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A variational calculation of the ground-state energy of liquid helium-3 and liquid helium-4 is made using,
respectively, Jastrow- and Slater-Jastrow-type trial wave functions. In the boson (He?) case, the quantum
average, analogous to a statistical average over a fictitious canonical ensemble, is computed by a molecular-
dynamics method for a system of 864 atoms. The following quantities are obtained: ground-state energy:
—5.95°K /atom (experiment: —7.14°K/atom) ; equilibrium density (0.0202-0.002) atoms/A? (experiment:
0.022 atoms/A3); liquid-structure factor; fraction of particles condensed in the zero-momentum state:
0.105:-0.005. This is in good agreement with previous computations. In the fermion (He?) case, the energy
expectation value is calculated approximately by use, up to second order, of a cluster expansion of the effect
of the antisymmetrization, developed by Wu and Feenberg. The ground-state energy obtained is —1.35°K/
atom (experiment: —2.52°K/atom). The liquid-structure factor of liquid He?, for which no experimental
result is yet available, is calculated in this approximation.

I. INTRODUCTION

E present in this paper a variational calculation
of the ground-state energy of liquid helium-4 and
liquid helium-3.
For the boson system (helium-3) we use a Bijl-
Jastrow trial wave function

Z w(| i—r; D)}, (1)

where «(r) is a “short-range” functxon (decreasing
faster than 1/7% at infinity). The advantage of such a
trial wave function is the formal analogy of its energy
expectation value with the configuration-space inte-
grals encountered in classical equilibrium statistical
mechanics. This analogy has been used by several
authors who evaluated the energy expectation value
by different techniques borrowed from the theory of
classical fluids: summation of chain diagrams, use of
approximate integral equations,! and ‘“‘exact” Monte
Carlo computations.2?® In this work we have used the
same molecular-dynamics method that has been used**
for classical fluids.
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In Sec. II the analogy of the Jastrow quantum varia-
tional problem with classical statistical mechanics is
underlined, the principle of the molecular dynamics
method is briefly recalled, and the numerical results
concerning the ground-state energy of liquid helium-4
are given. These results are in good agreement with
McMillan’s® and with those obtained at Orsay?: the
energy is —5.954-0.2°K /atom (the experimental energy
is —7.14°K/atm) and the equilibrium density is
(0.94-0.1) po, where po is the density of liquid He at
Zero pressure (po——O 02185 atoms/A3).

The energy is, in principle, the only quantity which
is stationary with respect to small changes of the varia-
tional parameters. In Secs. IIT and IV we summarize
the results concerning two other interesting quantities:
the liquid-structure factor and the one-particle density
matrix. The liquid-structure factor S(k) seems to
change very little when the variational parameters
are varied slightly around their optimum value. It is
in good agreement with the experimental data where
they exist (>0.8 A~1). However, a short-range trial
function #(r) cannot give rise to a structure factor
S(k) vanishing linearly for small magnitudes of the
wave vector k& (as it should, if the phonons are the
only long-wavelength excitations of the liquid). Reatto
and Chester® have recently suggested to include in %(7)
a long-range part

uir(r) < [P+ (1/ke) T 2

At the end of Sec. III we discuss the inclusion of such
a term in the wave function, assuming that the cutoff
1/k. is large so that the effect of (2) can be treated as a
weak long-range perturbation.

The one-particle density matrix is discussed in Sec.
IV: It seems to be somewhat more parameter-depend-
ent than the energy and S(%). The fraction of particles

8 L. Reatto and G. V. Chester, Phys. Letters 22, 276 (1966),
208
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condensed in the zero-momentum state is
1o/ p=0.1054-0.005

in reasonable agreement with the estimates of Penrose
and Onsager” and of McMillan.3

In Sec. V are given the results concerning liquid
helium-3. For a fermion system a symmetrical wave
function like (1) is inadequate. Several authors® have
suggested to build an antisymmetrical wave function
in the simplest way,

\I/F(l'l, see, l'N) =¥p Det {eXP(iki' r.i) Xi(di) }) (3)

where x;(8;) describes the spin state of particle number
j. With a wave function like (3), the energy expecta-
tion value no longer has the same form as in classical
statistical mechanics. However, Wu and Feenberg? have
developed a useful cluster-expansion formalism for the
effect of the antisymmetrization. Such an expansion is
expected to be valid when the strongly repulsive short-
range forces are such that the correlations due to the
Pauli principle act as a small correction to the dynamical
correlations described by ¥5. We have used the Wu-
Feenberg expansion up to second order: the second-
order correction is 10 times smaller than the first-order
oneand the ground-state energy found is —1.35°K/atom
(the experimental® one is —2.52°K/atm). Finally, the
structure factor of liquid helium-3 is obtained: Its
Wu-Feenberg expansion seems to converge rather
rapidly and it does not depend too much on the varia-
tional parameters. A comparison with experiment would
be interesting (to our knowledge, no experimental data
are available).

For solid helium, Nosanow? has suggested using a

0= Y00 [,

and

i<j

T(r) = (h2/4u) Au(r).

