 34720

4 10668 87680
35 66599 14240—770 71680—4 79630 59200—103 27550 28480

—264 97258 90560
64 91520

1 49506 56000
90 27231 89760

568 92783 62880—10080—5009 35680—ii 87310 29760—201 45875 09760
-488 18827 81440

0
0
0

266 11200
16982 78400—7983 36000—10 77710 05440—36 97805 26080
38073 36960

99 92147 55840
834 65215 94880—44958 41280—239 25476 73600—4483 18586 41920—11029 55964 36480

13629 77280
173 22091 31520

7570 35291 80160
41953 92209 97120—783 82080—36 52474 29120—4350 89665 38240—55651 75667 25120—1 24610 32526 74560

80640
86285 60640

401 37503 61600
13442 44151 57760
68131 10755 58400

0
0
0

798 33600
61689 60000

X

simple cubic

24 34320—5 74560—473 10480—1534 68000
7 71120

1385 44560
11437 97760—1 66320—887 24160—19356 32160—49917 47040

1080
57 68280

4323 03480
29209 49640

0
0
0

1 20960
61 68960—40 21920—3851 36640—12596 77440

153 61920
27162 77760

2 10429 27360—118 54080—43477 86240—7 62879 60000—18 48292 99200
16 93440

17961 35040
7 90246 19520

43 99877 66400—7560—817 68960—1 20851 13600—16 72003 46880—38 21850 04320
0
0
0

1 20960
76 20480—188 69760—22055 84640—74158 15680

1879 71840
3 68199 82080

28 13513 87520—3796 93440—12 99444 24960—205 48613 43360—481 49603 71200
1879 71840

12 91787 48160
433 85689 67040

2159 12235 57120—188 69760—3 68559 07200—300 34478 07360—3221 95541 87520—6849 30498 73920
60480

12263 52960
33 08616 46080

854 41830 56640
3884 78839 79520

0
0
0
0
0

square

0—10080—6 04800—17 94240
50400

46 87200
297 36000—30240—55 74240—764 76960—1726 09920

720
5 99760

222 11280
1132 63920

0
0
0
0
0—10080—8 06400—25 80480

2 82240
303 60960

1921 65120—7 05600—1148 31360—13751 13600—29733 58080
2 82240

891 87840
21864 72960
95138 26560—5040—70 96320—4568 25600—42571 46880—86448 70080

0
0
0
0
0
0
0
0

7 25760
979 77600

6560 87040—67 73760—12091 16160—1 40209 57440—2 98882 48320
101 60640

26998 27200
5 55184 62720

22 29723 41760—29 03040—14761 95840—6 00522 85440—45 50950 65600—86 98654 54080
40320

903 57120
94624 58880

14 84341 28640
54 18763 66080

0
0
0
0
0
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TABLE II. (Continued)

10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11

3
2
5
4
3
6
5

3
7
6
5
4
8
7
6
5
4
9
8
7
6
5

10
9
8
7
6
5
1
2

3
2
4
3
2
5

3
6
5
4
3
7
6
5
4
8
7
6
5

9
8
7
6
5

10
9
8
7

5
11
10
9
8
7
6

0
1
2
0

2
0
1
2
3
0
1
2
3
0

2
3

0
1
2
3

0
1
2
3

5
0
0
1
0

0
1
2
0
1
2
0

2
3
0
1
2
3
0
1
2
3
4
0
1
2
3
4
0
1
2
3
4
5
0

2
3
4
5

body-centered cubic

—64665 21600—104 17704 19200—364 65230 59200
6 50324 50560

1908 08110 08000
15814 42579 58400—16 26210 43200—8640 56325 88800—1 50787 20198 52800—3 62235 73413 88800

12 03092 35200
12445 52843 52000

4 53684 30936 19200
23 21801 29/14 17600—2 49734 01600—6031 37767 68000-4 93840 20954 24000—53 00494 87080 96000—112 71956 15927 80800

