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A spectrally pure self-sustained oscillator, described by a positive- and negative-impedance series circuit
Z=Z„+Z~ such that Z e'"'=e'"'Z(~, D), yields a single frequency output depending nonlinearly on a
parameter D related to an instantaneous or recent-time-averaged power. The oscillator operates at a point
D=Do at which gains and losses cancel, R„+R =—R(cop, Do) =0 and at a frequency coo determined by
Xv+X =X(cop& Dp) =0. Since 8=0, the oscillator linewidth vanishes in the absence of noise. We endow
the resistances R„and R with Langevin noise sources. Amplitude ftuctuations produce a broad additive
background. The oscillator is unstable against phase fluctuations, which broaden the signal into finite
width. A quasilinear treatment, well above threshold, demonstrates that the phase executes a Brownian
motion. If BR/Bco&0 or SX/SD&0 at the operating point, phase and amplitude fluctuations are coupled.
Nevertheless, we succeed in calculating the linewidth and proving that it is independent of the rate at
which power (or D) relaxes. A comparison is made with the "linear" treatment of oscillators as amplified
noise. A reduced random process is set up, valid for time intervals obeying eood t))1. Although the phase of
the oscillator involves a nonlinear, nonstationary action on the Gaussian input noise, it is shown that well
above threshold, for the ~educed process, the phase is again properly described as a Gaussian variable subject
to the expected Brownian-motion diffusion. For all well-designed oscillators, even near threshold, we
establish that the reduced random process is that of a rotating-wave van der Pol oscillator. A comparison
is made between quasilinear solutions of the rotating-wave van der Pol oscillator and exact solutions of
the Fokker-Planck equation computed in the next paper, VI, in this series. For intensity fluctuations it is
demonstrated that quasilinear methods are quantitatively valid away from the threshold region and qualita-
tively valid near threshold, provided that the quasilinear approximation is made in the correct variable.

I. INTRODUCTION

N this paper we shall give a Langevin-noise-source
.. treatment of classical self-sustained oscillators. '

A detailed consideration of the classical case is
warranted at this time, because we have established a
connection' between noise in quantum oscillators
(masers or lasers) and correspotsdAzg classical oscilla-
tors. Thus the solution of the classical problem provides
the key to the solution of the quantum-mechanical
one.

Self-sustained oscillators differ from ordinary non-
linear systems in that the nonlinearities cannot be
regarded as small since they control the operating level
of the oscillator. Moreover, all autonomous oscillators
(that is to say, oscillators described by differential
equations whose coefficients are not explicitly de-
pendent on the time) possess a form of instability

which in simple cases is phase instability. Because of
this instability, the usual quasilinear methods which
assume that fluctuations from some operating point
are small cannot be applied directly.

We shall, however, try to take special advantage of
certain properties of what might be called an ideal
oscillator. Such an ideal oscillator is spectrally quite
pure, that is to say its output is not merely a nearly
periodic function of the time but is in fact a nearly
sinusoidal function of the time. An ideal oscillator will
have only a small amount of harmonic content, and in
our present discussion we shall make approximations
which neglect this harmonic content. Such approxi-
mations are of minor importance and can easily be
corrected after the present calculations are completed.

One way to take advantage of the spectral purity in
dealing with the motion of a self-sustained oscillator in
the absence of noise is to take the nonlinear terms and

*This work was previously presented at the 1964 Durham
Conference on High Intensity Photon Beams (unpublished)t and
at the New York meeting of the American Physical Society,
Bull. Am. Phys. Soc. 11, 111 (1966).' This paper has been written in a nearly self-contained fashion.
A more detailed discussion of the tools needed for this treatment
are provided in the author's previous papers: I. Rev. Mod. Phys.
32, 25 (1960); II. J. Phys. Chem. Solids 14, 248 (1960); III.
Rev. Mod. Phys. 38, 359 (1966); IV. ibid. 38, 541 (1966); V.
Bull. Am. Phys. Soc. 11, 111 (1966) (and this paper'); VI. with
R. D. Hempstead, Bull. Am. Phys. Soc. 11, 111 (1966), and
thesis by R. D. Hempstead, Department of Electrical Engineering,
Massachusetts Institute of Technology, September 1965 and
Phys. Rev. (to be published). See also M. Lax, "Fluctuation and
Coherence Phenomena in Classical and Quantum Physics, " in
the 1966 Brandeis Summer Institute of Theoretical Physics Lec-
tures (Gordon and Breach Science Publishers, to be published).

'See paper QIX by M. Lax and W. H. Louisell. The QIX
160

refers to the ninth paper in the series by M. Lax on quantum
noise: QI. Phys. Rev. 109, 1921 (1958); QII. Phys. Rev. 129,
2342 (1963); QIII. J. Phys. Chem. Solids 25, 487 (1964); QIV.
Phys. Rev. 145, 110 (1966); QV. In Physics of Quantum Elec-
tronics, edited by P. L. Kelley, B. Lax, and P. E. Tannenwald
(McGraw-Hill Book Company, Inc. , New York, 1966), p. 735;
QVI. "Moment Treatment of Maser Noise" (with D. R. Fredkin,
to be published); QVII. I. Quantum Electron. , QE-3, 37 (1967);
QVIII. H. Cheng and M. Lax in Quantum Theory of the Solid
State, edited by Per-Olav Lowdin (Academic Press Inc. , New
York, 1966); QIX. with W. H. Louisel. l, J. Quantum Electron. ,
QE-3, 47 (1967); (Note: papers QVII and QIX were presented
as part of one long talk at the Phoenix International Conference
on Quantum Electronics, April 1966);Phys. Rev. 157, 213 (1967) .
For a summary of the preceding papers see M. Lax, "Quantum
Theory of Noise in Masers and Lasers, " in 1966 Tokyo Summer
I.ectures in Theoretical Physics, Part I, (Syskabo, Tokyo and
W. A. Benjamin, Inc. , New York, 1967).
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perform an average over one cycle. ' We shall find it
more expedient to introduce complex amplitudes. It
will then turn out that retaining appropriate powers
of the complex amplitudes automatically performs a
selection for us of the appropriate terms of the correct
frequency and discards the harmonic terms that would
otherwise appear.

One of our complex amplitudes will have the simple
variation exp(impost), and the other amplitude will vary
in the complex-conjugate manner. We shall make the
rotating-wave approximation which neglects the cou-
pling between these two complex amplitudes. This
approximation is exceedingly good as long as the Q of
the oscillator is a large number. Indeed this approxima-
tion has essentially the same spirit as that of neglecting
the higher harmonics. All of these approximations are
excellent for an oscillator of high Q.

A. Nature of an Oscillator Without Noise

The essential characteristic of a self-sustained oscilla-
tor is that at zero amplitude the system has a negative
resistance which causes the system to be unstable. The
amplitude then grows until sufficient nonlinear positive
resistances come into play so as to cancel the negative
resistance. The oscillator then settles down to an
operating point at which the positive and negative
resistances cancel precisely. Moreover we shall see in
the subsequent analysis that the system settles at a
point at which the reactance vanishes as well, and this
will determine the operating frequency of the oscillator.

The cancellation of positive and negative resistances
essentially means that in the absence of noise the line-
width of an oscillator goes to zero even though dis-
sipative elements are present in the system.

B. Self-Sustained Oscillator With Noise

In the usual quasilinear treatment of noise in non-
linear systems, the noise produces an effect additive to
the signal. If this were the case, the output of our
oscillator would possess a 8-function spectrum plus a
background. This is not satisfactory for our purposes.
We anticipate that the noise will spread this 8-function
spectrum into a finite width. Thus the noise mixes with
the signal in a complex fashion in a self-sustained
oscillator that is quite different from ordinary non-
linear systems.

The reason for the ability (at least in an approximate
sense) to talk about signal plus noise in ordinary non-

'See, for example, B. van der Pol, Selected Scientific Papers
(North-Holland Publishing Company, Amsterdam, 1960), Vol. 1,
pp. 346, 361; N. M. Krylov and N. N. Bogolyubov, Introduction
to Nonlinear Mechanics (Princeton University Press, 1943); N.
N. Bogolyubov and Yu. A. Mitropolsky, Asymptotic Methods in
the Theory of Nonlinear OscNators (Daniel Davey and Company,
Inc. , New York, 1965l. Yu. A. Mitropolsky, Probterrts of the
Asymptotic Theory of Nonstationary Vibrations (Daniel Davey
and Company, Inc. , New York, 1965); N. Minorsky, Nonlinear
Oscillations (D. Van Nostrand Company Inc. , Princeton, New
Jersey, 1962) .

linear systems is that such systems are stable; thus
the quasilinear treatment of' I which assumes that the
effects of the noise are small is an adequate treatment.
Therefore, in order to broaden our 8-function spectrum
into a finite linewidth, we must find a breakdown of
the quasilinear approximation. This breakdown indeed
follows from the previously mentioned phase instability
of autonomous oscillators. To understand this in-
stability, we merely note that if our differential equa-
tions do not depend explicit1y upon the time and we
have a solution that starts at a time to, we can construct
from it other solutions that start at slightly different
times. There is no cost in energy in passing from one
such solution to another, so that a Quctuation of phase
which takes us from one solution to another will not
be suppressed. Indeed such phase Quctuations will be
shown to be quite analogous to the Brownian motion
of a free particle. Thus the phase deviations can become
quite large. Hence the phase Quctuation cannot be
treated in the quasilinear approximation, although as
we shall see, all coordinates in the problem which are
independent of the phase will be stable and hence can
be treated by quasilinear methods. Thus the spectral
linewidth which involves the phase Quctuations cannot
be treated by quasilinear methods, but we shall see
that amplitude Quctuations, in which the phase cancels,
can be treated by the usual quasilinear methods. Thus
we shall find that the effect of amplitude Quctuations
is to add a background to the signal, but only the phase
Quctuations broaden the signal from a 8-function
spectrum into one of finite width.

