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The local microscopic magnetoelastic tensors have been determined for Gd'+, Yb'+, and Er'+ in dia-
magnetic garnet hosts, the theory connecting these microscopic magnetoelastic tensors with the macroscopic
magnetostriction constants of the magnetically ordered rare earth has been developed, and predictions
made for the magnetostriction constants XIop and P»& of Gd, Yb, and Er iron garnets. Because the local site
symmetry for the rare-earth ion in the garnets is low (orthorhombic), the number of independent constants
in the microscopic magnetoelastic tensor is large, The magnetoelastic tensor has therefore been examined for
"hidden" symmetries implied by the physical mechanisms un. derlying the magnetoelastic energy. The
tensor was found generally not to be symmetric across the diagonal, whether the dominant physical effect
was a change in crystal-Geld energy or a change in effective g factor of the ion involved. The consequences of
invariance of the trace of the crystal-Geld energy matrix or of the g tensor were examined. After analytic
machinery involving the transformation of the local site tensors to the crystal-Geld axes was developed, the
microwave EPR spectra of Gd'+, Yb'+, and Er'+ in garnet hosts under uniaxial pressure were analyzed to
yield the full orthorhombic magnetoelastic tensor for each ion. The connection between the single-ion rare-
earth magnetoelastic tensors and the magnetostriction constants of the cubic ordered magnetic rare-earth
iron garnets was then derived using a molecular-field model and a single-ion Hamiltonian. The magneto-
striction constants X&ee and XjQ for GdIG, YbIG, and ErIG (in units of 10 ) were predicted to be 4.2 and
1.7, 82 and 34, and 216 and —282, respectively. These are all within a factor of 2 of the observed low-
temperature magnetostriction constants, except for )»1 for YbIG, which is of the correct magnitude but
the wrong sign. The origin of this discrepancy is presumed to be in the neglect of the change of the molecular
Geld with strain.
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PARAMA GN'ETIC ion. incorporated dilutely into
.k a diamagnetic host displays an, energy-level scheme

which is sensitive to the crystal-6eld environment of the
site and to the crystallographic orientation of an applied
magnetic 6eld. The behavior of the low-lying levels of
the ion can often be described by a "spin Hamiltonian"
which treats the low-lying levels as an isolated manifold
and which is valid to the degree that the states spanning
the manifold remain unmixed with external states under
the perturbations contemplated. The spin Hamiltonian
has the point symmetry of the site involved; if there
are several crystallographically equivalent but mag-
netically inequivalent sites per unit cell, their spin
Hamiltonians are related by the same symmetry oper-
ations of the crystal space group which take the in-
equivalent sites into one another. The para, meters
entering the spin Hamiltonian can generally be de-
termined from electron-paramagnetic-resonance (EPR)
experiments. If one subjects the host crystal to stresses,
the induced deformations alter the crystal-field environ-
ment of the paramagnetic ion and consequently alter
the energy levels of the system. The eGect of the elastic
deformations upon the paramagnetic ion can be de-
scribed by a magnetoelastic tensor, the most important
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terms usually all being contained in a tensor of the
fourth rank. Again the point-group symmetry of the
site determines the form of the tensor, and the local.
tensors for magnetically inequivalent sites are related
by the symmetry operations of the crystal space group.
The magnetoelastic tensor of paramagnetic ions is of
some importance for paramagnetic acoustic studies and
in paramagnetic relaxation, and has been determined
from the strain dependence of EPR spectra for several
ions, usually for sites of high symmetry where the
number of independent constants is small. ' '

We report in this paper the determination of the
magnetoelastic tensors of Gd'+, Yb'+, and Er'+ in the
diamagnetic gallium or aluminum garnets. The sym-
metry of the rare-earth site in the garnet structure is
low (orthorhombic) so the ma, gnetoelastic tensor has a
large number (12) of independent constants. To reduce
the number of independent constants we have examined
the general magnetoelastic tensor for "hidden" sym-
metries which imply relationships between some of the
parameters not given by the site-point symmetry alone.
For instance, conservation of the trace of the crystalline
electric field tensor under strain implies constraints
connecting certain elements of the magnetoelastic
tensor.

Ke were motivated to pursue the fairly involved task
of establishing these single-ion magnetoelastic tensors

' E. R. Feher, Phys. Rev. 136, A145 (1964).' E. 3. Tucker, Phys. Rev. 143, 264 (1966).
3 G. D. Watkins and E. R. Feher, Bull. Am. Phys. Soc. 7, 29

(1962).
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primarily because of the connection they bear to the
macroscopic magnetoelastic tensor of the ordered rare-
earth iron garnets. The magnetoelastic properties of the
rare-earth garnets have become of some technological
and scientific interest recently, especially with relation
to magnetoacoustics. The magnetoelastic constants
(e.g. , magnetostriction constants) of the rare-earth
garnets are known to depend mainly on the rare-earth
ion involved, 4 and it is our primary purpose to explain
the observed magnetoelastic parameters in the rare-
earth garnets, starting from the single-ion, rare-earth
magnetoelastic tensor determined from KPR data on
diamagnetic garnet crystals subject to stress. The earlier
sections of this paper therefore deal with the properties
and determination of the single-ion (local or micro-
scopic) magnetoelastic tensors for the rare-earth ions,
and the later sections deal with the utilization of these
single-ion microscopic parameters to predict the macro-
scopic magnetoelastic properties of the ordered mag-
netic garnets.

2. THE SINGLE-ION MAGNETOELASTIC TENSOR

The single-ion magnetoelastic tensor describes that
portion of the magnetic energy of an ion which depends
on the state of strain of the host crystal. If one expands
the magnetic energy EM as a Taylor series in the
lattice strains about the equilibrium configuration,

+M (+M) 0++ Q(~)~M/dek~) oeki+' ~, (2.1)

the linear magnetoelastic energy is given by

~ME =Q Q(~~M/&ski) oeki.
k l

(2.2)

4A. E. Clark, B. F. DeSavage, ¹ Tsuya, and S. Kawakami,
J. Appl. Phys. 3V, 1434 (1966).' W. I. Dobrov, Phys. Rev. 134, A734 (1964).' R. B. Hem hill, P. L. Donoho, and E. D. McDonald, Phys.
Rev. 146, 327 1966).

