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range of 3E values for a given G (and vice versa) . The
measured M is a volume average so that local regions
with different values of M and the same G can exist in
contact. Since M-H loops exist over a range of temper-
atures, three or more "phases" are necessary. This
explanation of the stability of hysteretic states i.e., the
existence of a set of states of differing 8 with the same
free energy implies also that the persistent currents
associated with the hysteretic state are stable over a
range of values. According to this point of view, the
persistent current on the surfaces of hollow cylinders of
type-I materials with trapped fields is a manifestation

of this same phenomenon. Finally the critical current
(and the maximum trapped Geld) comes about as a
result of the system reaching the configuration corre-
sponding to the phase boundary, i.e., it is the value at
which 6 begins to increase. This accounts for the single
temperature dependence for t.f. , observed from differ-
ent measurements.
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The ground state of a ferromagnetic system with an antiferromagnetically coupled impurity is cal-
culated exactly. The spin of the host is arbitrary, as is the ratio of impurity-host exchange to host —host
exchange, but the impurity spin is taken to have So ———,. The ground-state energy, wave function, spin
defect, and critical Geld for a metamagnetic transition are computed. Results are compared with the ap-
proximate spin-wave method as employed by Ishii, Kanamori, and Nakamura. lt is shown that the spin-wave
method is ambiguous and can lead to grossly incorrect results if applied in particular ways.

I. INTRODUCTION

r lHE problem of impurity states in magnetic insula-.. tors has received much attention recently. Wolfram
and Callaway' first treated the low-lying eigenstates of
a ferromagnet containing a ferromagnetically coupled
impurity, applying the rigorous methods of Lifshitz.
Recently Ishii, Kanamori, and Nakamura (IKN) s

have discussed the low-lying eigenstates of a ferro-
magnet containing an aetiferromagnetically coupled
impurity, but using an approximate spin-wave analysis.
We give here a rigorous theory of this latter problem
for arbitrary host spin and exchange interactions, but
assuming an impurity spin 50——

~ and concentrating
particularly on the ground-state properties.

The interest in the antiferromagnetically coupled
impurity problem is considerably heightened by its
close relationship to the problem of the ground state
of a pure antiferromagnet. 4 The impurity is found to
have a "spin defect" in the ground state (a departure

~ Supported by the U. S. Office of Naval Research. This paper
is a contribution of the Laboratory for Research on the Structure
of Matter, University of Pennsylvania.

' T. Wolfram and J. Callaway, Phys. Rev. 130, 2207 (1963).
s L M. Liishitz, Usp. Fiz. Nank. 83, 617 (1964) LEnglish

transl. : Soviet Phys. —Usp. 7, 549 (1965).j'H. Ishii, J. Kanamori, and T. Nakamura, Progr. Theoret.
Phys. (Kyoto) 33, 795 (1965).' P. W. Anderson, Phys. Rev. 86, 694 (1952).

from the pure "spin-down" state of the impurity spin
and from the pure "spin-up" state of the host spins).
Furthermore, a sharp transition occurs to the wholly
aligned state as an external 6eld is applied, in direct
analogy to the "metamagnetic transition" in anti-
ferromagnets. ' As we shall show, both of these effects
can be rigorously studied and easily visualized in the
impurity problem.

From the purely theoretical point of view, our theory
is also of interest because it provides a direct test of the
validity of the spin-wave approximation. That method,
as used by Ishii, Kanamori, and Nakamura, is a direct
transcription of the method introduced by Anderson
and commonly applied to the ground state of the anti-
ferromagnet. 4 We shall briefly recapitulate the spin-
wave calculation of IKX in Sec. V to compare its
results with those of the exact calculation. As we shall
see, the method is ambiguous, and differing ways of
applying the theory vary from close agreement to
marked divergence from the rigorous results.

The third, and presumably not the least, reason for
interest in this problem is that the effects here dis-
cussed should be observable in real ferromagnetic
insulators.