The main problem is thus to calculate, for each trial
function u(r), the pair function g(r). At this stage, the
formal analogy of our quantum variational problem
with the classical problem is obvious: Given a trial
function #(r), we may always choose some arbitrary
nonzero number 7" and define an equivalent two-body
potential through
®(r) =kTu(r).

g(r), calculated for a classical fluid of particles inter-
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“localized Jastrow” trial wave function

V=] ] exp[—(34) | r:—~R: [2],

where the R; are the coordinates of the lattice sites
and where 4 is a variational parameter. In Ref. 2
Monte Carlo calculations for 96 helium atoms with
such a trial wave function were reported and repro-
duced fairly well the energy-density curve of solid
helium-4; the density at which the optimum value of
became zero was in rough agreement with the experi-
mental liquid-solid transition. This question is now
being investigated in further detail by Hansen and
Levesque.

II. ENERGY EXPECTATION VALUE

We assume that the system of helium atoms (mass u)
is described by the Hamiltonian
N

H= Z—(ﬁZ/zp)A,~+§ V(| ri—1;)),

=1

4
and that the interatomic potential is of Lennard-Jones

type
V(r) =4el(o/7) = (a/7)"]

with!! ¢=2.556 &; e=10.22°K. The energy expectation
value per particle can be calculated, using (1) and (4),
and cast into the following form:

(Y| H|V)
N@|T)

where p is the particle density, g(r) the pair function

—1p / gLV () +T(») Jdr,

-~mem—2murnmyia>

1<j

(6)

acting through the potential ®(r) at temperature T,
is evidently equivalent to (5). In Refs. 2 and 3 the
integration of (5) was made by a Monte Carlo method
which applies in the canonical ensemble for the fictitious
fluid at temperature 7". Here, we use the equivalence
of the canonical ensemble with the microcanonical
one and, assuming ergodicity, we evaluate (5) by a
time average on a fictitious system of particles inter-
acting through the potential (7). The “temperature”
T of that system is given in terms of the average kinetic
energy.

The computation was done in exactly the same way
as in the case of the real Lennard-Jones fluid®: 864
particles, interacting by a potential ®(7) cut at7,=2.50,
were enclosed in a box with periodic boundary condi-

11 J, De Boer and A. Michels,
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TaBLE I. Average values of (a/7)%, (a/7)7, (¢/r)** and potential and kinetic energy, for different values of the variational parameters

m and b. Lengths are given in units ¢ and energies in °K/atom.

m=4
b {(a/n)®) {(a/r)2) 4 T E
1.119 0.9031 0.7217 — 7.42 7.89 0.47
1.139 0.8772 0.6304 — 90.84 8.24 —1.60
1.160 0.8529 0.5708 —11.53 8.61 —2.92
1.181 0.8311 0.5164 —12.86 9.01 —3.83
1.201 0.8108 0.4691 —13.97 9.42 —4.54
1.222 0.7922 0.4265 —14.95 9.86 —5.09
1.243 0.7744 0.3891 —15.75 10.31 —5.44
1.264 0.7573 0.3576 —16.34 10.77 —5.57
1.284 0.7411 0.3280 —16.89 11.25 —5.64
1.305 0.7258 0.3011 —17.36 11.74 —5.61
1.326 0.7112 0.2782 —17.70 12.25 —5.45
1.346 0.6982 0.2572 —18.03 12.80 —5.23
1.367 0.6853 0.2382 —18.28 13.35 —4.92
1.388 0.6739 0.2211 —18.51 13.95 —4.56
1.409 0.6634 0.2060 —18.70 14.57 —4.13
1.429 0.6529 0.1922 —18.83 15.20 —3.63
1.450 0.6439 0.1804 —18.95 15.88 -3.07
1.471 0.6342 0.1686 —19.03 16.55 —2.48
1.491 0.6253 0.1581 —19.10 17.26 —1.84
1.512 0.6164 0.1489 —19.11 17.98 —1.13
1.533 0.6083 0.1404 —19.13 18.73 —0.39
1.554 0.6002 0.1325 —19.11 19.50 0.39
1.574 0.5921 0.1260 —19.05 20.29 1.23
1.595 0.5840 0.1194 —18.99 21.09 2.09
1.616 0.5759 0.1135 —18.90 21.89 2.99
m=>5
b (/) (/) (o/nm) v T E

0.988 1.0028 0.8753 0.9415 — 2.50 7.57 5.07
0.994 0.9914 0.8648 0.9828 — 3.62 7.71 4.08
1.015 0.9550 0.8076 0.7873 — 6.85 8.09 1.24
1.036 0.9210 0.7660 0.6876 — 9.54 8.50 —1.04
1.056 0.8910 0.7338 0.6062 —11.64 8.96 —2.68
1.077 0.8626 0.7006 0.5380 —13.27 9.44 —3.83
1.098 0.8367 0.6698 0.4763 —14.73 9.94 —4.79
1.119 0.8124 0.6418 0.4225 —15.94 10.43 —5.47
1.139 0.7897 0.6177 0.3766 —16.89 11.01 —5.88
1.160 0.769 0.5934 0.3385 —17.55 11.59 —5.96
1.181 0.7468 0.5701 0.3051 —18.06 12.18 —5.88
1.201 0.7274 0.5505 0.2769 —18.42 12.79 —5.62
1.222 0.7096 0.5312 0.2526 —18.68 13.46 —5.21
1.243 0.6934 0.5128 0.2296 —18.96 14.15 —4.81
1.264 0.6780 0.4956 0.2100 —19.13 14.87 —4.26
1.284 0.6642 0.4720 0.1935 —19.24 15.62 —3.61
1.297 0.6537 0.4717 0.1831 —19.24 16.10 —-3.14
1.305 0.6512 0.4677 0.1771 —19.38 16.46 —2.92
1.326 0.6383 0.4544 0.1640 —19.39 17.33 —2.06
1.346 0.6269 0.440 0.1509 —19.46 18.24 —1.22
1.367 0.6164 0.4326 0.1378 —19.57 19.20 —0.36
1.388 0.6067 0.4221 0.1312 —19.44 20.22 0.78
1.409 0.5970 0.4123 0.1214 —19.44 21.29 1.85
1.429 0.5881 0.4039 0.1115 —19.48 22.38 2.90
1.450 0.5791 0.3950 0.1050 —19.38 23.54 4.15