For purposes of understanding this central broadened
line, it is then quite adequate to study the phase
Quctuations only, neglecting all amplitude Quctuations.
In doing so we arrive at an equation of universal form:

dP/dt= G(t) cos(g+topt) . (1.1)

In this equation co() represents the frequency of the
oscillator, p+ooot its (total) phase, and G(t) is a random
variable linearly proportional to the input noise source.
The latter is assumed to be Gaussian and approximately
white.

If the noise source is precisely white, Eq. (1.1)
describes a nonstationary MarkofFian process (see Sec.
IV) whose diffusion constant is time-dependent and
proportional to cos'(cost+&) . Over a time interval
At))(too) ', we show in Sec. 5 by using the methods of
IV, Sec. 5, that the process (1.1) can be replaced
accurately by a simpler "reduced process, "a statioeury
Markoff process with diffusion constant obtained by
replacing the above cos'(&est+&) by its average value
-', . Thus over /ong time intervals (t))~s '), there is no
distinction between the process (1.1), the simpler
process ~/dt = G(t) coscopt, and the reduced process
dP/dt= 2 't'G(t). For the reduced process, dp/dt and qb

are clearly G-aussian. Indeed, this reduced process is
the usual Brownian-motion process.
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&C4(t) —4(0) j')=ll'I t I. (1 4)

Thus our autocorrelation can be written in the form

&a*(t)a(0) )= (I a I ')exp( —A
I
t I) exp(iieet); tl.„=-,'W,

(1.5)

so that the noise spectrum4 takes the well-known'
Lorentzian form

The spectral density can then be computed by taking
the Fourier transform of the autocorrelation function

(a(t) a(0) )= & I a(t)
I

e'o"&
I a(0)

I
e *'o&" )expio~st

=( I
a

I
') &expiry(t) —y(0) )&expi~ot.

(1.2)

In passing from the first to the second step in Eq. (1.2)
we have neglected amplitude Ructuations. It follows
from the fact that the Fourier transform of a Gaussian
variable is also Gaussian that we can write

&expiL4 (t) —y(0) )&= exp{——', (Ly(t) —y(0) j')}.
(1.3)

For t))(coo) ' we may use the reduced process. Then g
exhibits a simple Brownian motion and the mean
square of the displacement of p increases linearly with
the time:

which describes the rotating wave van der Pol oscillator,
we shall find it possible to introduce new units of time
and power such that the dimensionless variables corre-
sponding to p and A, denoted by primes, obey the very
simple equation

Ao'= 1/(p') above threshold

=2/(p') below threshold. (1.9)

Thus we shall see that the approximations made above
threshold in Sec. 4 and that made below threshold in
Sec. 7 appear to disagree at threshold. However, we
shall show in our next paper' (Classical Noise VI) that
both of these answers are indeed correct. It is simply
that there is a narrow region near threshold (which is
treated in VI by an exact solution of the appropriate
Fokker-Planck equation) over which the linewidth
varies from one form to the other (see Fig. 1).

The very simple results we have just quoted apply
to an ideal stabilized oscillator, namely one whose
frequency is not a function of its operating point. When
the frequency is a function of the operating point,
amplitude and phase Quctuations are coupled together.
The calculation of the linewidth in the presence of
such coupling is, so far as we know, a previously un-
solved problem (at least in the nonlinear region above
threshold). We shall show that when such amplitude

-,'G(co, a) =—(a*„a„)= e '"'dt(a*(t) a(0) ) 12

The factor of —', in front of the noise power 6 arises
because the usual engineering definition of noise power
assigns all of the energy to the positive-frequency range,
so that, for example,

10

1.0

1.2
OO Ao

G(co, a) —=
p 271

&a*-a-)—=
&I a(o) I').

co 2'
(1.7) 1.0

The total power is determined by the mean square
Quctuation at one time. The noise power G has been
integrated from zero to infinity whereas the quantity
&ae„a„& has been integrated from —oo to oo. We shall
show in Sec. 4 that the linewidth A„associated with
phase Ructuations is inversely proportional to the
power at which the oscillator operates. If we define

p(t) =
I a(t) I', (1 8)

then the power will be proportional to p. In Sec. 9,

4 For de6nitions appropriate to complex variables, see IV, Ref.
13 and QIV, Ref. 24.' See, for example, W. A. Edson, Proc. IRK 48, 1454 (1960);
J. A. Mullen, ibid. 48, 1467 (1960); M. E. Golay, zbsrt, 48, 1473
(1960). R. Esposito, J. Electron. Control 12, 251 (1962). An
excellent collection of Russian papers is presented by P. I. Kuz-
netsuv, R. L. Stratonovich, and V. I.Tikhonov, nonlinear Trans-
formotsorts of Stochastic Processes (Pergamon Press Ltd. , Oxford,
England, 1965).

-10 -8 -6 -4 -2 4 6 8 10

Fio. 1. The half-width A„of the spectrum (1.6) of a van der
Pol oscillator plotted versus dimensionless pump rate p. In VI,
the spectrum is shown to be nearly Lorentzian. The half-width
A„ is then essentially equal to the lowest eigenvalue of the Fokker-
Planck operator. In the dimensionless units of Sec. 9, the Fokker-
Planck equation (8.10) takes the form

BP (r,rp, t) /Bt =H,P+ (1/r') O'P/BqP

in radial and phase variables, where

H,P= a/arDr' P r ') Pg+—(a'/Sr') P.— —-
The eigenfunctions of the Fokker-Planck operator H„+ (1/r')
as/ass have the form R (r) exp(its) and eigenvalues h&, de-
termined by

(ff, X'/r') R„(r—) = Ai„R (r). —
The eigenfunctions that contribute to the spectrum {1.6) have
X=1, and the lowest of them h.1,0 is called A.„(p for "phase")
and is plotted above against pump rate. The "exact" numerical
computations of A1,„ for n=0, 1, ~ ~ ., 9 are described in VI.
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and phase coupling is present, the linewidth is increased
over that shown in Eq. (1.9) by a factor that depends
on this coupling. EGects of this coupling are discussed
in Sec. 6 and the resulting linewidth is presented there
and in the Summary.

%hile our formula for the linewidth associated with
phase Ructuations takes a universal form regardless of
the detailed nature of the amplitude Quctuations, a
discussion of the spectrum of amplitude noise requires
the specification of a more detailed model of the nature
of the nonlinearities. If the nonlinear dependence
occurs only through the parameter p, then the amplitude
spectrum is determined by the autocorrelation

which again leads to an approximate spectrum of
I.orentzian shape. In the quasilinear approximation,
the halfwidth of the amplitude spectrum takes the
following form in appropriate dimensionless units:

(1.11)

In the same units,

These equations are meant to be valid above threshold,
below threshold, and even in the threshold region.
However, we would anticipate that the quasilinear
approximation is not as accurate in the threshold region
as elsewhere. Comparisons between the phase noise of
Eq. (1.9) and the amplitude noise of Eq. (1.11) with
exact solutions for these quantities for a rotating wave
van der Pol oscillator, as obtained in VI, are shown in
Figs. 1 and 2.

2. COMPLEX AMPLITUDE FORMULATION FOR
NONLINEAR PROBLEMS

A. Complex Amylitude Transformation

In this section, we shall consider a nonlinear system,
not necessarily a self-sustained oscillator, and shall
show that the introduction of appropriate complex
variables produces an automatic simpli6cation in the
discussion of nonlinear problems. %e will start with a
resonant circuit perturbed by a nonlinear impedance:

I.dI/dt+Q/C =f(Q, I) . (2.1)

In order to have a de6nite example in mind, we shall
consider the special case

It will often happen that the nonlinear response of an
oscillator depends on some parameter D that does not
depend on the instantaneous value of p, but rather on
some time integral over the previous history of p. The
fact that D lags behind p can introduce spiking into
the behavior of an oscillator as discussed' in QVII.
Our general results for the phase linewidth have already
included the possibility of such a lagging response. For
the amplitude noise, however, separate consideration
must be given to the case of the lagging response and
this is done in Sec. 10 of the present paper.