5 See for example: I. S. Jacobs and P. E. Lawrence, J. Appl.
Phys. 35, 396 (1964); J. Kanamori, J. Phys. Soc. (Japan) 20,
890 (1958).
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II. FORMULATION The single-spin deviation eigenstates of K are deter-
mined by

(&—Ko) I4&

=vl4&= lo&&ol v ly&++I ~&&~ I vlf&, (6)

where V
I P) ha, s been expanded in the basis

I 0),
recalling that its matrix elements are restricted to the
cluster I.e. t

I E, e) denote the solution of

(7)

Consider a Heisenberg ferromagnet with spins of
magnitude S and nearest-neighbor positive exchange
integral J. The spin at the origin is replaced by an
impurity with So———, and an antiferromagnetic exchange
integral (—$J)

K= PJ S 'S +2)JQSp'Sp,

+Q I &, ~) LVop4o+Vp@47 (8)

where neither m nor e may be equal to zero and (E—Ko)
I
E, e) =

I e).
where 6 is the nearest-neighbor vector, and the sum
over 5 ranges over the s neighbors of the impurity. Then the solution of Eq. (6) is

As the Hamiltonian commutes with g' —= Q„S„',we
can classify the energy eigenstates by their 8* eigen- I

&)= I
+ 0) &0 I

V
I &&+2 I

& &) &~ I V I 0'&

values. The wholly aligned state is the unique state with
maximum 8*=So*,we shall call this state the "vacuum =

I &, 0) LVoo4'o+QVopfp7
state. " Its wave function is trivially known and its
energy is

Z„=—XJs5'+2s(1+$/25) JS'. (2)

The ground state has S'=So—1, diGering from the
vacuum state by a single spin deviation. This char-
acteristic, peculiar to the case of a spin-2 impurity, is
of crucial importance in our analysis.

The Hilbert space of S'=So—1 is spanned by the
local spin deviation states

Multiplying Eq. (8) from the left successively by
&0 I

and by each of the s states &5 I
we obtain (s+1)

equations in the (s+1) variables fp, fp In the .ground
state all Pp are equal, to be denoted by P&. The (s+1)
equations then collapse to 2. The condition that these
equations be consistent is found to be

1+$L(25+$)o+(25—1)$7 '= 2 JsSoGpp(o), (9)

I
e)= (25)—'i'5 —

I vac), n ~0

I
0)= So I

vac). (3)

where
p= (&—&.)/(2 Js5) (10)

These states form a basis in which we consider the
matrix elements of K.

The particular states
I e) which are centered on the

impurity site or on one of its nearest neighbors play a
unique role in the theory. We refer to these x+1 sites
as "the cluster. "

We now let K=Kp+V, defining Kp as having the
same matrix elements as K (i.e., &e I

Kp
I m) =

&e I
K

I m)) providing neither
I 6) nor

I m& is in the
cluster. The matrix elements of BCO inside the cluster are
then defined by imposing spatial translation symmetry.
Thus,

&& I Ko
I m) = t,E.+2sJ575(N, m) 2J Sh(e, m+5), —

(4)

where 6(N, m) is unity if m=m, and zero otherwise.
The matrix elements of V are confined to the cluster,
having values only for Uoo, Uo&, and V».

&m I
V

I
m)= —2s(1+&) JSE(e, 0)h(m, 0)

—(25/$) Jd, (rl, o) 6(m, 8)

+(25+(25)'~'&) Jfh(n, 0)h(m, 8)+A(e, B)4(m, 0) 7.

(5)

= (2JsS+&5)—& . (11)
o—o(k)

In analogy to Eq. (9), p(k) is the (dimensionless)
spin-wave energy of the pure host, in units of 2sJS.
Hence

G .(p) = &m I E, e) = Q &m I k) &k I E, e)

=(2 J51V) 'g . (12)
p —o(k)

Having the energy «as a root of Eq. (9), the ratio
P~/Pp is determined by one of the homogeneous equa-
tions obtained from Eq. (8). One easily 6nds

1—Vpp/(2 JS)—LVpp —sVpp(« —1)7Gpp(«)

Vpp/(2 JS) +sLVop —Vpp(« —1)7Goo(«)

= (2S) '"L«/0+17. (13)

and Gpp(o) denotes the Green's function &0 I
E, 0) .

The Green's function G „(o)—= &m I E, e) is easily
expressed in terms of the spin-wave eigenvalues of 3CO.