tions and the equations of motion were integrated.
300 steps in time were used to reach ‘“equilibrium”
and then 1200 steps in time were made. Most com-
putations were made on the CDC 6600 of the New York
University where such a calculation took 30 min.

In a previous Monte Carlo calculation? we used as
trial function a generalization of the one used by Wu
and Feenberg,? namely,

u(r) = (ba/r)"[ 14 (ar/a)e7!"].

2 F. Y. Wu and E. Feenberg, Phys. Rev. 122, 739 (1961).

It was found that the best value of ¢ was between O
and —0.5. Moreover, as noticed by McMillan the form

u(r) = (bo/r)™ )

makes it possible, by a scaling procedure, to express
results at different densities in terms of results at a
given density. We have therefore used the trial form
(7) with m=4 and 5 and 1<4<1.5. The computation
averages of the form

((o/r)m)=(¥ | ;(o/fij)" [ (VT | w)~
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Fic. 1. Average value of (4/7)8, for liquid He? at p=p,, as
function of variational parameter b, for m=35 [curve (1)] and
m=4 [curve (2)]: —, present calculation; -, McMillan; +,
previous Orsay (Ref. 2) results.

with ¥ given by (1) can be done, assuming equivalence
of the canonical and microcanonical ensembles, by use
of the molecular-dynamics technique. For each set of
parameters (b, m) we have calculated the averages

((e/n)*wup,  ((e/))up,  {(o/r)™*)up

and the pair function gup(7) at the equilibrium density
of liquid helium-4 p,=0.3648 atoms/q®.

' The consistency of the use of a “potential”’ &(r)
cutoff at 7, was checked in the same way as in Ref. 5:
firstly, the effect of the tail #>7, of the potential,
neglected in the dynamics, was taken into account in
the calculation of the averages by assuming g(r) =1
for r>r,, e.g.,

((a/r)®)y={(0/7)*)un+(2mp/3) (/1.%) .

Secondly, the effect on the dynamics of the cutoff tail
of ®(r) was estimated, following a suggestion by
Lebowitz, by treating the cutoff tail as a long-range
perturbation [formulas (8) and (9) of Ref. 5, part II].
As in the classical case, this effect is negligibly small:

0g(r)<0.002,,  §T=-40.01°K/atom,

8V =-0.03°K /atom.

1
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09 1 A 12 13 A7 15 b
F1G. 2. Average value of (¢/7)7 (m=35): ——, present

calculation; -, McMillan.
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Tasre II. Ground-state energy of liquid helium (in °K/atom)
as a function of density.

p/po T 14 E
0.65 6.84 —11.99 -5.15
0.7 7.57 —12.96 —5.39
0.75 8.82 —14.39 —5.57
0.8 9.68 —15.46 —5.78
0.85 10.60 —16.55 —5.95
0.9 11.59 —17.55 —5.96
0.95 12.63 —18.53 -35.9
1. 13.73 —19.46 —-5.73
1.05 15.68 —21.19 -5.51
1.10 17. —22.25 —5.25
1.15 17.51 —22.37 —4.86
1.2 19.94 —24.44 —4.5
PV
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Fic. 3. Average value of (¢/r) for m=5 [curve (1)] and
m=4 [curve (2)]: —, present calculation; -, McMillan: +,
previous Orsay results.

E(°K/atom )
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F16. 4. Energy-density curve of liquid He? at 0°K. (1) Experi-
ment; (2) present calculation.

E °K/atom
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Qs 1 u 12 13 14 15 b
F1c. 5. Dependence of the energy on the variational parame-
ter b for m=35 [curve (1) ] and m=4 [curve (2?].
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Tasire III. Comparison of the present results with McMillan’s (Ref. 3), the ones obtained previously at Orsay (Ref. 2),
and experiment (Ref. 9).

Vv T E
m b Pequil./Po (°K/atom) (°K/atom) (°K/atom)
McMillan 5 1.17 0.894:0.01 —17.6 11.7 —5.9 +0.1
Orsay 4 1.3 14+0.1 —19.6 13.8 —5.8 £0.3
Present calculation 5 1.16 0.9 0.1 —17.55 11.6 —5.954-0.2
Experiment 1 —7.14

The values of ((¢/7)%), ((¢/7)7), and ((a/7)2) are
plotted on Figs. 1, 2, 3. The expectation value of the
energy for a set of parameters (b’, m) at a density p’
can be deduced from those results according to

E(o', b, m) =4e{—S5(a/r)*)+S52((a/r)12)}
+ (72/4uc®) m(m—1)bmS*(a/r) ™),

where S=(p/po)/* and &’ =5/S. Table I summarizes
the results obtained at peq =0.9py.