The previous literature on noise in classical oscillators'
has generally dealt with more specialized models, and/or
has been less systematic and rigorous than the present
approach. More careful discussions have just begun to
appear in connection with noise in lasers.

f(Q, I) = tzI.IsQ. — (2.2)

20

&a &2

——IQL

The procedure we shall adopt will be valid for a general
function f and we shall indicate both special and general
results as we go along. The form of Eq. (2.2) suggests
that in series with a capacitance C there is another
capacitance whose inverse capacity is proportional to
the square of the current. This suggests that the two
inverse capacitances must be added and that the
resonant frequency will be modi6ed in accord with

I I I I I I I I

-6 -4 -2 0 2 4 6 8 10
P I

-10 -8
0

FzG. 2. The half-width tt, for amplitude fluctuations Lsee
(1.10)g is plotted versus dimensionless pump rate p. In VI, we
evaluate the spectrum for amplitude Quctuations directly and
Gnd it to be nearly Lorentzian. The eigenvalues that contribute
to pure amplitude tiuctuatzons are hs, „(see caption, Fig. 1).
The lowest eigenvalue A0,0=0 corresponds to the steady state,
and A =—A.0,1, the lowest nonvanishing eigenvalue is plotted above.
This result agrees closely with the actual half-width of the di-
rectly computed amplitude spectrum. See VI for details, as well
as for A,o, for e=1, 2, ~ ~, 10. The quasilinear approximation
(QL) is given by (A,)uz, =2(tp+8)z" according to (9.16). The
intelligent quasilinear (IQL) approximation is obtained by re-
placing (tie)uz, =2po+4/po by (Aa) zux=2(p)+4/(p), where
(p) is the exact mean value of p shown in Fig. 4.

~o =ozc+tz(I )~i zo,s= (I.C) '. (2.3)

We shall demonstrate shortly that while this conclusion
is qualitatively correct, it is quantitatively incorrect.
To demonstrate this point we introduce a pair of
complex variables

@=I iapQ, —zz*= I+is&sQ (2.4)

s C. Schmid and H. Risken, Z. Phys. 189, 365 (1966); H.
Haken and W. Weidlich, ibid 189, 1 (1966.); H. Sauerman, ibid.
188, 480 (1965); 189, 312 (1966); W. Weidlich and F. Haake,
ibid 186, 203 (1965).; H. Risken, ibid 191,302 (196.6);H. Risken,
C. Schmid, and %. Keidlich, Phys. Letters 20, '489 (1966).
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together with the inverse transformation C. Equation f'or c and Steady-State Solution

I= —,
' (a+a*), Q= (2~o) '(a* —a) (2 5) Making use of Eqs. (2.1) and (2.4), we find that

our complex variable u obeys
Note that ~0 is as yet unknown and that the parameter
p in the nonlinear term is not assumed small.

B. Pure-Syectrum Ayyroximation

In the spirit of what was said in the introduction,
we shall seek a "pure-spectrum" solution of the form Fi= R+—iX; f(Q, I) = ', R(a+a-*)+-,'iX(a* a), —

da dI, f(Q, I)
zo~pI=——pi, 'Q —uopI+ ', (2.12)

cQ I.
where our truncated nonlinear impedance can be written
in the form

A ~q'"0 (2.6) (2.13)

the variable u containing only a single negative fre-
quency, and the variable u* containing a single positive
frequency. The nonlinear term f is then expanded as a
polynomial in u and u*. In accord with our pure-
spectrum approximation, we shall retain only the terms
on the right-hand side that contain the frequencies
+orp and —orp..

f= (zt L/»o) La*
I
a I'—a

I
a I'+ (a*)'—a']

=(zt L/8~o) (a*
I
a Iz—a

I
a I'). (2 7)

In the case of an arbitrary nonlinear form, f, we can
make the general expansion

f(Q, I) =-'Zl F-(I a I') (a*)"+F-(I a I') *a"].
n=l

(2 8)

The pure-spectrum approximation that we propose
consists in retaining only the terms

f(Q» =p LFi(I a I') a*+Fi(l u I') *a]. (2 9)

We shall refer to an oscillator as an ideal oscillator if
these are the only terms that are in fact present among
all of the nonlinear terms. It is to be noted that the co-
eS.cient Ii& does not display any frequency dependence.
A somewhat more general form of an ideal oscillator
can be defined by means of

f(Q, I) =Z( id/dt, I
a I')-'(—a*+a), (2.10)

where

Z( —zd/dt
I
a I') e'"'= e'"'Z(ice

I
a I')

in which the impedance Z produces a single-frequency
output when acted on by any single-frequency input
yet the amplitude of that output depends on the in-
stantaneous value of

I
a I'. Thus the choice (2.9) is a

special case of (2.10) with the parameters chosen in
accord with

where E. and X are the real and imaginary parts of
the impedance Z or the coefficient I j. The equation
for c can now be rewritten in the form

da/dt= —-', il (oi,'/cop) +~op+ (X/L) ]a
+-', zI(o~,'/pop) (op+ (X/L)—]a*

+z (R/L) (a+a*) . (2.14)

A solution of the form (2.6) will satisfy (2.14) only if
the terms in exp(z&ppt) and exp( —icopt) vanish sepa-
rately. The imaginary and real coefficients of exp(inept)
yield

&pop = &p,z+ppoX/L, (2.15)

By what appears to be a miraculous coincidence, the
complex coeflicient of exp( ipipt) —then also vanishes
automatically. In our special example, the form (2.7)
for f yields a contribution to the reactance X but no
contribution to the resistance R; thus the form (2.6)
is in fact an exact solution of Eq. (2.14) with freqzzezzcy

determined by the first part of (2.15). In general,
however, there is a contribution to the resistance R
and the level of oscillation is determined by

R—=R(ohio, I
a I') =0 (2.16)

i/tzL/(8oip) ] I
a I'= —,'Fi ———,'iX, (2.17)

which combined with Eq. (2.15), leads to the correct
expression for the operating frequency G)p,

is obeyed. This condition corresponds to the cancellation
of resistance that must occur at the steady operating
point of a self-sustained oscillator. Indeed this condition
can be used to determine

I
a I' at the operating point,

whereas the previous condition (2.15) determines the
frequency at this operating point. If we consider the
special example (2.7), we flnd that our reactance X is
defined by

Z(~o, I
a I') = Fi(l a I') . ippz=ip '+ip

I
u I'=(g P+—'g(Iz) (2.18)

Z( ~,
I
a Io) Z(, I

a lz)* (2 11) A comParison between (2.18) and (2.3) shows that
the correction in the squared frequency is half as large

and with the impedance independent of frequency. as was previously conjectured.
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D. Truncated Impedance Expression

To display the relation between our simple method
of truncating the impedance and the method commonly
used in textbooks on nonlinear mechanics, ' we introduce
the transformation

a=
~
a

~
e '"o'-a*=

~

a
~

e' o' (2.19)

into the expression for f and write that expression as a
Fourier series in the form

f(ooo '
)
a ) sin&sot, [ a ) cosMot) =

o gF„~ 8
~

"e'"""+c.c.

(2.20)

Our truncation consists in retaining the n = 1 term (and
its complex conjugate) in that Fourier series. This first
term, by the usual theorem on Fourier series, is given by

2R+iX= Fi — 2——n. '

X dg e "f(ao ') —a
~

sin8—, [ a
~

cos8). (2.21)

The similarity between Eq. (2.21) and the "strobo-
scopic" methods or the methods of averaging over one
cycle is now obvious. ' It is to be noted, however, that
our procedure is slightly more general than the one
commonly used: our nonlinear term is not assumed
small and the frequencycvo is calculated self-consistently.
Thus the frequency which appears underneath the
integral sign of Eq. (2.21) is not known until the cal-
culation is finished. I.et us furthermore note that if
the nonlinear function is a polynomial, the need for
performing the integral in (2.21) is eliminated and the
procedure of simply picking out the appropriate terms
as was done in Eq. (2.7) can be used.

3. MODEL OF A SELF-SUSTAINED OSCILLATOR

We have seen in the preceding section that the usual
treatment of nonlinear oscillations proceeds by truncat-
ing the impedance in such a way as to discard terms
containing undesired frequencies. We shall therefore
introduce our model of an ideal self-sustained oscillator
as one whose impedance does not produce any of these

undesired frequencies to begin with. Our model is dis-

played in Fig. 3 and in the following equation:

Z( —id/dt, D) I(t) = e(t). (3.1)

0=~—r(0) D,—.(0) ( a, ).
A. Noise Sources

(3.6)

As shown in Fig. 3, our positive and negative im-
pedances each have associated with them a noise source
so that the total noise voltage is the sum of the separate
voltages, which are to be regarded as independent. In
particular this makes the noise power additive:

e(t) = e„(t)+e~(t); (e') „=(e~') „+(e„')
where, for example,

(3.7)

The impedance is assumed to be a series combination
of a positive and negative impedance as shown in Fig. 3:
Z(cv, D) = Z~((o, D) +Z„(oo, D) = R(oo, D) +iX(oo, D).

