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Analysis of Nuclear-Quadrupole-Resonance Spectra in
Antiferromagnetic Single Crystals*
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The energy-moment method of Brown and Parker for the analysis of electric-quadrupole magnetic-dipole
nuclear-resonance spectra in single crystals is applied to systems in the antiferromagnetic state. A per-
turbation calculation of the energy shifts produced by an external magnetic field is also given.

I. INTRODUCTION

S EVERAL investigators' ' have reported the obser-
vation of nuclear-quadrupole resonances in single

crystals in the antiferromagnetic state. Analysis of such
resonances can yield information complementary to
and corroborating that obtained from the study of
proton resonances. However, analysis of quadrupolar
resonances generally is considerably more complicated
than the proton analysis. The energy-moment approach
reported by Brown and Parker4 is a useful tool in the
analysis of quadrupolar spectra, and in this communi-
cation we wish to discuss the special implications of
the energy-moment method with regard to antiferro-
magnetic resonance. We also present a perturbation
calculation which explicitly gives the shifts in the ener-
gies produced by an externally applied magnetic field
in terms of the parameters of the zero-applied-field
problem.

II. THE ENERGY-MOMENT METHOD

The Hamiltonian for the interaction of a nucleus of
magnetic-dipole moment p and nuclear-quadrupole
moment tensor Q with a magnetic field H and the
crystalline electric-field gradient tensor VE (in dyadic
form) can be written as'

g)= —p H —-', Q:VE.

In the ryan coordinate system which diagonalizes the
6eld-gradient tensor, —(VE) s

——P,,8;,, and with

(2)

(1) can be written as

@= —
hvL (sine cosP) I,+ (sing sing) I„+(cose) I,j/h

+ (hcs/6) $3Ies—I'+rt(I ' —I ') j/h' (3)
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where I„I„, I„and I2 are angular-momentum opera-
tors, where

(6)

The angles 0 and tt are the polar and azimuthal angles,
respectively, of H in the hays system; I is the nuclear-
spin quantum number; v is the Larmor frequency of p
in the field H; and c3 is the frequency interval between
pure quadrupole transition frequencies with q=0. A
necessary condition for quadrupole interaction to be
present is that I )~1.

Let the (2I+1) eigenvalues in units of frequency of
the Hamiltonian (3) be equal to F„, rt=1, 2, 3, ~ ~ ~,

(2I+1).Also, define the moments of energy

si QF„, ——

s,=gz„s.

The first moment 5& is equal to zero for systems whose
representations are traceless. For our Hamiltonian (3)
this condition is satisfied. The second and third mo-
ments, 52 and 53, can be regarded as experimentally
determinable quantities if sufficient frequency data are
available to construct an energy-level diagram subject
to Si——0. This is possible if each of the (2I+1) levels
is implicated in at least one observed transition, and
if such transitions are properly identified. Brown and
Parker' show that from (3) it follows without approxi-
mation that

Ss =pscs'(1+ sg') +piv'

and

(10)

Ss——paces(1 —rp) +3pscsv'(3 cos'e —1+rtsin'8 cos2$) .

v =tsH/Ih,

cs=3eQQ„/2I(2I —1)h=3e'Qq/2I(2I —1)h, (5)

and q is the field-gradient asymmetry parameter
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Now, taking x, y, and z-components of H=H;+H,
and using (15) gives after soxne xnanipulation

Fio. 1. Orientation of magnetic Gelds
with respect to the principal axes of the
crystalline electric Geld-gradient tensor.

v cos0= v, cos9;+v, cosg„

v' sin'0 cos2& =vP sin'0; cos2&~+v, ' sin'0, cos2$,

(18)

The quantities pi, p2, and p8 are polynomials in I as
follows:

pi =2I(I+1) (2I+1)/3!, ('12)

p2 ——2I(I+1) (2I—1) (2I+1) (2I+3)/3(5!), (13)

pa ——2I(I+1) (2I—3) (2I—1)

X (2I+1) (2I+3) (2I+5)/3(7!) . (14)

III. APPLICATION TO ANTIFERROMAGNETIC
RESONANCE

For single crystals in the antiferromagnetic state,
the magnetic field H at the site of the nucleus is, in
general, the sum of the internal field H; and an exter-
nally applied field H which typically is much smaller
than the internal field. In this section we calculate the
change in moments S2 and Ss when a constant, uni-
form, external field H, is applied to the crystal. (Si
remains zero. )