This magnetoelastic energy is generally described by
a fourth-rank tensor S, of the form

&Mr ——g p g g &gk~~,~;ski, (2.3)
i j k

where a; and n; are direction cosines of the magnetic
moment and the eq~ are, of course, strains in Love's
notation. For an ion in a given site symmetry, the form
of these tensors can be obtained by requiring that the
tensors be invariant under the operations of the group
appropriate to the site symmetry. ' It occasionally
happens that such a tensor has additional symmetry
derived from some characteristic of the phenomenon
being described. For instance, the familiar elastic
(stress-strain) tensor, also a fourth-rank tensor, is
symmetric across the diagonal because the elastic energy
it represents is invariant under the interchange of stress
and strain coordinates. It has been irnplied6 that the

magnetoelastic tensor is similarly symmetric across the
diagonal. We wish to argue here that such is not gener-
ally the case on theoretical grounds and shall subse-
quently 6nd that such is not the case experimentally for
the rare-earth ions in the garnets.

I.et us examine what physical mechanisms underlie
the single-ion magnetoelastic tensor. We may do so
by writing the magnetic portion of the single-ion
Hamiltonian and examining its strain dependence. For
the lowest-lying manifold of states (in which we are
generally interested) we may write a spin Hamiltonian

XM ——pH' g S+8 D 8+terms in 5', Ss. (2.4)

The magnetoelastic tensor is given by the strain de-
pendence of KM, and is

&e)g'~l . t'eiD'~l
XME=P g ( [ a, Sgekg+ g ( [ 5;5;eke

~&kt (Deke)o '~w kdektlo

+(terms higher order in the spin coordinates) . (2.5)

The terms in the magnetoelastic energy derived from
the spin-Hamiltonian terms of order S', 5, etc., are
not of interest to us at present because (a) they do
not contribute to the fourth-rank magnetoelastic tensor
(but to a higher-rank tensor) and (b) because their
contribution to the total magnetoelastic energy is
(fortunately) quite small.

For sites of high symmetry (e.g. , cubic) it may be
that (D)a=0, i.e., that the equilibrium value of D is
zero, but strains which reduce this symmetry introduce
an energy quadratic in the spin coordinates, so that
(8D'~/Deke)o/0 and the second term of Eq. (2.5) re-
mains important in the magnetoelastic behavior of the
ion. Such a situation occurs for the transition-metal
ions in MgO. ~

We note that the important atomic parameters
entering the magnetoelastic energy are (Bg;,/Bek~)s=

the strain dependence of the g tensor, and
(BD;J/Bek~) p=G;p~, the strain dependence of the crystal-
field components. We may therefore examine these
derivatives for "hidden" symmetry, and in particular
we shall examine the F;;&& and G;;I,& tensors for symmetry
across the diagonal. For instance, we wish to see if

F,;kl = (&g;;/&ski) 0= (~gkt/~e';) o=f"klg (2 6)

We make this examination through the vehicle of a
point-ion calculation. Though such a calculation may
not lead to quantitatively reliable predictions, it is
certain that parameters predicted to be unequal on
such a simplified model are not likely to become equal
on a more complicated model, though the converse
might happen. We consider in particular an octa-
hedrally coordinated paramagnetic ion (Fig. 1) with
neighbors of equal charge Ze situated at x=&a,

r T. G. Philhps and R. L. White, Phys. Rev. 153, 616 (1967).
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elastic tensor of Cr'+ in A1203 observed by Hemphill
et al.' is probably related to the near cubicity of the
Cr'+ octahedral environment; such symmetry is neither
expected nor found for the badly distorted rare-earth
site in the garnets.

We may also on the point-ion model deduce some-
thing about the symmetry of the F;;» tensor, important
when the lowest-lying state is a Kramers's doublet and
changes in the g tensor are responsible for the magneto-
elastic energy. The simplest case useful for such a calcu-
lation occurs for an ion of 5= ~ situated in the crystal
field of Eq. (2.8) . The crystal field produces an en.ergy-
level scheme consisting of two Kramers's doublets, one
of which has the g values

FIG. 1. Ion coordination octahedron for point-ion crystal-
Geld calculation.

where

g, =2g(cos'g —V3 sing cosx),

g» ——2g{cos'x+%3 sing cosy),

gzs =2g sln2X

tai12X (Dll D22) /~~Dos

(2.10)

(2.11)

y=&b, and s=+c, The crystal field at the origin may
be calculated quite straightforwardly, and that portion
of the crystal field quadratic in the spin components,

Vs =DiiS,'+DssS„'+DsoSg', (2,2)

From Eqs. (2.10) and (2.11) it is quite straightforward
though algebraically involved to calculate the F;;&&=
Bg;j/Boo&. The results are generally somewhat compli-
cated expressions, but we can inspect them in some
simple limits. For instance, in the tetragonal limit,
Gp=bp, tan2x=0, we find that

has the crystal-field coefficients Fu= (Bg */Ba)o=Fsi= (Bg /Ba)o (2»)
3 1 11 i'i 1 1 &

Dii ——Zesn(rs)
2 a' bsj &c' 2b' 2a'j

3(1 1 1 1 1
Dos ——Ze'n(r')

2 (bs a' c' 2b' 2a'

1
Doo =Ze'n(r') 2 (2 8)

where n and. (r') have the meanings introduced by
Elliot and Stevens. 8 We may compute some C,;&& by
taking the derivatives of the D;; with respect to a, b,
and c (e„, e», e„).We also at this point introduce the
Voigt notation (e»=et, e» es——e„=, es, e„,=e4, etc.) to
simplify our subscripting. In this notation we 6nd, for
instance,

Gis = (BDii/Be„,) o (BDii/Bb) p +3K——/b p', ——

G21= (BDss/Berg) 0 (BD22/Ba) o =+3K/ao, (2.9)

where K=Ze'n(r'). Clearly GisWGsi, except in the
tetragonal limit, in which case symmetry would have
required their equality. Indeed, if one examines all the
conjugate pairs, one finds that the 6;; tensor is sym-
metric only in the limit of cubic symmetry. The ap-
parent symmetry across the diagonal of the magneto-

~ij= Q Gjjkiepl
kl

(2.14)

from the de6nition of G;;~~, and the tracelessness of d

as would be expected from the tetragonal symmetry,
but that

Fio ——(Bg»/Bc) o= —2Fsi = 2(Bg„—/Ba) o (2.13.)

Not only are the conjugate elements unequal, but they
may be of opposite sign. As we shall see, conjugate
pairs of opposite sign appear, in fact, to be the rule
rather than the exception for the rare-earth Kramers's
ions in the garnets.