10233 21600
903 14517 88800

1 98004 70922 62400
47 24498 09147 90400

208 74361 04667 64800—7 25760—15 57480 96000—13328 29536 19200-8 19071 55832 32000—78 72166 51070 97600—162 42956 92167 32160
0
0
0

1596 67200
1 46893 82400—4 18328 06400—814 765/5 48800—2928 51998 20800

87 01862 40000
29643 84428 54400

2 48688 67339 00800—422 76681 21600—2 42791 12585 72800—41 12133 86174 97600—97 59823 46228 73600
639 37133 56800

6 36084 58636 80000
209 47849 71890 68800

1020 65341 84906 75200—319 62180 09600—6 02231 85082 36800—396 30820 09361 40800—3799 90271 60252 92800—7807 19271 01217 28000
47 61275 90400

2 06263 94874 62400
297 37248 63943 68000

5722 40189 90476 80000
23058 82899 02057 47200—1 43700 48000—22760 54339 32800—86 87518 10631 93600—3627 34833 49931 52000—29013 77101 36361 47200—56677 95163 40083 20000

72 57600
294 62590 08000

4 40134 3004g 89600
468 59532 25726 08000

7953 24819 60594 43200
30519 07817 56439 04000

~~, I
simple cubic

—598 75000—87091 20000—3 04710 33600
15807 05280

36 36493 05600
282 71436 48000—73646 49600—267 81850 36800—4066 88688 00000

-9380 76515 71200
90901 44000

557 7/014 72000
16283 28925 44000
/5914 32472 06400—31026 24000—373 82808 96000

-22264 10323 20000—2 04901 47804 67200—4 16029 97036 16000
2286 14400

/7 36964 48000
10934 52550 84800

2 08464 67950 33600
8 35988 16643 77600—5 44320—1 94539 96800—901 41433 20000—40529 37047 04000—3 33840 16076 54400—6 57327 85764 71040

0
0
0
0
0—1197 50400—2 17945 72800—7 97537 66400

95800 32000
266 61229 05600

2152 86071 61600—9 84348 28800—4062 54429 50400—61627 35192 76800—1 41565 85726 97600
26 20138 75200

16489 12712 83200
4 50371 91386 88000

20 25582 53059 00800—21 61494 72000—22408 67680 12800—ii 23903 97913 02400—94 16911 8610g 28800—185 67757 15812 86400
5 35284 28800

10722 10353 98400
10 67498 22364 41600

168 67434 16157 18400
623 05150 77154 36800—29937 60000—1670 67375 55200—3 88510 49780 92800—123 82078 73474 88000—862 78289 98041 79200—1615 26512 30550 91200

54 43200
32 60204 64000

24693 80782 17600
18 30235 15803 74400

255 12157 13530 17600
896 83292 18173 24800

square

0
0
0

7 25760
1270 08000
9434 88000—326 59200—69818 11200—8 36075 52000—17 90885 37600
1524 09600

4 25839 68000
82 44887 61600

319 80940 99200—1524 09600—6 26621 18400—206 80785 21600—1401 91502 97600—2588 48182 65600
326 59200

2 54197 44000
162 12534 91200

1991 30944 32000
6550 34107 39200—3 62880—12337 92000—19 95204 96000—495 54820 22400—2993 73205 82400—5351 40108 51840

0
0
0
0
0
0
0
0
0
0
0—798 33600—2 12357 37600—27 51065 85600—60 13066 75200

11975 04000
38 59954 56000

754 10818 56000
2910 28598 78400—33530 11200

-140 06805 12000—4244 95209 60000—27228 0635g 27200—49362 583gi 82400
23950 08000

145 95178 75200
7343 11847 80800

7856g 29332 35200
2 42733 59776 51200—3991 68000—45 66481 92000—4364 76636 28800—82306 58147 71200—4 33180 00357 63200—7 42304 37270 52800

36 28800
1 80024 76800

431 04954 81600
16160 75157 31200

1 52080 43735 80800
4 46171 65262 20800