The over-all error is believed to be 0.005 on {(a¢/7)2),
0.002 on ((¢/r)%) and ((¢/7r)7), and 0.2°K/atom on
the energy. Table IT and Fig. 4 show the dependence
of the energy on the density. The equilibrium density
is peq=1(0.94-0.1)po. The dependence of E on & and
m at p=peq is shown on Fig. 5. The dependence of the
lowest energy obtained on the parameter m, though
very weak, seems to lead to an optimum value m=3,
in agreement with the findings of McMillan.

The ground-state energy we find is —5.954+0.2°K/
atom, at p=(0.920.1) po. Table III shows a comparison
of these results with (a) the ones previously obtained
at Orsay (by a Monte Carlo calculation on a system
of 96 particles), (b) the results of McMillan, (c) experi-
ment. When comparing with the experimental? values
—7.14°K /atom p=p,, one must take into account the
uncertainties on the interatomic potential: If instead
of the Lennard-Jones (LJ) 6-12, a Lennard-Jones
(6-8)8 or an “‘exponential-6” 1 potential is used, dif-
ferences of the order of 1 or 2°K appear in the ground-
state energy. This is illustrated in Table IV, where the
expectation value of the potential energies of these
three potentials, with a wave function of the form (1)
with m=3, are listed at p=ps,.

With the L] (6-8) potential of Haberlandt:

V=328 (o'/r)— (o'/)"],

where ¢=6.34°K/atom, and ¢’=2.84 A, the optimum
parameters are b=1.09, m=3, the equilibrium density
is 0.8p9 but the ground-state energy is —7.9°K/atom,
0.75°K below the experimental energy, which seems to
indicate that the Haberlandt potential is not consistent
with the experimental energy of liquid helium-4 at 0°K.

13 R. Haberlandt, Phys. Letters 14, 197 (1965).
14 J, E. Kilpatrick, W. E. Keller, and E. F. Hammel, Phys.
Rev. 97, 9 (1955).

III. LIQUID-STRUCTURE FACTOR

To evaluate the liquid-structure factor
S(8) =1+ [ exp(—ik- 1) [g(r) ~11dr,

one has to extend carefully the function gyp(7), in
order to avoid truncation errors in the Fourier trans-
form. We have used'® the same prolongation procedure
as in Ref. 5:

g(f) =gMD(r) s f<fc,
c(r) =—g(r) (e«”—1) , r>r, (PY),
g(r) —1=¢(r) +P/C(f—f') [g(r)—1]dr" (OZ). (8)

The consistency of this prolongation procedure was
checked in the following way: we made one particular
molecular-dynamics calculation with a “potential” ®(r)
cutoff at 3.20. We then solved (8) successively for
r.=3.2¢ and r,=2.40: the resulting S(%k) nowhere dif-
fered by more than 0.002.

The dependence of S(k) on the values of the varia-
tional parameters is small, as illustrated by Figs. 6.
The agreement with experiment is very good wherever
unambiguous results exist. The experimental situation
about the height of the first peak (around k=2 &)

TaBLE IV. Average values of potential energy (in °K/atom)
with wave function (1) (m=35, p=po) obtained by using three
different forms for the interatomic potential. L] = Lennard-
Jones.

b LJ(6-12)  LJ(6-8) exp-6
0.95 5.2 7.6 11.5
1.00 — 4.4 — 1.4 2.7
1.05 —11.3 — 8.7 — 4.6
1.10 —16.2 —14.7 —10.8
1.12 —17.5 —16.4 —12.6
1.15 —18.7 —18.3 —14.5
1.17 —19.7 —20.1 —16.3
1.18 —20 —20.5 —16.8
1.23 —21.2 —22.9 —19.3
1.25 —21.5 —23.8 —20.3
1.30 -2 —25.3 —21.8
1.34 —22.2 —26.5 —22.2

16 The second equation is the Percus-Yevick approximation
to the direct correlation function ¢(r), dedfined by the last equa-
tion (Ornstein-Zernike relation).
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is not quite clear: Firstly, it seems to depend sensitively
on the temperature and no results very near 0°K are
available; secondly, different x-ray*® and neutron? dif-
fraction experiments give different results, varying be-
tween 1.28 and 1.49. Numerical values of g(r) and
S(k) are given in Tables V and VI.

For small %, where experimental data do not exist
yet, the phonon theory of liquid He requires® that
S(k)>2(hk/2uc), where ¢ is the sound velocity. For
our equivalent fictitious fluid we have on the other hand

S(0) =kT (9p/ap).

This can vanish only if the classical fluid is incompres-
sible, which is not realizable for any of the short-range
u(r) usually assumed in classical fluids. A possible way
to improve (1) so that S(k) has the right behavior
at small % is the introduction of a long-range (decreasing

sK)

0123465678 910"121311‘(6"‘)

ekl

F16. 6. Liquid-structure factor of liquid He* (p=po) *, neutron
diffraction experiment (Ref. 16) at 1.06°K; , present calcu-
lation, m=35, b=117, E=-—5.7; ————, present calculation,
m=4,b=1.3, E=—35.5 +——, theoretical, A. Miller, P. Nozieres,
and D. Pines, Phys. Rev. 127, 1452 (1962). Extrapolation of
S (%) for small k.