The above arguments lead us to conclude that the
magnetoelastic tensor is not in principle symmetric
across its diagonal.

Examination of the microscopic origins of the mag-
netoelastic tensor does lead us, however, to some useful
conclusions regarding the reduction of the number of
independent constants arising from the invariance under
strain of the trace of D or of g. We first examine the
tensor G;;I,& derived from the crystal-field tensor D,
which is known to be traceless. " If the difference
between the tensor D before and after the introduction
of a strain e is the tensor d, then the trace of d must
also be zero. Now

SK. %'. H. Stevens, Proc. Phys. Soc. (London) A65, 209
(1952);R.J.Elliot and K. W. H. Stevens, ibid A218, 553 (1953)..

9 R. G. Shulman, B. S. W'yluda, and P. W. Anderson, Phys.
Rev. 107, 953 (1951).
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may be written

Q d;;=+ G;,k«k1=0
i iIt:l

(2.15)

for all e, from which we conclude that

g G,;kl ——0 for all kt. (2.16)

+ (higher-order terms) . (2.19)

Ke now point out that if it was observed for the ion
involved that the trace of g for the distorted site was
substantially equal to 3g„ it is implied that the expan-
sion coeKcients (g; c 1" ) are all substantially zero,
and that the trace of g will be invariant under the
applied strain e. The argument may be qualitatively
rephrased that if the equilibrium distortions have not
changed the trace of g from the isotropic value, then
small additional strains will not change the trace either.
We shall subsequently inspect specific ions in the garnet,
and if trace g=3g„we will assume

g (~gii/~okl) 0&kl g Fiik«kl 0~ (2.20)

For our orthorhombic site symmetry this constraint
will reduce the number of independent constants from
12 to 9.

H the trace of the g tensor is invariant under strain
the same logic will apply to the F tensor. In general,
unfortunately, the trace of the g tensor is not invariant
under strain. We shall argue here, however, that there
commonly occur circumstances under which the vari-
ation in the trace of g contains no terms linear in the
strains, a condition sufhcient for our earlier arguments
to apply and the number of independent constants in
the magnetoelastic to be reduced. Consider first an ion
in a site of cubic symmetry. The g tensor will be
isotropic, with value g, and trace equal to 3g, . Now
suppose the site is distorted to some lower symmetry.
We may expand the principal g values in the lower-
symmetry fields produced by the distortion

gi =g.+C112'V2'+C1122V22+ "+C122'(V ')2+".
g

—
g +C 120V 0+C 122V 2+...+C 220( V 0)2+. ..

g =g,+c 1'0V '+c "'V 2+ ~ ~ ~ +c "'(V ') '+ ~ . (2.17)

We therefore have

trace g=3g, +(g ci" ) V„"+(pc'" ) (V ")'+

(2.18)

Finally, let us strain the crystal, changing each crystal-
6eld component to (V )0+(BV /cjok)looki. We will
then have, for each strain component @~,

8(trace g) = (Q c,'"")(BV„"/loki) ookl

+(Q c 2) 2V "(8V~"/ilokl) 0&kl

again reducing (for the orthorhombic case) the 12
independent constants of the magnetoelastic tensor to
nine.

Finally, in this section, we wish to make a point
which is important but nevertheless often ignored. The
local tensors found from stress work are defined with
respect to unit-cell strains and not the local environ-
ment strains. Therefore we cannot make a quantitative
comparison with any crystal-field theory unless we
know the tensor relating the unit-cell strains to the
local environment strains. To our present knowledge,
no determination of such a tensor has yet been at-
tempted.

3. THE DETERMINATION OF THE MAGNETO-
ELASTIC TENSOR FROM EPR PRESSURE

EXPERIMENTS

We have seen in the preceding section that the single-
ion magnetoelastic tensor is determined by the strain
dependence of the g tensor and the crystal-6eld D tensor
of the spin Hamiltonian of the ion. Since the g tensor
and D tensor may be determined from electron-para-
magnetic-resonance experiments we may be sure that
the strain dependence of these parameters may be
obtained from the strain dependence of EPR spectra.
There are on the order of ten independent constants
in the magnetoelastic tensor to be determined, so it is
desirable to develop some systematic procedure relating
the desired parameters to the experimental variables,
which are the magnitude and direction of an axial pres-
sure P and the magnitude and direction of a magnetic
field I'.

As we can see from Eq. (2.5), there are two kinds of
terms in the magnetoelastic tensor, those arising from
Bg;;/loki and those arising from BD;;/Bokl. Usually only
one or the other class of terms is important. If the ion
is an S-state ion (1.=0), the strain dependence of the
g tensor is vanishingly small and the BD,,/Bokl terms
dominate. If the ion is not an S-state ion and the
ground state displays spin or orbital degeneracy, the
Bg;;/loki term is generally (but not necessarily) more
important, For the odd-electron rare-earth ions, a single
Kramers's doublet usually lies lowest in energy; for a
Kramers's doublet with eGective spin -', we have D=—0
and the Bg;;/Boki effect is clearly dominant.

Let us consider then two common cases; the S-state
ion and the Kramers's doublet ion.

A. S-State Ions

The spin Hamiltonian of the S-state ion in the un-
strained crystal will be

X=gag'S. +DnS +D22S„'+D22S,'
+D12 (S*Slj +So S* ) +D22 (S„S;+S.S2 )

+D21(S.S;+S S;), (3.1)

where g will be taken to be isotropic and strain-inde-
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pendent. We will choose to quantize along the axis of
the magnetic Geld, the s axis, since the dominant energy
term will be the Zeeman term. On the other hand we
want the magnetoelastic tensor in terms of the local
site coordinates x', y', s'. The D tensor and g tensor
will ordinarily be diagonal in this coordinate frame in
the unstrained crystal, but no longer diagonal in the
strained crystal. In anticipation of the strained case
we treat D as nondiagonal in Eq. (3.1). The magnetic
field H,' has the direction cosines o.~, n2, 0,3 in the local
(primed) coordinate frame.

If we conduct our experiments under circumstances
such that the first term in. Eq. (3.1) dominates, we inay
use first-order perturbation theory to treat the crystal-
field terms and the problem is greatly simplified. The
example appropriate to this investigation is Gd'+
(S=-,'), and the energy levels will be

E+7/2=~2gPH +M Q Di/nin/,

E~g/2 ——&ggPH'+~6+ D„n,n„,

E+8/2 &2gjSH + & Q Dijn&cxj ~

set of equations solved simultaneously to yield the
several G;jI,~.