(3.2)

In Sec. 2, our controlling parameter D was simply

D=
i
u(t)i'. (3.3)

However, as discussed in the Introduction, it is often
the case that the nonlinear impedance responds not to
the instantaneous value of

~

a P but rather to some
time average over its previous history such as that
given, for example, in

dD/dt= (R F( id/d—t) D—r( id/—dt)
/

—c(t) P+F(t).
(3.4)

(We can think of S, as the pump rate in a maser. ) The
operating point of our oscillator will be determined by

R(mo, Do) =0, X(~o, Do) =0 (3 3)

The first of these equations should be thought of as
determining the operating parameter Do, and the second
of these equations, the reactance equation, can be
thought of as determining the operating frequency Np.

The steady operating value for the
~

a
~

can be deter-
mined from the corresponding value for D by setting
the equation for dD/dt=0, in other words

(e„')„—= e '"'dt(e„(0) e~(t) )

FIG. 3. Model of a self-sustained
oscillator based on a series combina-
tion of positive impedances each with
its oem noise source.

2Yl Zp

Z = Z„+ Zp = R+i. X

and

= 2kT„R~'((v, D) C(oo, T„) (3.8a)

(e„')„=2kT„R„'(a&,D) C(&o, T„))0. (3.8b)

If our resistances were in thermal equilibrium, the
noise sources would be Johnson noise and the primes
on E.„and E„could be omitted. We retain this prime
to remind us that there can be a change when these
resistances are operated in a nonequilibrium situation.
Ke have chosen to evaluate these resistances at the
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mean value of the parameter D:
D= (D) Dp. (3.9)

and depend on the impedance Z~ in the neighborhood
of the frequency cop.

The correction factors C are chosen in such a way that
they reduce to unity at high temperature but at low
temperatures yield a correction which make the results
valid in the quantum-mechanical case. This correction
factor has the form'

D. Neighborhood of the Operating Point

In the neighborhood of our operating point ~p, Dp,
we can therefore expand our impedance in the form

Zr(or, D) =—Z(or, D) —R(orp, Dp)

C(or, T) = ,'(razor/k-T) coth(-,'Aor/kT). (3.10)

B. Complex Amplitude Equations

As a preliminary to introducing our complex ampli-
tudes, let us define an inductance by means of

where

—-', (BX/»p) z(or —orp'/or),

= (BR(or, D) /»), g& (or —orp)

+ (BZ/8D), ,rr, hD

+(~'Z/»~D). , rr, (~—orp) ~D+", (3.19)

L= p (~+/») ~-~p, &=&p (3.11) AD= D—Dp. (3.20)

Our total impedance can then be decomposed into a
resonant part and a remainder:

Z(or, D) =—L(or —orp /or) +Zr(or, D). (3.12)

Our model equation can now be rewritten in the form

When this expansion (3.19) is introduced into (3.17)
we obtain

BR/» O'Z/»BD dA"

2L 2L dt

LdI/dt+Lorp'Q+ZrI = e(t) .

Our complex amplitude now obeys

(3.13) BZ ADA* e+(t)
BD 2L I.

da dI . dQ dI——%Op —= ——240pI.
dh dh dh dh

where e+(t) =e '""e(t). Dividing by the expression
(3.14) within brackets on the left-hand side, and neglecting

small quantities of second order, we obtain
When Kq. (3.13) is introduced, we obtain the form

da/dt= —iorpa (Zr/2L) (a+a*)—+e(t)/L (3.15a)

In view of (3.5), Zy(orp Dp) =0. The other complex
amplitude u* obeys

du*/dt = zorprz* (Zr/2L) (a+a*)—+e (t) /L. (3.15b)

C. Slowly Varying Amplitudes

In the absence of the noise voltage e(t), our solution
had the form of a simple exponential. Therefore, in the
presence of these noise sources we can assume solutions
of the form

d A ~/dt Xtr DA*+e+——(t) /L', (3.22)

where L' is a complex inductance de6ned by

.BRL'= L 1—i—
BM

z BZ
(3.23)

2 Bco ~p, ap

and the parameter X is defined by

. BZ BZ . BGop
(2L') = —z — —=-+i =

) X ) e e.
BD BM BDp

(3.24)

u*= A*(t) e'"" o= A (t) e '"" (3.16)
E. Phase and Amplitude Equations

where the variables A and A* will be slowly varying
functions of the time. After neglecting the small
counter-rotating terms, these slowly varying functions
obey

In the region above threshold for self-sustained
oscillations, the phase and amplitude of an oscillator
will be nearly independent variables. It is therefore
expedient to introduce the transformation

dA* f . A*, e(t)= —Z,
~

orp —z — +e—"0'
dt k dh 2L L

( . Zl A . e(t)= —Z~ I

—orp —i —
I

—+e'~o'
dh & dhj 2L L

7 For a discussion of this factor, see I, Sec. 7.

A*= i
~

ap )
ex—p(zz+izr) . (3.25)

(3.17)
The variable v is the phase of our oscillator, and the
variable I is related to the amplitude of our oscillator.
Together they obey the complex equation

d(I+i rr) /dt =&AD+i expL —i(zr+orpt) j
&& exp( —zz) e(t)/~ L'ap

)
. (3.26)
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dm/dt=
I

X
I

COSPAD

+e "sin(v+copt) e(t)/I 2'ap
I . (3.28)

The real and imaginary parts of Eq. (3.26) lead to A. Phase Diffusion

dv/dt=
I X I

sinPB, D We now wish to show that by choosing a time t such
that coot is large compared to 1, we will obtain a simple
diffusion for the phase in the form

L.(t) —.(0)7 &=-;(G)„,
I

t
I
=~'I t

We note that when p is not equal to 0, the phase and
amplitude are coupled together. In spite of this, it is
possible to introduce a linear combination of I and e
which, in the absence of noise, is a precise constant of
the motion. This combination obeys

d(v COSP —I sinP) /dt

t

ds ds' coscops coscops'(G(s)G(s') ). (4.2)
0 0

By the Wiener-Khinchin theorem, the autocorrelation
of the noise variable G(s) is expressed in the form

= e "cos(v+copt+P) e(t) /I L'«
I

. (3.29)

4. PHASE FLUCTUATIONS IN A FREQUENCY-
STABILIZED OSCILLATOR

(G(s) G(s') )=- (27r) ' exp[ico(s —s') 7(G ) „dco.

(4.8)

scop/BDp ——pure imaginary, P =-. 0. (4 1)

Examining Eq. (3.24) we see that when P=O a
change in the operating point Dp produces no change
in the real part of the frequency coo. Such an oscillator
can be called a frequency-stabilized oscillator since its
operating frequency does not depend on its operating
level. We summarize this statement in

In the special case, when the spectrum of 6 is white,
this autocorrelation has the form of a delta function in
the time difference. But the proof which follows does
not make use of the assumption of a white spectrum.
Introducing the trigonometric identity,

coscops coscops =
p coscop(s —s ) +p coscop(s+s ) ~

the time integration can be performed and we obtain
For simplicity we start with this frequency-stabilized
case. Moreover, as remarked in the introduction, ampli-
tude fluctuations produce only an additive background.
So for the discussion of this case we shall neglect the
amplitude fluctuations. Then Eq. (3.27) reduces to the
simple form

0 0
dsds'exp[ico (s—s') 7 coscop (s—s')

sinp[p~(co+cop) t7 sinp[', (co—cop) t7

xo 2 m —+02

where

dv/dt= G(t) cos(v+copt), (4.2)

v(t) —v(0) G(s) coscopsds= Gaussian.
0

G(t) =e(t)/I I'ap
I (4.3)

We have thus arrived at our universal equation, (4.2),
for the phase diffusion in a self-sustained oscillator.

We shall postpone to the next section the rigorous
discussion of this nonlinear random equation. In this
section, we shall make the customary approximation'
of setting e=o on the right-hand side. In this case, we
obtain

—+-,'v t[h (co+cop) +8 (co—cop) 7. (4.9)

For copt»1, the right-hand side of (4.9) reduces to the
familiar 8-function form. Thus our results will only
depend on the spectrum of G at the frequency Goo.

This is why it was unnecessary to assume the white
spectrum.