more slowly than 1/7%) part in #(r), suggested recently
by Reatto and Chester. These authors suggested to add
to the short-range trial function usr(7) a long-range
part

uir(r) = (uc/pm*h) [P+ (1/ke) T ©)

chosen so as to give the right behavior of S(%) for 2—0.
Since our molecular-dynamics calculation is not

adapted to such a long-range potential, we have only

been able to evaluate approximately its effects, by the

same long-range perturbation technique. that we used

already to evaluate the effect of the tail of the potential.
The effect of ur(7) is firstly to add a term

8T = (%2/4u) (Aurz)

18 W. Gordon, C. S. Shaw, and J. Daunt, J. Phys. Chem. Solids
5, 117 (1958).

7 D. G. Henshaw, Phys. Rev. 119, 9 (1960).

18 R, P. Feynman, Phys. Rev. 94, 262 (1954).
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TasLE V. Pair function g(r) of liquid helium at p=po.

7)o g(r) r/e g(r)
<0.72 0 1.92 0.955
0.76 0.002 1.96 0.953
0.8 0.010 2 0.950
0.84 0.037 2.04 0.948
0.88 0.099 2.08 0.950
0.92 0.209 2.12 0.952
0.96 0.347 2.16 0.953
1. 0.512 2.2 0.961
1.04 0.680 2.24 0.976
1.08 0.841 2.28 0.985
1.12 0.976 2.32 0.986
1.16 1.095 2.36 0.987
1.2 1.174 2.4 0.992
1.24 1.232 2.44 1.003
1.28 1.255 2.48 1.008
1.32 1.268 2.52 1.009
1.36 1.264 2.56 1.010
1.4 1.251 2.6 1.012
1.44 1.233 2.64 1.012
1.48 1.206 2.68 1.013
1.52 1.162 2.72 1.012
1.56 1.129 2.76 1.011
1.6 1.099 2.8 1.010
1.64 1.069 2.84 1.010
1.68 1.041 2.88 1.007
1.72 1.020 2.92 1.006
1.76 1.004 2.96 1.004
1.8 0.986 3. 1.003
1.84 0.975 3.04 1.001
1.88 0.966 3.08 1.

to the kinetic energy, secondly to modify the pair cor-
relation function go(r) corresponding to the “un-
perturbed” short-range #(7) by

1 . urr (k)
(27)? /exp(zk- 2 1+pSo(k) urr (%) @,

with wrr (k) = (uc/phi) 27 [exp(—Fk/k.)/k]. This gives

8g(r) =—go(7)

TasLe VI. Liquid-structure factor S (k) of helium-4 at p =po.

ko S (k) ko S(k)
0.3 0.085 7.2 1.001
0.6 0.094 7.5 0.975
0.9 0.105 7.8 0.956
1.2 0.12 8.1 0.948
1.5 0.135 8.4 0.946
1.8 0.157 8.7 0.95
2.1 0.186 9. 0.958
2.4 0.224 9.3 0.968
2.7 0.275 9.6 0.978
3. 0.345 9.9 0.988
3.3 0.43 10.2 1.
3.6 0.54 10.5 1.008
3.9 0.68 10.8 1.012
4.2 0.84 1.1 1.014
4.5 0.98 11.4 1.013
4.8 1.115 11.7 1.012
5.1 1.201 12. 1.011
5.4 1.236 12.3 1.008
5.7 1.219 12.6 1.006
6. 1.174 12.9 1.003
6.3 1.122 13.2 1.001
6.6 1.075 13. 1.
6.9 1.031
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Tasre VIL Effect of the Reatto-Chester (9) factor on the ground-state energy (estimated by perturbation theory), in °K/atom.

ke b T 14 E 8T® 3T 1140 o
0.167 1.12 12.4 —-17.7 - 5.3 —0.21 0.17 0.28 0.24
1.15 13.4 —19.1 - 5.7 —0.23 0.17 0.31 0.25
0.25 1.12 12.4 —17.7 - 5.3 —0.49 0.11 0.6 0.27
1.15 13.4 —19.1 - 5.7 —0.53 0.11 0.67 0.25
1.17 14 —19.7 - 5.7 —0.56 0.11 0.72 0.27
1.18 14.4 —20.1 - 5.7 —0.58 0.11 0.73 0.26
1.23 16.4 —21.3 — 4.9 —0.69 0.11 0.83 0.25
0.33 0.95 8.12 8.05 16.2 —0.5 +0.08 —-0.7 —1.12
1 9.12 — 3.64 5.5 —0.59 0.08 —0.04 —0.55
1.12 12.4 —17.7 - 5.3 —0.85 0.08 +0.1 —0.67
1.15 13.4 —19.1 - 5.7 —0.91 0.08 +1.09 +0.26
1.17 14 —19.7 - 5.7 —0.96 0.08 +1.18 +0.30
0.4 0.95 8.12 8.05 16.2 —0.69 0.09 —0.12 —0.74
1 9.12 — 3.64 5.5 —0.81 0.08 —0.17 —-0.9
1.12 12.4 —17.7 - 5.3 —1.16 0.08 +1.26 +0.18
1.15 13.4 —19.1 - 5.7 —1.26 0.08 +1.43 +0.31
1.17 14 —19.7 - 5.7 —1.32 0.08 +1.55 +0.31
0.5 0.95 8.12 + 8.05 16.2 -1 0.09 —1.93 —2.84
1. 9.12 — 3.64 5.5 —1.18 0.1 —0.49 —2.57
1.12 12.4 —17.7 — 5.3 —1.66 0.1 +1.65 +0.11
1.15 13.4 —19.1 - 5.7 —1.79 0.1 +1.90 +0.21
1.17 14 —19.7 — 5.7 —1.87 0.1 +2.09 +0.32
1. 0.95 8.12 8.05 16.2 —2.35 0.48 —7.44 —9.31
1. 9.12 — 3.64 5.5 —-2.71 0.5 —3.41 —5.62
1.12 12.4 —17.7 — 5.3 —3.65 0.53 +2.42 -0.7
1.15 13.4 —19.1 — 5.7 -3.9 0.54 +3.07 —0.09
1.17 14 —19.7 - 5.7 —4.06 0.54 +3.57 +0.05