A further calculational difhculty is that the com-
pliance tensor S is generally given in the unit-cell
crystal axes rather than in the local x', y', s' axes.
Clea, rly the strains and directions cosines of Eqs. (3.5)
and (3.6) must be in the same coordinate frame, so
either the S tensor or the G tensor must be transformed.
We have elected to transform the G tensors to the
crystal axes and work in that frame, since that is the
frame with respect to which the applied 6elds and
stresses are measured. The required transformations
are discussed in the next section and in the Appendix.

If the Zeeman energy is not sufficiently greater than
the crystal-field energies such that first-order perturba-
tion theory can be applied, a much more complicated
computational procedure must be followed. Such a case,
Fe'+ in A1203, will be treated in a separate paper.

B. Non-S-State Ions

If the ground state of the ion is a Kramers's doublet
the procedure is somewhat simpler. In view of the
effective spin of —, the crystal-field terms vanish identi-
cally, and the effective spin Hamiltonian is simply

E~ip ——+-',gPH' —'PQ D;,n,n/. (3.2) x=pH' g S'. (3.7)

The difference in energy between states —the transition
energies —are given by

E8, Ea, =gpH (Si——S2)+-', (Si2—S22) Q D@n;n;.

(3.3)

The changes in g due to strain will be given by

~gij Q ~ij7cl&/'i
I/;l

and the change in transition energy by

bE=gPH Q ~',v«'n;e«

(3 8)

(3.9)
If we impose now a stress on the crystal, strains are
developed such that

a=S P, (3.4)

where S is the compliance tensor. The strains cause
changes in the components of the D tensor

BD;;=Q G;,~«)» (3.5)

so the change in g;;D;,n,n; of the transition-energy
expression of Eq. (3.3) is

8 Q D,,n,n; =P G,,i in, n;e/, i (3.6)

One can then apply a known stress P, obtaining a
known s (set of e»), apply the magnetic field in a
known direction (n„n;) and observe the change in
transition energy B(EB, Es,). Inserting the —known
e/, & and n; into Eq. (3.6) then yields one equation in
several unknowns, the 6;jI,~. A second experiment with
the pressure in a different direction, or the magnetic
G.eld in a different direction, or both, yieMs a second
equation in the several unknowns. A number of inde-
pendent experiments at least equal to the number of
independent G„g,~ must be performed, and the resultant

Again one applies strains and the magnetic 6eld in
several combinations until enough independent equa-
tions are obtained to determine the several Ii;;g,~.

If the ground state has an effective spin greater than

& it may be dificult to separate changes in resonance
Geld due to bg and bD. The second-order effect in bD

appears as an apparent 8g, and we may require a wide
range of pressures to separate the linear from the
quadratic effects, or operate using special transitions
which are independent of one effect or the other. Such
a case occurs for Fe'+ in MgO, for which the ground
state has an effective spin of I.~

4. SITE SYMMETRY AND INEQUIVALENT SITES
IN THE GARNET STRUCTURE

Turning our attention to the specific system at hand,
we now examine the site symmetry and site inequiv-
alences which exist for rare-earth ions in the garnet
structure.

The over-all symmetry of the garnet is cubic, 0I,"—
Ia3d, and the rare-earth (and yttrium) ions occupy
the dodecahedral positions 24(c). The local site sym-
metry is orthorhombic and the eight oxygen near
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neighbors are arranged at the corners of a fairly heavily
distorted cube." For one site the local axes lie along
crystal (001), (110), and (110) directions, and the
others of the six inequivalent sites may be obtained
from this site by the transformations described in the
Appendix.

From Dobrovs we know the form of the magneto-
elastic tensor for this particular (orthorhombic) site
symmetry. Expressed in the local major axis system
both the G and F tensors are of the same form, and are
the same for all six inequivalent sites. In the Voigt
notation

G» G12 G13 0 0 0

G21 G22 G23 0 0 0

G31 G82 G83 0 0 0

0 0 0 G44 0 0

0 0 0 0 G55 0

0 0 0 0 0 G66

(4 1)

There are 12 independent constants in this tensor; the
trace invariance of g or D will reduce the number of
independent constants to 9 Lcf. Eqs. (2.16) or (2.20) ).

The G tensor above is written in the local site axis
coordinate frame; we need G in the crystal-axis coordi-
nate frame since the stresses and strains are known in
that coordinate frame. The fourth-rank tensor trans-
formation is

PRESSURE ROD

~WAVE GUIDE

CAVITY

yp
r QUARTZ

&I
Fzo. 2. Microwave cavity showing mechanism for applying

uniaxial pressure to crystal.

We may proceed to write the G' tensors for the
remaining five inequivalent sites in the crystal-coordi-
nate frame. In the crystal axis system, the G' tensors
for the six inequivalent sites all look different from
one another. In the Appendix we obtain the tensors
G' for all the six inequivalent sites. Though the existence
of the six inequivalent sites is quite a complication
theoretically, it nonetheless has its compensations. If
one observes transitions from all six sites, the appli-
cation of any one direction of pressure and one direction
of magnetic field constitutes six experiments for the
determination of the G;;, and drastically reduces the
number of experimental configurations necessary to
determine the 12 (or nine after trace considerations)
independent G;;.

6 fjkl g ~im&jn&ko~lyGmnoyq
SKSOP

(4 2) S. EXPERIMENTAL PROCEDURES

G 11 G12 G18 0 G'16

Gf

G21 G22 G23 0 0 G26

G'81 G'82 G'33 0 0 G'86

0 0 0 G'44 G'4& 0

0 0 0 G'54 G'55 0

G61 G62 G68 0 0 G66

~ (43)

The relationships between the G;; and the G',; are given
in the Appendix. Though G' is no longer in the "block"
form as was G, the number of independent elements
has not increased.

"S. Geller and M. A. Gilleo, J. Phys. Chem. Solids 3, 30
(1957).

where the a; are direction cosines between the primed
and crystal-coordinate axes. For the site whose principal
local axes are crystal (001), (110), and (110) axes,
the tensor G of Eq. (4.1) becomes, in the crystal-
coordinate frame,

Electron paramagnetic experiments were carried out
using a conventional microwave spectrometer working
at 26 kMc/sec. A direct detection system was employed,
and the 6eld-modulation frequency was 400 cps. The
microwave cavity was used in the TED» mode in trans-
mission, and the klystron frequency was locked to the
cavity frequency both to improve the signal-to-noise
ratio and to eliminate any dispersion which might
interfere with the pure absorption line shape. A helium

Dewar was fitted and the system could be operated at
77'K or 4.2—+1.5'K.