In (4.9) we have retained only the term involving
the cosine of the time difference. This is the important
term; the other term, involving the cosine of the time
sum, leads to

t t

ds ds' exp[ico(s —s') 7 coscop(s+s')

Neglecting amplitude fluctuations, our desired auto-
correlation then takes the form (coscopt —coscot)= cos~ot

CO
—(dp

(a*(t)a(0) &~ I ap I'e'"p'(exp —i[v(t) —v(0) 7)
=

I « I"'""expI —
p ([v(t) —v(0) 7'&I + cosMpt sincopt[5(co cop)+5(co+cop) 7. (4.10)

2G)p

([v(t) —v(0) 7'&= —,'(G') „,[t—(sin2copt)/(2co )]. (4.11)

(4 5)
If these results are combined, we obtain

The last step follows from the Gaussian nature of the
variable v(t),
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In the region «&)1, the second term in (4.11) is

negligible compared to the first term, and we obtain
Eq. (4.6) as we set out to do. Our autocorrelation then
takes the form

(~*(t)s(0) &= I
« I

' expL —
o W

I
t

Ij «p(t«t), (4»)
and its I'ourier transform leads to the spectrum

then our results reduce to the thermal-equilibrium
expression

w»=(~~) (kT,C,+k
I
T. I c„)/(2z), (4.23)

where the linewidth Ace is defined by

aco=R,/ I
I.' I.

S. JUSTIFICATION OF THE DIFFUSION
TREATMENT

=
I « I' (oW)/C(~ —«)'+(oW)'3 (4.13)

B.Fu11 Width at Half-Power

The spectrum (4.13) is a I.orentzian whose full

width at half-power is given by

Our heuristic discussion of diffusion in the preceding
section had two approximate elements: one involved
the neglect of the frequency variation of the noise-
source spectrum, and the second involved the neglect
of the nonlinear dependence on the phase. The "white-
noise" approximations of Eqs. (4.9) and (4.10) are
rewritten in the form

W=-'(G') =-'(e') - / I
I-'sp I' (4.14)

Introducing the noise sources (3.8), this width takes
the explicit form

W= (kT„R„'C +kT R„'C„)/
I
I.'« I', (4.15)

C,= C(«, T„), C„=c(«, T„). (4.16)

The power dissipated in the positive resistance can be
defined by means of

F=R„(I')=', R„I « I'. -

If we define a linewidth hen by means of

(Aoo)'=R, R„'/
I
I.' I',

(4.17)

(4.18)

C. Classical and Quantum Limits

In the high-temperature or low-frequency limit, we
obtain the classical linewidth

W,i„„,.i (Ato)'kT„I 1+(T„R„'/T,R,') )(2F)—',

(4.20)

whereas in the opposite limit we obtain the linewidth
given by

Wpuentum iimit~(Goo) ~k«L1+ I Rtt /Ry I](4F)
(4.21)

If the noise sources are correctly given by the Nyquist
or Johnson noises

R„'=R„(«), R„'=R,(«), R («) = —Rn(«),

(4.22)

our linewidth takes the form

W=(A~)PPT„C„+k
I T„I C„I R„/R, Ij(2Z)-i.

(4. 19)

dip(G') „(-,'~) (G') .,tt.t, (5.1)
G)—COp

cos«d t—costotit, sin«dt
~

~ ~dip G' „or G')„,
GP —

GOp «
The approximation of the first factor in each of these
integrands by a b function in co can be seen to be
justified for a time interval At such that

At R)))1) (5 3)

where 8~ is the frequency width over which the noise
spectrum (G') has an appreciable variation. In the
following analysis, we shall see that 0 t must be chosen
large compared to 1/pop, but it need only be chosen
small compared to the reciprocal of the linewidth.
Thus the criterion (5.3) is equivalent to the statement
tha I; the input noise spectrum must not vary much over
the linewidth. Since the linewidth will turn out to be
exceedingly narrow, this is in fact a very mild restric-
tion. Thus for all practical purposes, the phase broaden-

ing of an oscillator line with a nonwhite-noise spectrum
is essentially the same as the phase broadening associ-
ated with a white spectrum. In what follows, we shall
assume that the spectrum is white in order to convert
our process to a MarkoS. an process.

Let us now rewrite our nonlinear random process,
(4.2), which is a universal description for phase
fluctuations in an autonomous oscillator, in the form

F(t) —tG e irapt—F(t) *=-'G e*'~o' (5.5)

We shall now follow the methods described in IV,
Sec. 5 for the Markof6an representation of processes
with short correlation times. Ke choose a time interval
At long compared to 1/«. The random forces for the

~/dt=G(t) cos(«t+p) —-F(t) e o+F(t) *e'4' —(5.4)

and
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where the terms depending on
gati disappear in view of

(5.9). In calculating D~, however, the contribution of
hits is essential since we see from Eq. (5.16) that it
contains terms of second order. The ziti contribution
is only linear in P and vanishes automatically. The
second term in (5.16) vanishes because of Eq. (5.9).
The Grst term in Eq. (5.16) cancels against its complex
conjugate; thus we can conclude that

(5.22)

The generalized Fokker —Planck Eq. (5.10) now simpli-
6es to the usual Porker —Planck equation; indeed, to
the simple diRusion equation

c)P/N=-'(G') O'P/BqP =Dcl'P—/Bg' (5 23)

as the description of our "reduced random process. "
Thus, as claimed in the introduction, the phase executes
a simple Brownian motion. The conditional probability
distribution, which is the Green s-function solution of
Eq. (5.23), is well known in the form

that factors of exp(i4ti) are canceled by factors of
exp( —i'). Thus the correct answer can be obtained

by ignoring the phase on the right-hand side of (6.3),
and with a simple shift of time origin our random
problem is reduced to the trivial form

dp/dt G(t) cos(oipt) . (6.4)

The mean-square displacement of it increases linearly
with time, so that the finite terms on the right-hand
side of (6.5) are unimportant in determining the
linewidth. The net result is that, in the presence of the
coupling between phase and amplitude fluctuations,
our linewidth is simply increased by a constant factor

Using the second part of Eq. (6.1), we see that the
diffusion in our original variable v divers by a constant
factor from the diffusion in our new variable it:

&L (t) —(o)3') = (c sp) &L4 (t) —4 (o) l')
+6nite terms. (6.5)

P(4(t), tlat(0), o)=(4 Dt) '" ~enhanced lf original/cos'P. (6 6)

Moreover, we see from (5.24) that the phase difference
it(t) —it(0) is a Gaussian random variable, as was
previously assumed in the evaluation of the linewidth.

The mean-value method which has been employed a
number of times in dealing with noise in masers'
consists in neglecting the dynamic aspects of the
variable' D and replacing it simply by a mean value.
This leads to

0. PHASE-WIDTH ENHANCEMENT DUE TO
AMPLITUDE FLUCTUATIONS

X e pI —L4 (t) $(0)$'/4—DtI. (5.24)
V. MEAN-VALUE APPROXIMATION METHOD

When amplitude and phase are coupled together, as
in Eqs. (3.27) and (3.28), the situation is slightly more
complicated than that discussed in the preceding sec-
tions. Equation (3.29) suggests, however, that a
simplification can be performed if one introduces a new
variable it:

I.dI/dt+MpsQ+Zi( id/dt, D—)I=e(t). (7.1)

Since Eq. (7.1) is now a linear equation, it is per-
missible to use the usual I'ourier-transform methods.
Ke follow the notation explained in Ref. 13 of IV and
6nd that the Fourier component is given by

p=e cosp —I sinp; e= (@/cosp)+I tanp, (6.1) t Lgioi+ (pip%pi) ]+Z~ (pp, D) II„=e . (7.2)

so chosen that in the absence of noise it does not couple
to any amplitude Quctuations. This variable then obeys
the nonlinear random equation

dp/dt=G(t) e " costippt+p+st tanp+(it/cosp) j. (6.2)

Since the amplitude fluctuations are bounded, it is
permissible to treat them in a quasilinear fashion by
setting the variable N=O, which leads to the simpler
equation

dP/dt G(t) cosLoipt+P+ (it /cosP) j. (6.3)

This equation divers only slightly from that discussed
in the preceding section. We saw there that the phase
on the right-hand side of the equation cancels out of
the various moments needed in calculating the diGusion
constants because the random variable Ii is coupled
only to its complex conjugate. This in turn assures

We can then obtain the spectral density of the current
as

&I I- I'&

aD=D —Do (7.4)

8 A. L. Schawlow and C. H. Townes, Phys. Rev. 112, 1490,
(1958); J. A. Fleck, Jr., J. Appl. Phys. 34, 2997 (1963); R. V.
Pound, Ann. Phys. (N. Y.) 1, 24 (1957); M. P. W. Strandberg,
Phys. Rev. 106, 617 (1957); J. Weber, Rev. Mod. Phys. 31,
681 (1959); W. H. Wells, Ann. Phys. (N. Y.) 12, 1 (1961); G.
Kemeny, Phys. Rev. 133, A69 (1964); H. Risken, Z. Phys. 180,
150 (1964); %. G. Wagner and G. Birnbaum, J. Appl. Phys.
32, 1185 (1961);See also Sec. 6 of QV.' In masers, D represents the population diBerence between the
upper and lower state.