rise to modifications of both kinetic and potential

energy:

8T@=3p [ og(r)T(r)dr,

V@ =3p[og(r)V(r)dr.

The results corresponding to m=35 and several values
of b and %, at p=po, are summarized in Table VII.
As is often the case when an approximate method is
used simultaneously with a variational principle, the
results are not very meaningful: As the cutoff value k.
increases, the energy seems to decrease but so does the
validity of the perturbation calculation.

Thus this approximate method does not give a
definite answer to the question of whether the modi-
fication of the wave function (1) proposed by Reatto
and Chester lowers the energy; it seems, however, to
indicate that their modification leads to a reasonable
S (k) without spoiling the results for the energy. The
“perturbed” S (k)

S(k) =So(k) /[ 1+purr (k) So(k) ]

is shown on Fig. 7 for b=1.17, p=p,, m=35, and several
values of Z..

IV. ONE-PARTICLE DENSITY MATRIX

The one-particle reduced density matrix is defined by

—1
p(l)<r1—l'1') =N [/‘P(rlly Iy ¢ev, rN)\Il(rly Iy o, rN)dr27 Yy drN:ll:/‘\I,(rly °t rN) Pdrl, Yy drN:I .

For large values of 7, p®(r) approaches 7o, the density of particles condensed in the zero-momentum state.
Penrose and Onsager” have shown that the superfluid phase of the boson_system is characterized by the fact
that 7, is some finite fraction of the particle density p and they havegiven the estimate #¢~0.080. Mc-
Millan,? using the Monte-Carlo method, has computed p® (r) and has found the asymptotic value #,=0.11p.
p®(r) can be cast, following McMillan, in the following form:

/l ‘I’(I’], Tgy o, rN) I2 Z eXP{"%Z[%(l rk+r_rf l) _“([ rk_rfl)]}drly dl'z, M drN
k >k

(10)

pP(r) =p

fl\Il(rl,'_rg, see, Iy) [Pdry, dry, o o0, dIy
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Tasre VIII. Helium-3 ground-state energy (in °K/atom) ; results in columns 2, 5, and 8 correspond to zeroth,
first, and second order in the WF expansion.

b EO® e & EW &® &® E®
2=0.65 m=>5
1.10 —2.78 2.24 +0.61 —1.15 —0.06 —0.12 —1.33
1.11 —2.82 2.24 +0.5 —1.08 —0.06 —0.11 —1.25
1.13 —2.92 2.24 +0.5 —1.18 —0.06 —-0.11 —1.35
1.15 —2.87 2.24 +0.48 —1.11 —0.06 —0.10 —1.27
1.18 —2.64 2.24 +0.45 +0.85 —0.06 —0.08 —0.99
1.2 —2.28 2.24 +0.44 +0.48 —0.06 —0.06 +0.60
p=0.7 m=4
1.15 —1.2 2.4 +0.84 +0.36 —0.06 —0.11 +0.19
1.2 —2.6 2.38 +0.54 +0.76 —0.06 —0.13 —0.95
1.26 —2.7 2.36 +0.41 +0.75 —0.06 —0.13 —0.94
1.375 —-1.25 2.34 +0.31 +0.78 —0.06 —0.05 0.67
1.46 —1.02 2.32 +0.37 +0.96 —0.06 +0.03 0.93
1.48 +1.5 2.31 +0.47 +3.36 —0.06 +0.06 3.36

Again, when ¥ is given by (1), use can be made of the determinant

equivalence of the canonical and microcanonical en-
sembles to compute the average indicated in (10) by
the same molecular dynamics method that was used
in Sec. IT. p®(r) was calculated for several values of
the variational parameters for <2 and in a few cases
for r<4. The difference between p®(2) and p®(4)
is of the order of 0.005. Figure 8 shows p®(7)/p: it
seems to depend slightly more than S(%k) on the param-
eters. The asymptotic value is

o= (0.105£0.005) p

in good agreement with the result of McMillan. Figure 9
shows the dependence of 7, on the density. When the
solid region (p=1.3py) is reached, 7, is not exactly
equal to zero but of the order of 0.03; most probably
the wave function (1) describes the metastable states
of the liquid.

V. GROUND-STATE ENERGY AND LIQUID-
STRUCTURE FACTOR OF LIQUID HELIUM-3

A symmetrical wave function like (1) is no longer
suitable in the case of a fermion system. Following [8]
we take as trial wave function

*y rN) =\I,B(rl; %y rN)'q)F(rly °ty rN)7
(11)
product of ¥p, still of the form (1) and of a Slater

‘I’F(rl, Io, **

®p(1y, + -+, 1v) =Det{exp(ik;- r;) x:(8;) }

of plane waves of wave vector k; in the spin state x;,
filling up two Fermi spheres of equal radius

kp=(3n%p) /3.