The specimen crystal was cut with end faces Qat
and parallel to optical tolerances and mounted in the
center of the cavity (see Fig. 2) on a quartz block.
The microwave cavity thus also acts as the pressure
cavity. Pressure was applied by means of a quartz
plunger, itself driven by a steel rod and a system of
weights and levers. The quartz block and plunger were
also optically cut and polished, but in spite of this it
was found necessary to employ buGer pads between
the pressure surfaces in order to achieve a homogeneous
pressure within the specimen. It appears that these

pads can be made of almost any material which is
initially relatively soft, but sets hard under pressure or
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low temperatures. In our case, thin plastic sheet was
found quite suitable and we were able to generate
pressure of the order of 10' kg/cm' without breaking
the crystals. Since the microwave cavity was also the
pressure cavity, its resonance frequency was a mild
function of the applied pressure. This pressure depend-
ence of the frequency was measured and corrected out
in processing the data.

The experimental configuration described above has
the advantages of simplicity of construction, ease of
pressure measurement, and the facility to work on
crystals of almost any size. In point of fact the most
convenient crystal volume was about 10 mm'. There is,
however, a major possible disadvantage in that one
cannot arrange for the dc magnetic field of a normal
iron-cored EPR magnet to be parallel to the pressure
axis This could prevent the independent determination
of all the elements of G and F, but it is found that the
assumption of constant trace for D and g as discussed
in Sec. 2 alleviates this difhculty and one can obtain
all the elements even with the magnetic field confined
to a plane normal to the pressure axis.

5. SINGLE-ION MAGNETOELASTIC TENSOR FOR
Gde+ IN THE GARNETS

Trivalent gadolinium has a ground state which is a
spectroscopic S state with electronic spin S=—,'. The
theory of Sec. 3A for the extraction of the G tensor
from the EPR data is therefore appropriate The EPR
spectrum of Gd'+ in yttrium gallium garnet (YGaG)
in the unstrained crystal has been studied by Rimai
and Mars" and by Calhoun and Freiser, "and we have
leaned upon their work in identifying the transitions
observed. In particular it is necessary to know the sign
of the components of D to obtain correctly the signs of
5D.

Since D is traceless we know that the 12 independent
constants of G are reduced to nine for the Gd'+ case,
and our problem experimentally is to apply pressures
and magnetic fields in such combinations as to obtain
the required nine independent equations; preferably
equations as simple as possible (involving the fewest

@~, for instance). There are several experimental diK-
culties in this procedure, mostly derived from the fact
that the six inequivalent sites each yield seven allowed
transitions, giving an overlapping 42-line spectrum
which makes identification and measurement of specific
transition-energy changes difficult. If the magnetic field
is applied in certain major crystallographic directions,
the spectrum collapses considerably but site identifi-
cation is lost. One exceptional and useful case is that
with H' along a crystal (110).In this instance, the six
spectra are distributed such that the two which are
derived from ions having a local principal axis along

"L.Rirnai and G. A. deMars, J. Appl. Phys. 33, 1254 (1962)."B.A. Calhoun and M. J. Freiser, J. Appl. Phys. 34, 1140
(1963).

(110)are spread out in Geld and are resolved from one
another while the remaining four spectra are bunched
near the center of the patterns and are not separately
identifiable nor useful. The experimental setup requires
the stress to be applied perpendicular to H'; therefore,
several independent equations were obtained with H'
along a (110) and uniaxial strains applied in major
directions ((001) and (110)) perpendicular to (110).
It is not possible to obtain the required number of
independent equations using this configuration alone,
since certain linear combinations of the G;;k~ and e~~

recur for all combinations of this class. To obtain the
remaining independent equations it proved necessary
to apply both the pressure and H' in some general
direction not contained in a (110)plane. Site identifi-
cation was achieved for the general orientation of H'
by plotting the whole 42-line spectrum for the plane
containing the general direction and a high-symmetry
direction of known site identification, preferably the
(110).

Proceeding in the above manner sufhcient independ-
ent equations were obtained to allow determination of
the nine independent constants of G. Expressed in the
local site axis system (see Appendix) the magnetoelastic
G tensor for Gd'+ in YGaG is

&zz &yz &zx Esy

cx 11 13 01 0 0 0

O.y' —1.0 1.5 —0.8 0 0 0

G=
ag 2 0.0 —0.2

0 0

0 0

0.7 0 0 0

0 25 0 0

0 0 3.2 0

0 0 0 0 01

)&crn '/(unit strain). (6.1)

As we have made a simultaneous solution of nine
linear equations the errors are rather hard to evaluate,
but are estimated to be approximately +20%. Values
of the elastic constants used to determine the elements
of G are those of Clark and Strakna. "

We may comment on the symmetry of G in view of
the discussion of Sec. 2. The tensor is nonsymmetric
as presented here, but only in the case of G23 and G»
is the nonsymmetry clearly defined above the errors.
Within experimental error it appears that conjugate
elements have the same sign, as predicted by the
point-ion calculation. It is also interesting to note that
the diagonal elements are all uniformly of the opposite
sign from the off-diagonal elements also as predicted
by the single-ion model as may be verified by noting

'3A. E. Clark and R. E. Strakna, J. Appl. Phys. 32, 1172
(1961).
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that (BD11/BG) 0 6K/Gp (BD22/Bb) 0 = 6K/bp etc.
whereas all oG-diagonal elements were of the form
(0ID11/Bb) p = +3K/bp4, (BD11/0lc) 0 =+3K/cp', etc. (The
sign of Gi~ is not determined within the experimental
error. )

7'. SINGLE-ION MAGNETOSTRICTION TENSOR
FOR Yb'+ AND Er'+ IN THE GARNETS

—81 —153 —55 0 0 0

68 13 0 0 0

0 0 6 0 0

0 0 0 37 0

per unit strain,

0 0 0 0 47
(7.1)

'4 M. Ball, G. Garton, M. J. M. Leask, D. Ryan, an& +. P.
Wolf, J. Appl. Phys. 32, 2675 (1961).