Let the total field be H and have direction (8, g)
with respect to the principal directions x, y, and s of
the Geld-gradient tensor, as in Fig. l. Similarly, let the
internal field H; have direction (tt;, @;), and let the
applied Geld H, have direction (0„&,), again with
respect to the principal directions x, y, and s of the
Geld-gradient tensor. Furthermore, let the angle 0.,
0~&0,~&x, be the angle between H; and H„as in Fig. 2.
Also define

The result that S2 is independent of the orientation of
H is useful as a check on the frequency assignments,
since it may be expected that only under correct assign-
ments will S2 remain orientation independent. Use of
(10) and (11) allows deterxnination of e'qQ and g, and
study of the angular dependence of S3 allows deter-
mination of the principal directions of the field-gradient
tensor.

Sm(t) S2—(i) =2piv, v, cosa+ piv '. (20)

Use of this result readily establishes e, the angle be-
tween H; and H, . The second term on the right-hand
side will ordinarily be negligible since in most situa-
tions v «v;. Carrying through a similar procedure for
Sq, we find with the aid of (11), (17), (18), and (19)
that

Sq(t) —Sa(i) =3p2caI 2v,v,p cos8; costt, —cosa

+ix sing; sing, cos(P~+P, ) 7

jv 'L3 cos'8 —1+it sin'8, cos2&,j}, (21)

which is the exact result. For v,«v;, the term quadratic
in v, may be neglected. Study of the angular depend-
ence of (21) allows determination of the direction of
the internal field relative to the field-gradient tensor,
and determination of the field-gradient tensor relative
to the crystal.

IV. TEMPERATURE DEPENDENCE IN ZERO
APPLIED FIELD

Variation of the temperature of the crystal below
the Neel point results in a change of the internal field
H;. This phenomenon can be made the basis for an-
other way of using the moment Eqs. (10) and (11).

For H =0, let us denote the ratio of the magnitudes
of the internal field at two temperatures T' and T by r,

Then also
r=H, (T')/H;(T).

v;(T')/v;(T) =r (23)

By using (10) to write down the second moment S2(i)
in the absence of an applied field at the two tempera-

+2v,v, sin8, sing, cos(tp;+Q, ) . (19)

Now, let S2(t) be the value of the second xnoment Sp
in the presence of the total field H=H~+H„and let
Sm(i) be the value of Sm for zero applied field, H=H~+0.
Then we find by using (10) and (17) that

v =p,H/Ih, v, =pH, /Ih, v, =tiH, /Ih. (15)

From Fig. 2 we have that

H2 =H,2+H,2+2H;H, cosa,

and thus, because of (15),

v =vj+v~ +2vel~ cosa. (17)

Fxo. 2. The total magnetic Geld II
as the sum of the internal Geld H; and
the externally applied Geld II .
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tures, we obtain

AF = (& I
—v H. I e). (31)

and Introducing Iz —I,&i—I„, and using (29) gives

cp(1+3') =[r'S&(i, 7) $—2(i, 7')]/p, (r' —1), (25) AF„= („./5 I
X„I') (sin8.+p&A. & '&+A &~&

perturbation in the eigenvectors of the unperturbed
problem:

",&(r) =[S,(i, r') —S,(i, r) jlp, (r2 —1), (24)

where it has been assumed that q and c3 are temperature-
independent in the temperature range considered, and
that the direction of the internal 6eld at the site of the
nucleus also remains unaffected by the temperature
change.

Proceeding in a similar manner with (11),one secures

'( —~') =["' 3( ) — 3(', ') jlp3( '—), ( )

which, however, cannot be used when I= ~3, since in
that case pq ——0. For IW —,', (25) and (26) can be used
to give cg and g, and (24) gives v; as a function of
temperature. The ratio r may be obtained by measur-
ing the ratio of internal 6elds at the proton sites. '
Equations (24) and (25) have recently been used in
our laboratory to good advantage in the analysis of
the chlorine resonance in MnC1~ ~ 4H20.