~
iL, (oi —pips/oi) + (BR/capp) (oi imp) + (BZ/BD) a—D )'

'

(7.3)
where
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In the positive-frequency region, we can approximate other than that associated with a tuned circuit and
the denominator in the form provides no coupling between phase agd amplitude

Quctuations. In particular, we assume

Xg ——0, BR/Bco =0. (8.1)

for M) 0, using (3.23). Thus the spectral density of the Our equation of motion then takes the form

current reduces to the form
LdI/dt+L(vooQ+R(p) I=e(t), (8.2)

p= I a I'=
I

A I'
(II- I')= . (7 6)

(e') /4 I
L' I' where

I pp Mo+(—2iL) '(BZ/BD)AD
I

'

I i(upQ—=a=Ac '"" (8..3)
Making use of Eqs. (3.23) and (3.24), this spectral
density can be written in the suggestive form

In Eq. (8.2) we have assumed that the control param-
eter D is simply the variable p itself. Thus the control
parameter D is sensitive to, or aCkabaticaQy follows,
the instumtueeogs value of the amplitude of the oscil-
lator; hence the name "adiabatic oscillator. " In terms
of our complex variable A, Eq. (8.2) reduces to the
form

(e')-/4 I
L' I'

I ~—~o—(B~o/BDo) ~D I'

,
"'

L( — -~ )'+(:W.)'3-'. (7 7)
(~)-.

4IL'I
dA/dt= —(2I.)—'R(p) A+I e (t); e =e'""e(t).

For purposes of visualization it is often convenient
to make the transformation to real variables

We see that the real part of the derivative B~p/BDo
gives rise to a frequency shift Acr, and the imaginary (8.4)
part of this derivative gives rise to a linewidth which
we have denoted 5'i, the J to remind us that a linear A. Cartesian Representation of Adiabatic Oscillator
approximation has been made.

The mean square of the current is given by the total
spectral density in the form

(Io) „de=m (I2) „da)

(e)„, 2

4I L IoW
(7.8)

h(o =-', Wr, tanP. (7.10)

By solving this equation for a linewidth, we obtain an
expression for the linewidth in terms of the total power
or the value of u at the operating point

Wr, ——(e ),/2 I
I' I'(I') = (e') /I L'ap I'=2 (cos'P) W.

(7.9)

Comparing the real and imaginary parts of Eq. (3.24),
we And that the linewidth and frequency shift are
related by

W=~ —iy, p x2+y2 r2

Equation (8.4) is then equivalent to the pair of equa-
tions

dx/dt= —(2L) 'R(p) x+F„
dy/dt= —(2L) 'R(p) y+F„, (8.6)

F,(t) =L 'e(t) cos&opt, F„(t)=L 'e (t) sin~ot. (8.7)

(F,(t) F,(N) )=2D„B(t—N); D„=~ (e') „,/L',

(8.8)

For time intervals At large compared to 1/cup, we obtain
a reduced random process whose diffusion constants
computed by the methods of Sec. 5 take the simple
values

8. THE TUNED ADIABATIC OSCILLATOR
D„„=D„; D,y

——0. (8 9)

Our results for the phase noise of our oscillator do
not depend on the details of the approach to equilibrium
for the amplitude. Indeed (having treated the amplitude
quasiline arly), the distribution of phases can be
written down once and for all for a nearly arbitrary
model. A discussion of amplitude noise requires how-
ever that we adopt a specific model for the return to
equilibrium of the control parameter D. For simplicity,
let us start with an oscillator that possesses no reactance

The mean values of these forces are zero. Using Eq.
(5.13) from III, we can immediately write the Fokker-
Planck equation for the reduced process:

BP(x, y, t) B R(p) x B R(p) y
Bt Bx 2L By 2L

a2 a2+D„-+ P. (8.10)
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dpldt= L'—R(p) p+L '(e+A+e A*). (8 11)

The nonlinear random terms have a nonvanishing
mean value which can be obtained by the methods of
IV, Sec. 3:

(e+A )

= (at)-'
' dA (s')

e+(s)ds A(t)+, ds'
ds

B. Equations for Radial (Amylitude) Fluctuations

&y multiplying Eq. (8.4) by A* and adding the
complex conjugate we obtain an equation for the radial
variable p..

R(poo) =0. (8.20)

C. Operating Point and Phase Fluctuations

As discussed in I, the operating point is determined
by the point at which the first diffusion coeKcient (the
drift vector) vanishes. This leads to the condition

A (po) = L—'R(po) po+4D =0 . (8.19)

This condition is not entirely invariant to the choice
of variables because the drift vector does not transform
as an ordinary vector (see IV, Sec. 3) . For example, if
we had used the drift vector in Eq. (8.4), we would
have arrived at the less satisfactory operating-point
condition

= (At)-'L

L—I 1 (e2)

t+LL t s

ds ds'(e+(s) e (s') )
t

(8.12)

A simple approximation valid below threshold for the
decay constant associated with phase fluctuations can
be obtained from Eq. (8.4) by replacing the co-
e%cient of A on the right-hand side by a mean value.
This leads to the decay constant

Thus our Langevin equation for p can be written in
the form

D(p) =p( '),/L'=4 D * (8.15)

The drift term, the erst term in (8.13), and the diffu-
sion coeKcient given in (8.15) could equally well have
been obtained from the corresponding drift and diffu-
sion coeKcients in the x and y representation by means
of the transformation equations (3.27) and (3.28) of IV:

A(p) = —A,+ —A„+ D„+—D„„
Bp Bp Bp Bp
Bx By Bx2 By2

=2xA, +2yA„+4D„=—L 'R(p) p+4D, ,

(8.16)

D(p) =(&p/Bx)'D. ,+(8 /ay)'D„„=4 D„. (8.17)

With the drift vector A(p) given by (8.16) and the
diffusion constant D(p) given by (8.17), the prob-
ability distribution for amplitude Auctuations obeys
the I'okker —Planck equation:

BI'(p, t) a B2

Bt Bp
= ——EA(p) &1+ LD(p) ~3 (8»)

Bp

dp/dt=$ L 'R(p) —p+4-D j+F„(8.13)

where the Langevin force F„has mean zero and second
moments given by

(F.(t)~.( ) )

=L '
~

A ~'L(e~(t)e (u) )+(e (t)e~(u) )j
=L 'p2(e') „,o(t -u) =2D(p) b—(t—u), (8.14)

where

D. Decay Constant for Amplitude Fluctuations

The appropriate quasilinear procedure for obtaining
the decay constant in a stable system (and our system
is stable against amplitude fluctuations) is to obtain
the decay constant from the linear expansion of the
drift vector about the operating point. This leads to

A.= ~A(p)/~p lp=.o=L 'R(po)+L Po~R/~po

=4D„/po+L ipo&R/~po. (8.23)

In the region below threshold, the parameter po becomes

A„=(2L) ~(R(p) ) (2L) ~R(po) =2D„/po, (8.21)

using (8.19) . This procedure is equivalent to the mean-
value approximation method previously discussed in
Sec. 7. In contrast to (8.21), the corresponding decay
constant correctly computed above threshold in (4.14)
is equivalent to the result

(k~) = (e') -ol(4L'
I

ao I') =D**/po (8 22)

We see as usual that the mean-value method leads to
a decay constant which is twice as large as that ob-
tained by the method of dealing directly with the phase
of the oscillator.

As indicated previously, the use of amplitude and
phase is the correct precedure above threshold whereas
the approximation of the nonlinear term by a mean
value, which is equivalent to regarding as the real and
imaginary parts of A as independent variables, is the
appropriate procedure below@ threshold. Ke have already
displayed in Fig. 1 the transition between these two
results.

It is not entirely trivial that the determination of
the operating point by means of Eq. (8.19) is equivalent
to the determination made in Sec. 7 by considering the
output of the oscillator as linearly amplified noise.
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small, and the first term in (8.23) dominates. We see

by comparison with Eq. (8.21) that

A, 2A„below threshold. (8.24)

&A*(t) A(t) A*(0) A(0) )-(I A(t) I )&I A(0) I )
= (A*(t) A(0) )(A(t) A*(0) ). (8.25)

It is important to note that the nonineariance of the

operating point under nonlinear transformation of vari
ables introduces an element of judgment into the deter
mining of the point about which a quasilinear analysis is
to be made If,. for example, we had used r =p'I' instead
of p, we would have found the incorrect result A,~A„.The
fact that A,~2h.„ is a simple consequence of the
Gaussian behavior of our random variables below
threshold:

x=$x',

which results in

t= Tt', (9 3)

9. ROTATING-WAVE VAN DER POL OSCILLATOR
(RWVP)

An important special case of the adiabatic oscillator
discussed in the previous section is one in which the
resistance is a linear function of p, or one in which it
can be approximated as a linear function in the neigh-
borhood of the operating point:

R= R(pp) +BR(pp)/Bpp(p p—p) =Rpp —II, (9.1)

Ro =BR/—&po; 11=poBR/&po R(p—o) (9.2)

This approximation is valid for all well-designed oscil-
lators" even near threshold. " It is then convenient to
make a change in the scale of the amplitude and the
time:

The absolute square shown on the right-hand side of
(8.25) produces the doubling of the decay constant
shown in Eq. (8.24).