Both Yb'+ and Er'+ have Kramers's doublets with
effective spin of —', as their ground states in a garnet
host. The theory of Sec. 3B therefore applies for the
determination of their magnetoelastic tensor F. The
spectra for both Yb'+ and Er'+ are considerably simpler
than for Gds+ since there is only one absorption/site
(not counting hyperfine components) yielding a gener-
ally resolved six-line spectrum. The EPR spectra of
both Yb'+ and Er'+ have been examined by Hall et a/. ,'4

and their work was used to help identify and locate the
desired transitions.

We next examine whether or not we may assume
invariance of the trace of g and reduce our 12 inde-
pendent constants to nine. For Yb'+ in YGaG, the
trace of g is 3.87+3.78+2.47=10.12. The cubic F7
doublet from which the state derives has an isotropic
g, =3.42, hence 3g, =10.26. Clearly the trace of g has
not varied perceptibly and we may with con6dence
assume the invariance of trace g. For Er'+ in YAlG
the situation is somewhat less clear. Here trace g=
7.75+3.71+7.35=18.81, while the cubic I'2 doublet
from which the state is probably derived has g, =5.66
and 3g, =16.98. We nonetheless will assume the in-
variance of trace g for this case also and examine later
for the consequences of this somewhat marginal as-
sumption.

For Yb'+ we have overdetermined the F tensor in
order to verify the trace invariance assumption above
and in order to provide a check on the transformation
algebra, site identification, and symmetry assumptions
of the general theory. By overdetermining the F tensor,
we mean making more than nine independent experi-
ments and verifying that different sets of nine inde-
pendent equations lead to the same set of nine elements
for F. The F tensor we obtain for Yb+3 is

85 42 0 0 0

where again the tensor is given in the local site axes.
The error as determined from the overdetermination
scatter is approximately &6 for all elements. This
fairly large error arises primarily from the uncertainties
associated with the simultaneous determination of nine
independent parameters. If the tensor F were of higher
symmetry and had fewer independent elements, these
fewer elements could be more precisely obtained from
EPR pressure spectra.

As anticipated by the point-ion calculation of Sec. 2,
this tensor is not symmetric across the diagonal and
has, in fact, conjugate elements regularly of opposite
sign. If we assume symmetry for F, reducing the inde-
pendent constants to 6, and proceed to overdetermine
this tensor, we obtain totally inconsistent sets of ele-
ments from diGerent sets of independent equations.
It is therefore clear that the F tensor is not symmetric
across its diagonal.

A similar procedure was followed to obtain an over-
determined F tensor for Er'+ in the aluminum garnet.
The change from gallium garnet to aluminum garnet
host was purely for reasons of sample availability. We
find F for Er'+ in YalG, again in the local site axis
frame, to be

120 225 21 0

—10 —285 —23 0

0 0

0 0

—110 58 2 0

0 0 30

0 0

0 0

0 0 0 —126 0

0 0 0 0 25

per unit strain. (7.2)

8. THE PREDICTION OF MACROSCOPIC
MAGNETOELASTIC CONSTANTS FROM
THE SINGLE-ION F AND G TENSORS

We now consider the relationship between the micro-
scopic magnetoelastic tensors derived above and the
macroscopic magnetoelastic constants of the ordered
magnetic rare-earth iron garnets.

The magnetoelastic energy of an ordered magnetic
material may also be described through the agency of

The errors in the Er'+ tensor are somewhat larger
than for the Yb'+ tensor, again as determined from
scatter in the overdetermination. The errors are approxi-
mately ~25 for each element, so only five elements have
been determined with any real certainty. The precision
of the data is similar for Yb'+ and Er'+, so we tentatively
attribute the greater scatter in the Er'+ F tensor as due
to the onset of breakdown of the trace invariance as-
sumption.
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a fourth-rank magnetoelastic tensor which we shall
call B;,7,l.

~ME ~ B ij7f:lQiAj6kl)
M np. .
ijVcl

where the n s are now direction cosines of the net
magnetization. For the rare-earth iron garnets, of cubic
0& symmetry, there are only three independent con-
stants in the 80,;sf tensor (811, 810, and 844 in the
Voigt notation) . An implicit assumption of trace in-

variance is usually made, reducing the number of inde-
pendent constants to two, so the magnetoelastic energy
of the cubic ferromagnet (or ferrimagnet) is usually
written"

&ME=81L(nis —l) e-+(ns' —l) e.+(n '—0) e*.j
+80Ln1nssgy+nsnseyg+nsnisggjq (8 2)

where 81(=811—Bis) and 80(=2844) are known as
the first and second magnetoelastic constants. The
magnetoelastic energy is often given alternatively in
terms of the magnetostriction constants X]pp alid Xyg,

related to B& and B2 by

~100 081/3 (( 11 +12) 411 82/3+44) (8 3)

where the C;, are the cubic elastic constants.
The constants Bj and B2 or happ and 'A~» have been

measured for a number of the rare-earth iron garnets, 4

are known to differ widely from one rare-earth garnet
to the next, and to depend primarily on the rare-earth
ion involved. We now ask if we can deduce the contri-
bution of the rare-earth ions to the gross magnetoelastic
energy of the ordered magnetic garnets from the single-
ion magnetoelastic tensors derived as above from EPR
under pressure.

The magnetoelastic energy due to the rare-earth ions
will be derived from the strain dependence of the
rare-earth ion magnetic energy in the ordered iron
garnet. It is known from several kinds of evidence that
a rare-earth ion in the iron garnets is exchange-coupled
to certain of its iron neighbors with an interaction of
moderate strength (exchange splittings on the order
of 20—100 cm ') and coupled only very weakly to
other rare-earth ions present. The iron ions are, in
turn, strongly coupled amongst themselves with a Curie
temperature of approximately 550'K, and are in a
state of substantially complete alignment below 100'K,
independent of the state of order of the rare-earth ions.
To a very good approximation, then, the rare-earth
ions may be thought of as existing quasiparamag-
netically in an exchange field produced by the iron
lattices. A molecular-field. treatment of the rare-earth
ion energy and magnetization should therefore be quite
appropriate, and has in the past yielded excellent
agreement when used to predict, for instance, the tem-
perature dependence of rare-earth magnetization. YVe

may describe therefore the energy of a typical rare-earth
ion in the iron garnet by an expression quite analogous

"C. Kittel, Rev. Mod. Phys. 21, 541 (1949).

to Eq. (2.4)

XM' ——PH, ff g'S+S O'S, (8.4)

where H has been replaced by the effective molecular
field H, ff (perhaps anisotropic) and the superscript o.

has been introduced to index the six-inequivalent rare-
earth sites. The magnetic energy per unit volume is
clearly given by