Equation (11) is not a product of pair functions and
the analogy with classical statistical mechanics is no
longer true. Wu and Feenberg® (WF) have developed
a very useful set of approximations to deal with such
a case: their method amounts to treating exactly the
“dynamical” part of the wave function, ¥z, and to
treating approximately, by a suitable cluster expansion,
the effect of the Pauli principle contained in ®p. A
physical justification of this procedure is that the hard
core of the interatomic potential prevents atoms from
overlapping, so that the exclusion principle might be
expected to act only as a correction to the “dynamical”
correlations. A more quantitative argument is that,
as we shall see, the successive approximants seem to
converge rather rapidly.

WF express, at each order of their cluster expansion,
the quantities relative to the fermion wave function ¥z
in terms of quantities relative to the boson wave func-
tion ¥z and of suitable corrections. We shall use their
results and refer the reader to their paper for detailed
derivation. The following quantities are useful:

N(N-1 ~1
ge(r, 1) = '“(7;—)/111'3, e, dry | ¥p ‘2(/dfb oo, diy | ¥p |2> )

gr(1y, Ip) = ZYL2%2—_—-11/1173, cee, dry | Vp ]2(/(11' cee, dry | Ur lz)

-1
’
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where [ dr includes summation over spin coordinates;
fB(f) =gB (”) -1,
Sa() =1+p [explik-1)fs(r)dr,
up(k) =Sp(k) —1.

Ir|H | Tr)
B= Ty zp/gm)[wr)w(r)]dr
fi2 (3 kp?
+ By

with 7'(7) still given by (6) .1
The WF zeroth order is obtained by neglecting
completely the effect of the Pauli principle:

Ewr®=3p [ g(r)[V (r)+T(r) Jdr. (13)

The WF first order is obtained by keeping only
those terms of the cluster expansion in which the Pauli
principle acts on pairs of particles:

Ewr® = Ewp® —e,0 460, (14)

Ewr® = EwrV+e.® 46,

with
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For the fermion system, the functions fr(r), Sr(k)
and up(k) are related in the same way to the fermion
pair-distribution function gr(7).

Use of the trial wave function (11) and of the
Hamiltonian (4) leads, after some integrations by parts,
to the still exact expression

dTN][[; W Pdm, -,

dm]_l} (12)

with
&V =21p [ gg(r) B2(kpr) [T (r)+V (r) Jdr,
1
a0 =§(0okst20) [ 1420 R
0

where %(x) =3 (sinx—x cosx) /43,

The ¢, and ¢ in (14) correspond, respectively, to the
first and second term in (12).

To second order, WF assume the Kirkwood super-
position form, for the boson three-particle distribution
function, so that the corrections are still expressible
in terms of gz(r) only:

(15)

&P = %2 / gz (712) (V(r12) +T (112)) l:— / 88 (r2) f (r13) B (kpras) d 15+ ﬁ;ﬂ / g5 (r)f5(ris) h(krrig) h(kpres)d ra] drp,

3 hi%kp?
5 2u

& =

lz1l, la2l, le3l <t
Our calculation was done in the following way:

(a) We determined the radial distribution function
gz (r) corresponding to a boson (mass 3) system with
wave function ¥z by a molecular-dynamics calculation
(in fact, because of McMillan’s scaling trick, no new
calculation was necessary). This was done for several
values of the variational parameters b and m. The
resulting Ewr® is shown in the second column of
Table VIIIL.

(b) For each value of these parameters we then
calculated Ewr® and Ewr® according to Egs. (14)
and (15). &® was calculated by Fourier transforming
the convolution product, and the 9-dimensional integral
appearing in &® was computed by a Monte-Carlo

19 The last term in (12) differs by a factor } from the cor-
responding term in WF [their Eq. (9)] because WF assumed for
Wy the exact ground-state wave function of H, whereas we per-
form the variation on the total wave function ¥p, so that ¥ is
no longer solution of the Schrédinger equation for the mass-3
boson problem.

81
(8#) f f / xsz (kpxm) u ( k Fxgs) u ( kpxls) dxldx2dx3.

method. The results are shown in Table VIII. It is
seen that the convergence seems to be rather rapid.
The “best” wave function is obtained for 6=1.13 and
m=35. Table IX gives the values of the energy as a
function of the density. The equilibrium density is
0.6500 and the ground-state energy is —1.35°K/atom
(the experimental® values are 0.752p, and —2.52°K/
atom, respectively).