Denote the spin-wave state of wave vector k by I k),
and multiply Eq. (7) from the left. by &k I:

&k I
z, ~) =I 2J.S(.—.(k)) 7-~&k

I ~&
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Gtl[s)=(4JS) 'w 'f [e—1+cosh] 'dk

1= 9 I y&= (E, o
I E, o) t v„P,+ sv„P,]s

Finally, the absolute magnitude of Pp ol i/i is determined G«(e) can be calculated analytically:
by combining Eq. (13) with the normalization condi-
tion obtained from Eq. (8):

ps[ (E, a
I
E, o)+ (E, o

[ E, ~)]

x t vpppp+svppfi]pvp4'p+ vs@4]

+sg(E, ~
I
E, ~') fv.,P,+v»y, ]'. (14)

(es—2e)
—'is (21)4JS

« ————', (7++17)= —1.3904, (22)

If we choose $= 1 and 5=-', , we find, from Eq. (9),

Quantities such as (E, m
I E, I) are related to deriva-

tives of the Green's function as follows: -' g'y. ———0.3904. (23)

(E, m [ E, I) = (nl I (E—xp) '(E—xp) '
I s)

= L-(2.~5) ]-x- g-""'"
Le—e(lt)]'

= (2s JS) '(d/de)G „(e).

Then, from Eq. (14)

fp' 0.7570——,
and 6, the spin defect on the impurity spin, is

6= 1—fp'= 0.243.

(24)

The Green's functions G „(e) for three-dimensional
lattices have been tabulated by various authors, "
but most extensively by Mannari and. Kawabata. ~

Having found fp and ifi, the remaining amplitudes

P = (e I P& are found directly from Eq. (8), by multi-

plying from the left by (e I:

where

~t-= (tilt &= (1+)i—) «) AG-p(«)

X = (25) 'i'L«/$+1].

(16)

(17)

Finally various correlation functions can be expressed
directly in terms of the amplitudes f . Of particular
interest is the transverse correlation function

(P I
Ss Sp

I
if') for eNO. In standard fashion we

express S in terms of S+and S

8 I
s-*so*[p&=-:(~f I (5-+ps;) (s,++s;)

I 0&

= l 8 I
s.+s;

I
~t &-+l (p[s;s,+

I p&

The ground-state wave function is explicitly given by
Eq. (16). In Fig. 1, we plot the wave function for a
one-dimensions, l chain with 2S= $= 1; the general
shape is similar for other values of the parameters. It
should be noted that the wave function changes sign
between the impurity and its neighbors, implying I in
accordance with Eq. (19)] that the transverse spin
components are antiparallel. This negative correlation
function is clearly to be expected on the basis of the
antiferromagnetic coupling of impurity to host spins.

In two dimensions, the Green's function can again be
calculated analytically, in terms of complete elliptic
integral. For s=4, /=1, and s=-s, we find 6=0.106
and eo ——~.~~.

In three dimensions we have computed the Green's
function by using the expansion coeKcients given in
Ref. (7) . In Fig. 2 we plot the ground-state energy as a
function of the ratio $ of exchange integrals, for various

= p(25) "VAp.

The nearest-neighbor correlation reduces to

(41 s,*s,*
I 4 &=-,'(2s)'i xp, '

and similarly

« I 5'5'I ~&=-:5 (5+-

(18)

(19)

(20)

0.5--

III. RESULTS FOR ZERO EXTERNAL FIELD

Explicit evaluation of the ground-state solution is
particularly simple for the linear chain. In that case

6 D. Hone, H. Callen, and L. R. Walker, Phys. Rev. 144, 283
(1966).

~ I. Mannari and C, Kawabata, Research Note 15, Department
of Physics, Faculty of Sciences, Okayama Vniversity, 1964
(unpublished) .

-0 5--

FIG. t. Ground-state wave function for linear chain (28=)=1,
H=O).
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values of the host spin. Each curve is almost linear, but
with a slight upward concavity; for large $ they become
straight lines with

0.15

—es~(1+1/2s 5)$, $&&1. (26) 0.10

In Fig. 3 we give the corresponding spin defect of the
impurity. The spin defect increases with increasing $,
tending to the limit

+
N 0

CO
III

&I

0.05
6-+(2zS+1) as $~oo. (27)

IV. EXTERNAL MAGNETIC FIELD) AND THE
METAMAGNETIC TRANSITION

gprrH, = —ep(2 JsS), (28)

where eo is the energy of the ground state in the absence
of the field, as given by Eq. (9) or Fig. 2.