XM =giV XM. (8.5)

where 1V is the number of rare-earth sites of a par-
ticular kind per unit volume, and the magnetoelastic
energy arising from this energy described by

X ME =Q (BX M(nfnf) /80sl )Oekl. (8.6)

where

+X C(BD',;/Bcpl) 0S'jn,n, eel, (8.7)

c=(g [
-', L3S.'—s(sy1) gl g)/&g I s.' I g) (8.8)

is a quantum-mechanical correction for the difference
between Ls(s+1)$"' and S, I g) being the ground
state of the ion. In obtaining Eq. (8.7) from Eq. (8.4)
we have ignored the strain dependence of H, ~~, which
may be an important omission which we will discuss
later. Comparing Eq. (8.7) with the general form

I Eq. (8.1)j we observe that

8' 01=Q &'P&' ffs'F";r 1++&'Cs'G', fsf (8 9)

We can therefore express the gross macroscopic mag-
netoelastic constants of the ordered rare-earth iron
garnets at low temperatures if we know the microscopic
single-ion rare-earth magnetoelastic tensor and the
effective molecular field acting on the rare-earth ion.

We also note from Eq. (8.9) that the high-symmetry
(cubic) 80;;sf tensor is obtained by a summation over
sites of the low-symmetry (orthorhombic) 8',;&l. This
property of p, 8';,&l may be checked directly using
the local magnetoelastic tensors given in the Appendix
(expressed in unit-cell coordinates) . This property also
has experimental consequences in that any of the BPi;I,l
may be obtained from the EPR data by applying a
speci6c strain 001 and a particular magnetic field (n, , n, )
and summing transition displacements over the six in-
equivalent sites. This technique is particularly useful
for predicting the magnetostriction constants Amp and
X»&, since the first is yielded by applying pressure in a
(100) direction with some known field orientation and
summing energy displact:mug. ts oyer ig.equivaleq. t sitt;g

Carrying out the derivative process above, we obtain
for the magnetoelastic energy contribution of the rare-
earth ions at low temperature, when all are in their
lowest energy (maximum S,) state,

+ME Q QP 0+ eff(~g if/cj&kl) 0S
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while the other may be obtained by applying pressure
along a (111)direction and summing energy displace-
ments over inequivalent sites.

9. PREDICTED AND OBSERVED MAGNETO-
STRICTION CONSTANTS FOR GdIG,

YbIG, AND ErIG

We now use the machinery and data generated above
to predict the magnetostriction constants of gado-
linium, ytterbium, and erbium iron garnets, and then
compare these predictions with the experimental values
of these parameters.

Gd'+ is an S-state ion, so the contribution of the
gadolinium ions to the magnetoelastic constants or to
the magnetostriction constants will be through the
G';;s~ terms of Eq. (8.9). Inserting the appropriate
numerical values we obtain, for the Gd'+ contribution
to the magnetostriction constants of GdIG,

) roo(Gd) =(4.2&2) X10 o,

4u(Gd) = (1.7+2) X10 (9.1)

These values may be compared to the experimental
values for the Gd'+ contribution, i.e., to )I.(GdIG)—
X(YIG), at 4.2'K"

Xroo(GdIG) —)Iroo(YIG) = (8.2&2) X10 '

Xrn(GdIG) —X»&(YIG) = (1.5&2) X10—'. (9.2)

)Iroo(Yb) =82X10 o )I,rrr(Yb) =34X10 (9 3)

which we may compare with the measured values for

' A. E. Clark and B. F. DeSavage (private comInunication).
'r K. A. Wickersheim, Phys. Rev. 122, 1376 (1961).

We note with satisfaction that the predicted magneto-
striction contributions are of the correct sign and within
a factor of 2 of the correct size. In view of the extrapo-
lations and approximations involved, we regard this as
quite satisfactory agreement. Only for Gd'+ of the ions
considered is the rare-earth contribution to the mag-
netostriction small enough that the iron contribution
must be subtracted from the observed total magneto-
striction before comparison with the predictions is
meaningful.

Both Yb'+ and Er'+ have Kramers's doublets lowest,
so the major contribution to the magnetostriction comes
through the F;,s~ terms of Eq. (8.9) . Note further that
in the ordered magnetic garnets the rather small Ii;;~~
are multiplied by a very large effective 6eld producing
a large total magnetoelastic energy. For Yb'+ in YbIG,
using the effective molecular-6eld values obtained
spectroscopically by Wickersheim'r (H, =87 200, H, =
153 000, H, = 169 000 G) and the F;,sg of Sec. 7
we obtain predicted magnetostriction constants for
YbIG of

YbIG (4 2oK)'s.

taboo(YbIG) =49X10 ',

Xroo(Er) =216X10 ', )Irrr(Er) = —282X10 s. (9.5)

The experimental values (extrapolated to low temper-
ature rather than measured at low temperature in this
case) ares

Xroo(ErIG) =420X10 ) nr(ErIG) = —300X10 '.

(9.6)

For this case we predict in quite satisfactory manner
the magnitude (large) and sign of the magnetoelastic
constants. Again spectroscopic studies of the strain
depend, ence of exchange splittings would be desirable
to explain why the predictions are so accurate in this
case but of wrong sign for Yb'+.

10. CONCLUSIONS

We have determined the magnetoelastic tensors for
Gd'+, Yb'+, and Er'+ substituted into the ortho-
rhombic sites of the diamagnetic yttrium aluminum
or yttrium gallium garnets. From these tensors it is
clear that the orthorhombic tensor is not symmetric
across the diagonal and that the F tensor is likely to
contain conjugate elements of opposite sign whereas

'8 P. J. Flanders, R. F. Pearson, and J. L. Page, Brit. J. Appl.
Phys. 17, 839 (1966).

4&r (YbI G) = —27 X10

(9.4)

We note that, though the predicted magnetostriction
constants are of approximately the correct magnitude,
the predicted X~~~ is of the wrong sign. Our input
data for the Yb'+ case is probably the most precise of
all our data, so the prediction is unambiguous. The
failure of the model to produce the correct prediction
is almost certainly due to the failure to include the
strain dependence of the exchange Geld, (8H'/8+, ~)o,
into our theory. It has been our hope that the topology
of the exchange tensor G, defined by LCM=8'G S',
where S' is an iron spin and S' a rare-earth spin, would
be suKciently similar to that of the paramagnetic g
tensor that the strain dependence of the exchange
energy terms would have the same topology (and signs)
as the strain dependence of the g tensor. Such an as-
sumption yielded the correct magnitude and sign of the
magnetostriction constants in the transition-metal mon-
oxides FeO, CoO, and NiO. ' Such seems not to be the
case for Yb'+ in the garnet, so spectroscopic studies of
the variation of the exchange splittings of Yb'+ in
YbIG under uniaxial pressure are clear1y in order to
clarify the present dilemma.