V. ENERGY SHIFTS INDUCED BY EXTERNAL
FIELD

X (m'
I I+ exp( —ig.) +I exp(ig) I m)

+cos8.++A.' "*A.'"'(m'
I
I. I m)) (32)

AF„=—v (B„sin8.+C„cos8.) / I
X

where

a„=-,'+[A.&-+»*A„&-&(I—m) i&2(I+my1) i&2

(35)

Xexp( —jg ) yA &~ »+A &~~(I+m)i&2(I —my])i/2

Xexp(~g, ) j, (36)

(37)C.=pm
I
A.&-i I2,

For the matrix elements of I+ and I„we have

(m'
I
I+ I m) =5(I&m) '&'(I+m+1) '"8 ', +i, (33)

(m'
I
I, I

m)=5m&. . (34)

Introducing these into (32) we find that

I2
I m) =I(I+1)O'

I m),

I, Im)™Im),
(27)

(28)

We now derive an expression for the energy shifts
AF„, v= 1, 2, 3, ~ ~ ~, (2I+1), produced by the applica-
tion of the external 6eld H, . The energy eigenvalues
of the system in the absence of the external 6eld F„
are here regarded as known quantities. We start with
(3) in a representation for which

I'= Z I
A '"' I'

The coefFicients A „&"& are independent of the magni-
tude or polar direction of the applied field. Therefore
(35) shows that for given azimuth g„ the energy
shifts AF„depend on 0, sinusoidally, a fact which is
well known from experiment.

VI. ENERGY SHIFTS FOR I= 1

with m=I, I—1, ~ ~ ~, I. The eigenvector—s
I I) of

(3) for H=H, are expressible as linear combinations
of Im),

For I= 1 we 6nd that

B„=[A„&"*A&»+A &»*A„&'&)exp(ig, )/v2

I
n)=E„'gA & Im) (29) +complex conjugate, (39)

with the coefFicients A„t & determined from the diago-
nalization procedure, and with E chosen such that

I e) is normalized.
Application of an external field gives rise to an addi-

tional term in the Hamiltonian which, in units of
frequency, is

—p H

= —v [(sin8, cosg, )I,+ (sin8, sing, )I„+(cos8,)I,j/S.

(3o)

c„=
I

A„&» I' —
I

A &» I',

I
E„I2=

I
A„"' I'+

I
A "& I'+

I
A„' » I'

(4o)

17 27 30

The coeKcients A„~ &, e= 1, 2, 3; m= 1, 0, —1, are
found as the cofactors of any given row of the secular
determinant after substitution of the eth unperturbed
eigenvalue F„, according to standard procedure. Tak-
ing the second row for this purpose (since it leads to

In first order, the energy shifts Produced by this dison-Des]e publishin Com an Inc Reading Massachusetts
~ e J. L. Powell and B. Crasemann, QNantlnz Mechanics (Ad-

term are given by the diagonal matrix elements of the 19$$).
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somewhat more symmetrical expressions), we determine that

A &" = —(v, sin0;/v2)
gc3/6

e'&* v, cos0,+c3/6 —F
(42)

A„~-'& = —(v; sin0;/v2)

—v; cos0, +c3/6 F—e '&'

gc3/6

(43)

Now we let

—A„&0) =
—v, co s0~+ ca/6 F„—

gc3/6

qc3/6

v, cos0;+ca/6 F—

and define the dimensionless quantity

Kith these we calculate that

qa =ca/6v j)

W„= (F„/v, ) —q3.

(45)

(46)

8„=2 sin0, ((W„ cos'0; —W„') cos(p, —p, )

+/vPqsa cos(P,+P;)+q' q32Wc so(P, —P;) +q q(ac os' ;0—W ') cos(P, +P;)j}, (47)

C„=—2 sin'0; cos0;(W„+qq3 cos2&,),

(
N„~'=LW '—(3 cos'8 —1)W '+cos'0 j+(q'q3'+q'qa'(cos'0+1 —2W ')+qqa(2W„sin'0 cos2$;) j. (49)

A factor of v~4 common to 8„, C„, and
~

N„~' is omitted since it would just cancel out in (35) .
For spins I&1, corresponding expressions for 8„, C„, and

~

N„~' can be developed. These are, however,
quite cumbersome, and in these cases it is preferable to proceed numerically. Presupposing satisfactory analysis
of the zero-order problem, the coe%cients 8, C„, and

~
N ~' can then be found numerically for given g, for

any spin.