We now consider the eRect of an external magnetic
field, applied along the s direction. Suppose first that
the g factors of the impurity and the host spins are the
same. The only eRect then is to shift the ground-state
energy by gp&H, with no effect on the wave function.
This follows by noting that each state

~
rr) is increased

in energy by gp&B, whence every linear combination of
the states

~
rs) is similarly affected. Or, more formally,

the perturbing potential V of Eq. (5) is independent
of H, whereas the Green's functions G „are altered
merely by e +e+glrr—rH/(2sJS). The consequent in-
crease in the energy of the ground state (relative to the
fully aligned "vacuum" state) eventually raises its
energy above the vacuum. There is then an abrupt
change in the physical ground state, from the state with
S'= So—1 to the fully aligned state So.

The critical 6eld H, for the "metamagnetic transi-
tion" is then

00

$ (~ J/J)

In the more general case, in which the g factors of
impurity and host diRer, the formalism is again easily
generalized. I.et g' be the g factor of the impurity, and

g be that of the host. Then the previously given forma-
lism is altered only by the addition of the term
(g' g)p~H to V—ss and by the replacement of e by
e grrrrH/(2 —Js S) in the argument of the Green's
functions. The energy equation, analogous to Eq.
(9) is

1 k(e' n)—
e' (25+$)e"+(25 —1)$e' —$(25+$) e' —)jr'

= (2JsS)Geo(e'), (29)
where

gp~k)

ri = (g' —g) p~h,

(30)

(31)

FIG. 3. Spin defect oi the impurity spin (simple cubic lattice,
P=O).

h=II/(2JsS). (32)

Oo

Fro. 2. Ground-state energy (simple cubic lattice, 8=0).

In contrast to the case g'= g, the magnetic 6eld now
alters the wave function. If g'&g the field tends to
increase the spin defect on the impurity. These eRects
are shown in Fig. 4 in which we plot the spin defect on
the impurity as a function of applied 6eld for various
values of g'/g; we have again taken a simple cubic
array with /=25=1. The effect is also evident in Fig.
5, in which we plot the energy of the nominal ground
state as a function of magnetic 6eld.

The critical field for the metamagnetic transition is
readily obtained as the zero of the energy curve of Fig.
5. Or, stated equivalently, it is obtained by solving
Eq. (29) for h, after taking e'= —gprrh (or e=0).
Figure 6 illustrates the dependence of critical 6eld on
g'/g, for the case of 25= )= 1.

Although we have inferred the ground state by
comparing the energy of the vacuum state and the
ground state of S'——So—1, it must be recalled that under
special circumstances (such as g'»g and $»1), other
states may compete and must be considered also,
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most severe when the impurity spin has Ss———,'.) Thus
the transformation (33) is predicated on the ground
state being very close to the Weel state.

The second step of the spin-wave approximation con-
sists of seeking operators c, of the form

cs= Io'ao + g In'an, (34)
n~p

which satisfy the commutation relation

LC, K]=s c ~

0.2

O. I

0.00

9F'eh

FIG. 4. Spin defect of impurity, as a function of external Geld
(simple cubic, 2S=

&
= 1) .

V. THE SPIN-WAVE APPROXIMATION

For purposes of comparison we brieQy recapitulate
the spin-wave method of IKN. The procedure is as
follows. One first introduces the local boson operators
by the usual transformation (but note the inversion of
definition for the impurity site):

a„+= (2S) 't'S„,

Of course the adjoint operator c~~ then creates an
excitation of energy e„ in the pure ferromagnet or anti-
ferromagnet these excitations are spin waves, but in
the impurity problem the excitations may be localized
modes (in which case q loses its significance as a wave
vector).

Making the transformation (33) in the Hamiltonian
and retaining only quadratic terms, one finds' that the
I'„& are uniquely determined by Eq. (35) .

One particular mode so found (which IKN designate
the "ss mode") has nega, tive energy. The interpretation

=- Sp+p p
e=-0.

O
All

0

g'/g * I.5 g'/g ~ 1

/ r
/ r

/ g'/g ~0.7

/
/

/ r

/
//, r r

I I

2
gott, h

FIG. 5. Ground-state energy as a function of external 6eld
(simple cubic, 2S=(=1).