TaBLE IX. Ground-state energy of liquid helium-3 as
a function of density.

o/po E

0.6 —1.23
0.65 —1.35
0.7 —1.32
0.8 —1.13
0.9 +0.77
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TasLE X. Comparison of the present results for boson and fermion mass-3 systems with the ones obtained by Massey
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T |4 E
pea/Po (°K/atom) (°K/atom) (°K/atom)
Boson (mass 3) Massey-Woo 0.675 11.76 —14.64 —2.87
Here 0.65 8.68 —11.60 —2.92
Fermion Woo 0.675 —-1.35
Here 0.65 9.87 —11.22 —1.35
Experiment 0.75 —2.52

A calculation of the ground-state properties of liquid
helium-3 has been made by Woo,? this author assumed
a trial wave function of the form (11) and applied the
WF cluster expansion up to second order. The dif-
ference with our calculation is that Woo used for the
boson mass-3 wave function ¥ the wave function
derived by Massey?* through use of the Kirkwood
superposition approximation. Table X gives the results
of both methods and shows that they lead to kinetic

TasrE XI. Pair function g#® (r) of liquid helium-3

at p=0.752p,.
r/o 2@ (r) /e gF® (r)
<0.76 0 1.72 1.08
0.8 0.025 1.76 1.07
0.84 0.07 1.8 1.061
0.88 0.13 1.84 1.054
0.92 0.21 1.88 1.047
0.96 0.325 1.92 1.039
1 0.435 1.96 1.03
1.04 0.545 2 1.02
1.08 0.655 2.04 1.011
1.12 0.755 2.08 1.002
1.16 0.845 2.12 0.995
1.2 0.917 2.16 0.99
1.24 0.977 2.2 0.988
1.28 1.025 2.24 0.987
1.32 1.058 2.28 0.988
1.26 1.082 2.32 0.989
1.4 1.102 2.36 0.99
1.4 1.12 2.4 0.99
1.48 1.128 2.44 0.99
1.52 1.127 2.48 0.991
1.56 1.12 2.52 0.992
1.6 1.112 2.56 0.994
1.64 1.103 2.6 0.998
1.68 1.092

20 C. W. Woo, Phys. Rev. 151, 138 (1966).
2 W. E, Massey, Phys. Rev. 151, 153 (1966).

and potential energies of the boson mass-3 system

differing by 309%,.

The liquid-structure factor S(%) can be calculated,
in the WF approximation, by Fourier-transforming the
successive approximants to gr(r) [WF, formula (44)7]:

gr®(r) =¢gs(r),

gr® (r) =gp(r)[1—h*(ker) /2],

gp(” (1’12) = gp“’ (7’12) +gs (7’12)

X [-—p/gs (72) up (r18) B2 (kpras) d s

+(G3o)hCher) [ g5 (ra) s (rls)h(kﬂm)h(kpr%)drs] .

Figure 10 shows gr@(r), grV(r), and gr®(r) corre-

TaBLe XII. Liquid-structure factor S (r) of helium-3

at p=0.752p,.

ko Se® (k) ko SF® (k)
1.2 0.12 7.5 0.971
1.5 0.135 7.8 0.967
1.8 0.166 8.1 0.968
2.1 0.215 8.4 0.969
2.4 0.28 8.7 0.971
2.7 0.357 9. 0.976
3. 0.495 9.3 0.983
3.3 0.655 9.6 0.99
3.6 0.795 9.9 0.997
3.9 0.925 10.2 1.001
4.2 1.025 10.5 1.006
4.5 1.095 10.8 1.008
4.8 1.135 1.1 1.009
5.1 1.146 11.4 1.010
5.4 1.134 11.7 1.011
5.7 1.111 12. 1.011
6. 1.078 12.3 1.010
6.3 1.045 12.6 1.008
6.6 1.018 12.9 1.007
6.9 0.996 13.2 1.003
7.2 0.98 13.5 1.
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Fic. 7. Low k behavior of S(%). ., experiment; ——, theory
with Reatto—Chester wave function for two values of the cutoff
ke=1 [curve (1)] and k.=0.25 [curve (2)].
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F1c. 8. One-particle reduced density matrix of liquid He*

(o=po) for two sets of values of the variational parameters:
—, m=5;b=117. ————, m=4; b=13.
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Fi1c. 9. One-particle reduced density matrix of liquid Het
at several densities. ——, p=po; ——, p=1.2pp; ~———, p=
1.27p,.
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Fic. 10. Radial distribution function of liquid He3 (p=0.752p,)
obtained by WF expansion up to zeroth (...), first (---),
and second (——) order. ———- is the curve obtained by Woo.
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sponding to the optimum values of the parameters
m=>5, b=1.13. Also shown on Fig. 10 is the gr(r)
derived by Woo. The corresponding S#@ (%), Sr® (%),
and Sr® (k) are shown on Fig. 11. The convergence
of the WF approximants seems to be rather rapid
and a comparison with experiment would be interesting.
Numerical values of gr®(r) and Sp® (k) are given
in Tables XTI and XII.

VI. CONCLUSION

The calculations performed confirm that a Jastrow
wave function like (1) adequately describes liquid
helium-4 at zero temperature. The discrepancy between
the theoretical and experimental values of the energy
and equilibrium density are of the order of those due
to the uncertainties in the two-body potential. The
liquid-structure factor S(k) is in good agreement with
experiment except, maybe, at the peak k~2 A~L
With a ‘“‘short-range” trial »(r) the low & behavior of

S(R)

0123456789 10MN12131%15 &
(o

Fic. 11. Liquid-structure factor of liquid He® obtained by
WF expansion up to zeroth (...), first (---), and second
order (—).

S (k) is not correct, as expected: whether the inclusion
of a “long-range” term in #(r) would lower the energy
is an open question.

A Jastrow-Slater trial wave function like (11) seems
to give reasonable results for the ground-state energy
and equilibrium-density liquid helium-3. The dis-
crepancy between experimental and theoretical energy
is the same as in the case of helium-4. Experiment
should decide whether the liquid-structure factor pre-
dicted for He? is reasonable.
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