The necessity for using p rather than r=p'" as a
variable in a quasilinear technique is not well known,
and is probably related to the fact that the condition
A (pp) =0 is essentially an energy-balance condition.

The decay constant for amplitude Quctuations shown
in (8.23) depends upon the derivative of the resistance
at the operating point. It may be convenient, for experi-
mental purposes, to re-express this result in a form
which is experimentally measurable. For this purpose,
we consider modifying the load of the oscillator by

dx'/dt'= (TRpco/—2I) (x"+y" P) x'+F—,', (9.4)

where

p =rl/(pR, )

F*'= (2'l8 F*.

(9.5)

(9.6)

The new moments of the Langevin forces are given by

(F. (t') F.'( ') ) =(2'/~) (F.(t) F.( ) )
= (r/~) s2D.,b(t —u)

= (TIP) (2D*.) b(t' —u') (9.7)

&**'=(&/e) D,=1.

adding an increase in the series resistance

If we choose our transformation so that the new
diffusion constant takes on the value unity, we obtain

~ ~

If we resolve Eq. (8.19) for the shift in operating
point due to this change in load, we obtain the result (9.8)

I' =-,'R,pp, (8.28)

we can, by taking the appropriate derivatives, obtain
the relation

R„BP/BR„P=,'R„s8pp/8Rp—. -(8.29)

Thus our required derivative of the resistance at the
operating point is expressible in the form

riR(pp) /Bpp ', R„$P R„aP/aR, j——-—, (8.3—0)

and our decay constant for amplitude Quctuations can
be rewritten in the form

D R~ R„ 8I'
A, =4 + —1——

po L I' ~R
(8.31)

~po/~R, =—PR(po)/Ppoj-'.

Since the power dissipated in the positive resistance is
given by

In addition, we may require the coefBcient of the non-

I This quasilinear approximation in R(p) has s much wider
range of applicability than one might at first imagine. The ratio
of the (omitted) second-order term to the linear term is of order

(p po) &'R/&po'PR/&p—oj '= (p po)/w ((Ap—)')"'/pi&

where p1, which measures the change in p required to produce an
important change in E(p), will usually be of order po. Thus, the
error involved is small if the operating level po is large compared
to the noise level ((Ap)')'", a condition obeyed in all well de-
signed oscillators even at threshold. (For further discussion of
the latter point see Ref. 11.)» Since (p') at threshold (p=0) is near unity (see Fig. 4),
(p)=p(p') is roughly fo at threshold. Assuming R(p) hss the
form Rf(p/p&), the threshold value of p is thus given by

p~= (2D..L/Ro)'"= (p|p.)'",
where we obtain D„from (8.8) and define

p = (e').o/E&Lf'(w/e) 3

ss a typical value of p that would be produced by noise. (We
assume E is so chosen that f' is near unity. ) For a well-designed
oscillator, a typical operating value p& obeys p»)p, so that the
threshold value also obeys p&)p .
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In these units, the condition for the operating point
leads to

A(po) =~ps=s(P+(P'+8)'"3 (9 14)

&p& &-

See Fig. 4 for a comparison between p0 and the exact
(p) obtained from VI. The resulting decay constant
associated with phase and amplitude fluctuations
reduces to the form

W(p) = exp[-;(Pp) —p j dp exp[x2(pp) —lpga
0

and all moments can be computed from

(p" )= p"&(p) dp

directly, or arith the help of the recursion relation

(p")=P(p" ')+2(~—I) (p" ).
Since (A (p) )= (4—2p(p —p) )=0, the quasilinear approximation
A (po) =0 of (9.14) is equivalent to setting (p') = (p)'. The quasi-
Gaussian approximation, however, sets (p')=2(p)'. These ap-
proximations are respectively correct above and below thresholds.
See I'ig. 5.

0 —
i I I I I I I I I

-10 -8 -6 -4 -2 0 2 4 6 8 10

NET PUMP RATE, P

Fro. 4. The 6rst moment (p) (proportional to the number of
photons in a laser) is plotted versus dimensionless pump rate p.
Using III (7IIg) with J=0, the steady-state distribution is given
by~

A„=2/pp,

= 1/ps,

below threshold

above threshold, (9.15)

and the decay constant for spectral linewidth associated
with pure amplitude fluctuations reduces to the simple
form

10.NONADIABATIC DETUNED OSCILLATORS

A. Phase and Amplitude Linewidths and Shifts
Below Threshold

A~~4pp —2p=2(ps+8) ~ =(2pp+4/pp). (9.16)

With the present normalized form for the drift vector
A and the diffusion constant D(p) the Fokker-Planck
equation (8.18) reduces to the simple form

BI' 82
l:(4 2p—'+2Pp—) I'3+ L4p~j—(9 1&)

Bf Bp Bp2

linear term to take the value unity:

TRpP/2L =1.

Our key equation (3.22) for the behavior of a non-
adiabatic, possibly detuned, oscillator in the neighbor-

(9 9) hood of threshold is rewritten in the form

This results in the conditions

P= (2D„L/Rs) '"; r=P/D„. (9.10)

A. Normalized Rotating-Wave van der Pol Oscillator
(NRWVP)

D„=i, R(p) =p —P,

A(p) =4 2p(p P) ' —D(p) —=4p (9 11)

The fundamental stochastic equation (9.4) is replaced

by
(9.12)~A/dt=(P —

) A ~s)A+a(t),

%hen these scale changes have been made, we shall
refer to our oscillator as a normalized rotating-wave
van der Pol oscillator. All of the preceding equations
for the RWVP oscillator remain valid providing we

introduce the special values

st).re Ap X ( (D)—Ds) . — (10.2)

The real and imaginary parts of the above relationship
lead to

h.„=(Rek) (Dp D);—hto = —(tanP) Ap below

(10.3)
for the region below threshold.

To discuss amplitude fluctuations we use Eq. (10.1)
and its complex conjugate to derive an equation for p
in the form

dA*/dt=)(D Ds) A*+e+(t—)/L'. (10.1)

In the region below threshold we can estimate the
linewidth associated with phase and amplitude fIuctua-
tions and the associated frequency shift by replacing
the coe%cient of A* by a mean value:

(h*(t) h*(N) ) = (h(t) h(N) )=0. (9.13)

and the moments of the Langevin forces in this notation
(with primes omitted) are given by

(h*(t) h(~) ) = (h(t) h*(N) )=4&(t—I),
where

p', ) =0, Dpp=4pD „ D-= (e')-o/(4 I
L' I').

(10.5)

dp/dt = (2ReX) (D Ds) p+4D„+F„—(10.4)
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The operating point is then determined by the condi-
tion

(A(p) )=2ReX((D—Do) p)+4D, =O. (10.6)

Equation (10.3) can now be rewritten in the form

A~ = (Rek) (Do—D)~~2D„/ (p) below. (10.7)

The corresponding decay constant for pure amplitude
Quctuations below threshold can be estimated by
taking the mean value of the coefficient of p in Eq.
(10.4), which leads to the result

A.~2ReX (Do—D) ~2h.„below. (10.8)

As in the adiabatic case, there is a factor-of-2 relation-
ship between the amplitude and phase Quctuation decay
constants below threshold because of the Gaussian
nature of the Quctuations.

Indeed if the parameter I' is large enough, an adiabatic
approximation is valid, and our present results reduce
to the earlier ones with the above transcription. This
suggests, even in the nonadiabatic case, that we make
a corresponding scaling transformation

p=8p" (10.16)

The resulting operating point in the dimensionless
notation again takes the simple form

po'= o [P+ (P'+8) '"),
where

p = (Rek/D„) (6t/I' —Do) .

(10.17)

(10.18)

An analysis of the amplitude fluctuations can now be
made by making the quasilinear approximation which
leads to the set of coupled equations

d(esp) /dt =—(4D, /po)Ap+ (2ReX)poAD+F~, (10.19)B.Determination of Operating Point

To determine operating points for both D and p, we
not only need Eq. (10.6), but must also make use of
the equation describing the equilibration of the oper-
ating parameter D. We shall take this equation to have
the form

d(AD) /dt = sAp r~—D+F—,

where
AD=D —Dj, ~p= p —po.