For Er'+ we do not have detailed information on the
exchange fields present, but inspection of the ErIG
magnetization data and comparison with other rare-
earth exchange parameters lead us to assume B,ff=
190 000 G. Using this value and the Ii';;I,~ for Er'+ of
Sec. 7, we obtain predicted magnetostriction constants
for ErIG of
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the G tensor, though not symmetric, does not appear
to contain conjugate elements of opposite sign. These
symmetry conclusions are in agreement with arguments
based on a simple single-ion calculation. The over-
determination technique indicates that the constant
trace of the g tensor is a good approximation in the
case of Yb'+ and a fair approximation for Er'+.

A tensor transformation scheme has been developed
for use in the multi-inequivalent ion case and has
proved of use in analyzing the EPR pressure experi-
ments and in the prediction of magnetostriction con-
stants. It was noted, however, that the definition of
these tensors has to be with respect to crystal unit
cell strains and not the local strains on the ion environ-
ment. This circumstance unfortunately prevents any
detailed comparison with a crystal theory of the origin
of the tensors.

The connection between the microscopic single-ion
magnetoelastic tensors and the macroscopic magneto-
elastic tensor of the ordered rare-earth iron garnets
was developed using a molecular-Geld single-ion Hamil-
tonian. This model allows an immediate division be-
tween the S-state ions and the non-S-state ions in
terms of the mechanism by which they contribute to
the total magnetoelastic energy. The S-state ions con-
tribute only through the strain variation of the crystal-
6eld D tensor, and generally produce small magneto-
elastic energies. The non-S-state ions contribute through
the strain dependence of g and generally lead to large
magnetoelastic energies because the small variations in

g are multiplied by a very large effective field producing
large changes in the magnetic energy. The magneto-
striction of non-S-state ions such as Yb8+ and Er'+ is
one or two orders of magnitude greater than that of the
S-state ion Gd'+.

We have predicted magnetostriction constants for
GdIG, YbIG and ErIG from EPR data and the above
theory and compared these with experimental values.
For GdIG and ErIG the agreement is quite satis-
factory; for YbI G one of the magnetostriction con-
stants is of the wrong sign. We feel that the probable
reason for this discrepancy is that the strain dependence
of the molecular field has been omitted from the theory.
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APPENDIX
The orthorhombic site magnetoelastic tensor G or F

defined in an axis system x, y, s which corresponds to
the major axis system of the local environment a, 6, c is
given by Dobrov' as

G11 G12 G18

G21 G22 G28

G81 G82 G88 0 0 0

0 0 0 G44 0 0

0 0 0 0 G55 0

0 0 0 0 0 G66

where all 12 elements are independent.
In the case of the rare-earth site in the garnet the

major axes lie along the cube (001), (11O), and (110)
axes. If we wish to express G in the cube axes system
we must transform G according to the fourth-rank
tensor transf ormation

~/G 4jkl g '&m&in&ko&lyGmnoy
annoy

Thus tensor 6' referred to the cube axes x, y, s, is

G11 G12 G18 o o G16

G21 G22 G28 0 0 G26

G'81 G'82 G'88 o 0 G'86

0 0 0 G'44 G'„0
0 0 0 G'54 G'» 0

G61 G62 G68 0 0 G66

The relations between G and G' are

G 11 G 22 4(Gll+G12+G21+G22+4G66) )

G 12 G21—4(G11+Glh+~21+G22 4G66) y

G13 G23 2(G13+G23))

G16 G26 4( Gll+G12 G21+G22)y

G'31=G 32=2(G31+G32) )

G'88 =G88,

G'36= 2( —G31+G32),

G'44=G'55= 2(G44+G55),

G'45 =G'54=-', (G'44 —G'55),

G61 G62 4( Gll G12+G21+G22))

G'63 ——-', (—G13+G23) )

G'66=-', (Gll+G22 —G12—G21).

(Note well that there a,re 12 independent elements as
before. )
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If we take the above tensor G' to relate to site j.
LFig. 3 (a) ],we have the following set of tensors for the
six inequivalent sites for the garnet structure: Neglect-
ing the prime,

tensor site 1 [Fig. 3(a)$:

G11 G12 G18 0 0 G16

G12 G11 G13 0 0 G16

G31 G81 G88 0 0 G86

0 0 0 G44 G45 0

0 0 0 G4g G44 0

G61 G61 G68 0 0 G66

tensor site 3 LFig. 3(c)]:

G63 G61 G61 G66 0

0 0 0 0 G44 G45

0 0 0 0 G45 G44
'

tensor site 4 (Fig. 3(d) $:

G31 G81 —G36 0

I Gag G3g G8g G36 0 0

G13 Gu. G12

G18 G12 G11 G16

0

Q2

G12 G11 G18

G81 G81 G83

0 0 0

tensor site 2 LFig. 3(b)$:

G11 G12 0 0 —GM

0

0

0 —G16

0 —G86

G44 —G45

G18 G11

G12

G12 G16

G11 G16

—G68 —G61 —G61 G66

0 0 0 0

0 0

0 0

0 0

G44 —G45

0 0 —G4s G44

0 0 0 —G45 G44

G61 G61 G68 0 0 G66

tensor site 5 t Fig. 3 (e)]:
GU. G18 G12 0 —G16 0

a

z
il

c

=
Y

'ab

2
II

c

AP

~a

G31 G38 G31

G12 G13 G11

0 0 0

0 —G36 0

G44 0 —G45

(a)- SITE 1 (b)-SITE 2 —G61 —G63 —G61 0 G66 0

0 0 —G45 0

(c)-SITE P

~b I'a
I
I
I

c

(e)-SITE 5

90

r b
r'

4

(d)-SITF 4
Z

(f)-SITE 6

tensor site 6 LFig. 3(f)j:
G11 G13 G12 0 G16

G33 G31 o G86

G12 G13 G11 0 G16

0 0 0 G44 0 G45

G61 G63 G61 0 G66

FIG. 3. Local coordinate frames for the various rare-earth
sites relative to the crystal unit-cell axes. 0 0 0 G45 0 G44