This step is, of course, the fateful one in the spin-wave
procedure. The boson operator a ~ has the correct
matrix element between the spin-up state and the single
spin deviation state at site N(u/0), whereas all other
matrix elements are incorrect. At the impurity site,
Gpt has the correct matrix element between the spin-
down state and the state of a single Qip up; again all
other matrix elements are incorrect, even to the extent
of allowing an inhnite number of Aips up at the impurity
site. (These erroneous matrix elements are, of course,

00

FIG. 6. Critical Geld for "metamagnetic" transition (simple
cubic, 2S=)=1}.

of this result is that the "creation operator" c, t is
actually a destruction operator. Whereas for every other
mode the creation operator decreases S' by one unit
Lsee Eqs. (33) and (34)], for this unique mode the
creation operator increases S'. If the ground state has
S = Sp—1, then the sp mode has S'= Sp, whereas all other
modes created by the c, ~ have S'=Sp—2. Consequently
the Sp mode of IKN is identical with the eacuum state

The energy of the sp mode is the energy of the
vacuum state relative to the ground state. If e. is the
dimensionless energy of the sp mode, and e„ is the
dimensionless energy of the vacuum state )see Eq.
(2)] then the ground-state energy es„e is

&ground =
Gent 6S ~ (36)

Similarly the ground-state wave function follows
immediately:

~

ground) = c,
~
vac), (3&)

where c, is now the destructioe operator of the sp mode.
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Although the above procedure is simple and direct,
the results are distressing. For example the ground-
state energy for a linear chain with 2 S=$= 1 is p, —0.67.
For a three-dimensional simple cubic array with
2S=$=1, the ground-state energy is p„—0.905. In
each of these cases the Neel state has energy e,—1.00.
Hence the ground-state energy is predicted to be higher
than the Neel state)

The wave function obtained in this fashion is simi-
larly poor. In fact it shows no nodes, as contrasted with
the sign inversion of the true wave function as shown
in Fig. 1. Consequently the transverse components of
the nearest-neighbor spins are parallel to the impurity
spin, rather than antiparallel. It is this incorrect
correlation which raises the ground-state energy above
the Neel energy.

Despite the poor results above, there is an alternative
way to infer the ground state from the spin-wave
approximation. Inverting Eq. (34) and expressing the
Hamiltonian in terms of the c, and c, ~ operators, one
finds

For the simple cubic array with 2S=)=1,

op= —1.084 (spin-wave approx. ), (44)

whereas the rigorous result is

ep ———1.1015. (45)

6=0.333

6=0.112

6= 0.062

(linear chain, spin-wave approx. ),

(square array, spin-wave approx. ),

(cubic array, spin-wave approx. ), (46)

whereas the rigorous results are

Thus this way of applying the spin-wave approximation
gives results which are quite accurate (within a few

percent) .
Comparable accuracy is obtained for the spin defects

of the impurity spin. For 25=)=1 the spin-wave

approximation gives

(2sJS) 'K= pg,.„„q+goop, tp, (3g)

where, for 2S=]=1,

pground= & 1+2D Pp ]
—1—os gP *P

+o j. (39)

d =0.243

6=0.106

6=0.062

(linear chain, exact),

(square array, exact),

(cubic array, exact). (47)

n, 5

where

n, 6

=
[ Ao i'L(o.—1) (dGoo/do. )+Gooj/(2&S),

(40)

~
Ao ~'=L2Gpp'+(2JsS) —

'(dGpp/do, )] '. (41)

Numerical calculation gives the ground-state energy
relative to the vacuum-state energy for the linear
chain with 2S=(= 1,

The summation can be simplified in terms of Green's
functions and their derivatives. Using the values of
F„' found by IKN, '

Q &~"&~+op=
~

&o ~' Q Gno*R+o, o

Although the error is 30% for the linear chain it is

negligible in three dimensions.
Comparison of the two methods of applying the

spin-wave approximation indicates that this approxi-
mation is more reliable for the ground state than for the
excited states. The so mode is particularly poorly given.
In the 6rst method of applying the approximation we

inferred properties of the ground state from the known

properties of the so mode, thereby transferring the
calculational inaccuracies of that mode back to the
ground state. Fortunately the usual method of applying
the spin-wave approximation in antiferromagnets is

closely akin to the second type of calculation above.
Nevertheless it would seem that the internal incon-

sistency exhibited here stresses the need for caution.
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