Making use of the time-scale transformation

(10.20)

(10.21)

dD/dt= f(D, p)—+Fg&(t). (10.9) T=P/D„= Li'/(sD„ReX) J" (10.22)

Our condition for the operating point can be written
in the form

f(Di, po) =0. (10.10)

We have used the symbol Dj to distinguish from the
simpler approximation Do which was determined from
Eq. (3.5). In the present analysis (3.5) is replaced by
the slightly more accurate equation (10.6), which we
rewrite in the form

and a corresponding transformation of the decay
constants

(10.23)

the decay eigenvalues of the pair of equations (10.19)
and (10.20) are obtained as a solution of a quadratic
equation in the form

A.,'=-,' {(4/p') +I"aL(4/p' —I")'—8l"p'Ji'}, (10.24)

2Rez(Do —Di) po =4D*' (10.11) where p' is written brieQy for po'.

To make further explicit progress it is necessary to
assume a form for the arbitrary function on the right-
hand side of Eq. (10.9) . This form can be obtained by
expanding the function f around the lowest approxima-
tion for the operating point Do and po and retaining
only the linear terms. . We shall therefore take our
equation for the operating parameter D in the linear
foDIl

dD/dt =8 I'D sp+F~. — —(10.12)

The condition (10.10) now takes the explicit form

Di = (6t—spo) /I'. (10.13)

Inserting this result into Eq. (10.11),we finally obtain
a quadratic equation for po..

2Rehg(6t —sp )/I' —Do)po+4D„=O. (10.14)

Comparison with Eq. (8.16) indicates the relationship

L—'R(p) —+2Rehl (s/I') p —(S/I' —Do) ). (10.15)

C. Results in Adiabatic Limit with Detuning

The adiabatic limit occurs when the parameter 1 ' is
suKciently large. In this limit, one eigenvalue becomes
very large and would not be observed in the noise, and
the smaller eigenvalue reduces to the form

A, '-+(4/p'+2p') . (10.25)

This result is in agreement with our previous result
(9.16). In the present case, however, it. is valid even
when X is complex and P is not equal to zero; in other
words for the case in which amplitude and phase
Quctuations are coupled. This coupling, of course,
inQuences the location of the operating point, but the
linewidth for amplitude Quctuations retains the same
form (10.25) even in the presence of such coupling.
The quasilinear estimate of the total amplitude Quctua-
tion based on Eq. (5.20) of I can be given in the form

(10.26)
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Z$ s(d—/dh), D]I(t) =e(t), (11.1)

where the operating parameter D is itself controlled by
a stochastic relation

11. SUMMARY

In this paper we have introduced a model for a
self-sustained oscillator based on Fig. 3;

0
-f0 -8

I I I

«4 ~2 0
I I I

2 4 e S &0
where

dD/dt = (st I'D —sp+—Fn, (10.12), (11.2)

Fro. 5. The second moment of amplitude fluctuation, ((Ap) o )=
(p') —(p)o, is plotted versus dimensionless net pump rate p. For
exact results see caption of Fig. 4. The Einstein relation yields
the quasilinear approximation (QL):

a =I-soooQ (11.3)

The lowest approximations to the operating frequency
coo and parameter Do are given by

((hip) ) =D/tt =4pogpo+ (4/po) 3 '= 1+P(P'+g)
vrhereas the intelligent quasilinear approximation replaces p0 by
r= (p):

((ttp) ') =4PL2I + (4/p) 3 '

Z(cop, Do) =0.
Introducing the definitions

LI = —soBZ/Boo I ooo, no

(11.4)

(11.5)

In terms of our dimensionless units, this result can be
written in the simple form

i(BZ/—BD)/(BZ/r)oo) I„,,z, =—X—= I) I
e's, (11.6)

(11.7)

&(/1p) &~4p /(4/p +2p )

which has the limiting behavior

(10.27) where

e '"'dt(e(0) e(t) ), (11.8)

appropriate to Gaussian Buctuations and a limiting
behavior

we found that the autocorrelation important for the
spectrum of oscillator noise was given by

(10.29)
&'*(t)~(o) )=

&p& exp( —A. I
h I) expI —s(~o+&~) tj,

which indicates the suppression of fluctuations as one
moves well above threshold. See Figs. 5 and 6 for a
comparison between the quasilinear second moment
(10.27) and the corresponding exact result obtained
from VI.

Spectra of noise generated by the pair of quasilinear
equations (10.19) and (10.20) are obtainable by the
standard quasilinear methods discussed in I. The noise,
for example, is given explicitly in Eq. (1.13) of IV. The
spectrum will involve both of the eigenvalues for decay
constants of Eq. (10.24) . The extent to which each of
these decay constants appears in the spectrum is deter-
rnined by the moments and correlations between the
Langevin forces F, and I'~. Without a specific model,
the moments of I'D and its correlation with P, are not
known. Therefore we shall not bother to write out any
further speci6c results. Let us mention, however, that
in the problem in which p stands for the number of
photons and D for the population difference in a
maser, these noise sources have been derived from first
principles in QIV and QVII. A detailed evaluation of
the spectrum involving both decay constants is given

by McCumber" and also in paper QVII.

"D, E. McCuinber, Phys. Rev. 141, 306 (1966).

&p&=a&p'&,

with the transformation defined by

t = Ll'D„/(SReX) j.

(11.10)

(11.11)

In this dirnensionless form, the operating point was

$.0

0.8—
h

V 0.5—
A

Ol

0.4—
c3

V 02—

0
-10 -8 -6 -4 -2 0 2 4 6 8 qo

FIG. 6. The normalized second moment of amplitude Quctua-
tions ((np)o)(p)~ is plotted against net pump rate P, using
((Ap)') from Pig. 5.

(10.3), (11.9)

where &p), the mean signal, was reduced to an ap-
propriate dimensionless form by means of
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found to be

(P') P '=-'Lp+(p'+8)''g (10.17), (11.1 )

where the parameter p represents the net pump rate
in dimensionless units and is given by

After introducing the new time unit

T=P/D„= LF/(sD, .ReX) Jt', (11.14)

we found that the spectrum for combined amplitude
and phase fluctuations was given in I.orentzian form
as the Fourier transform of Eq. (11.9) above, where
the dimensional half-width A~ is defined by

AoT= (&p')cos'P) ' above (6.6)

=2/&p') below W,„h,„„e. (7.9), (11.15)

With the notation

~P =P &P), — (11.16)

the autocorrelation for pure amplitude fluctuations for
the case in which the parameter D adiabatically follows

p was given by

&~P(t) ~P(0) )= &(»)') exp( —~. I
t I), (11 17)

with the dimensional half-width A for amplitude
fluctuations given approximately, using the intelligent
quasilinear approximation given in the caption of Fig.
2, by

&.T=2&P')+4/&P') (».»)
and the total fluctuations in our dimensionless units
given by

&(~P')') =4&P')/L(4/&P'))+2&P')3 (11 19)

In the nonadiabatic case we found that two different
decay parameters are needed to describe the amplitude
noise and these parameters are given in the intelligent
quasilinear approximation by

1/2

(10.24), (11.20)

If one tak.es the limit FT approaching in6nity, the
lower root of Eq. (11.20) reduces to the usual adiabatic
result (11.18) .

From Figs. 1 and 2, we see that the quasilinear
methods discussed in this paper are quite accurate
everywhere except in the small region —10&p&10
near threshold (i.e., 0.2«p )& 10), and that even in this
region, the results are qualitatively correct.
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Radiation from the 'Ts State of Cr'+ in Ruby and Emerald
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The fJ.rst appreciable decrease in the lifetime of the 2E state of Cr'+ in ruby and emerald as the tem-
perature is raised is shown to be the result of populating the shorter-lived 472 level in thermal equilibrium
with the metastable 'Ir . The direct transition from the 'T2 to the ground A2 state is shown to be mostly
radiative, In both crystals, the emission peak of the 'T2~'A& transition is shifted considerably toward
longer wavelength compared to the absorption peak of that transition. The reduction in lifetime and
quantum efficiency at very high temperatures is also considered.

r. rmRODUCYIOm

i lHE energy levels of iron-group ions of the d' con-
J .figuration in nearly octahedral crystal sites have

been the subject of intensive theoretical and experi-
mental investigation which has been summarized in a
number of reviews. '' The greatest effort has focused
on the Cr'+ ion in ruby, which is chosen as an example
in both of the above references. The states therein
described which enter into the following discussion are
the ground. 'A2, the metastable 'E lying at roughly

1 D. S. McClure, in Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc. , New York, 1959), Vol. 9.' J. Margerie, J. Phys. (Paris) 26, 268 (1965).

14 500 cm—', and the lowest excited quartet stat" the
'T2—which gives rise to the broad absorption band in
ruby centered near 18 000 cm '. The only other state in
this region is the 'T&, lying about 550 cm ' above the
2E in ruby. ' However, since the 432—&2TI transition is
weakly absorbing and the 2T& state decays quickly to
the 2E,4 the 2T~ plays but a small role in the economics
of absorption and emission; in the remainder of this
paper its population will usually be added to the 2E,
these levels together forming the metastable doublet

' J. Margerie, Compt. Rend. 225, 1598 (1962).
4 J. L. Calviello, E. W. Fisher, and Z. H. Heller, J. Appl.

Phys. 3V, 3156 (1966).


