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We derive expressions for the complex conductivity tensor of a homogeneous classical plasma in an ex-
ternal uniform magnetic field, in terms of electric field correlations, using the Kubo theory of transport
phenomena. The main aim is to bring out explicitly the magnetic field dependence of the conductivity
tensor. Exact relations between the conductivity tensor in the presence of the magnetic field and the same
tensor in the absence of the magnetic field have been obtained.

I. INTRODUCTION

HIS work is based on the general theory of conduc-

tivity developed by Kubo and others.! The conduc-
tivity tensor can be rigorously expressed as a time
integral (correlation function) over the spontaneous
fluctuation of the current in the system. Using this
formalism Kubo et al.2 have obtained a relation between
zero-frequency conductivity and the electric field
correlation for a quantum plasma. We propose to
obtain exact relationships between conductivity and
electric field correlation for all frequencies for a classical
plasma. We start with the Kubo formula for conduc-
tivity expressed as a velocity correlation which can
be written as a certain integral in phase space over
the Green’s function for the Liouville equation. By
making use of this equation we reduce the velocity
correlations to electric field correlations. From the
resultant expressions we obtain a relation between the
complex conductivity tensor in the presence of the
magnetic field and the same tensor in the absence of
the magnetic field.

II. REDUCTION OF VELOCITY CORRELATION TO
ELECTRIC FIELD CORRELATION

We consider a fully ionised homogeneous plasma in
local thermodynamic equilibrium. The electrons move
against the background of uniformly distributed
smeared-out static positive ions. The magnetic field
is taken along the Z axis. In the framework of Kubo
theory, the conductivity tensor of such a plasma is
given by?®
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where v.= (1/m)[p.— (¢/c) A(x,)] [in which p,= mo-
mentum of the rth electron and A(x,) =3B xx, with
B= magnetic field strength]; (%, v) = (X1, V1; Xz, Va; = **
Xy, V) ; dI'=(dxdv), the element of volume in phase
space; 8= (kT)!; and
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[in which G(x, v | &/, ¥'; 2) is the Fourier transform of
Green’s function of the Liouville operator of the system
of interacting N-electrons and fy(%, v) is the equilib-
brium distribution function]. We shall find it more
convenient to work with oy 4 (2), oy —(2), 0— +(3), and
o_ _(2) rather than ou1(2), ou(2), o12(2) and o2(2). In
the expression for these tensor components, v, =012,
are used in places of vy, v; etc. The two sets are related by

o4 +=a'11—¢722+i(0'12+0'21) ’
oy _=onton—i(cr—oa),
o_ y=on+tonti(cu—on),
(2a)

Because of the symmetry of the problem on=os.
Therefore

o— _=¢711—022-“i(012+021) .

ou=%(o4 —Fo_4),
o= (1/2i) [‘T+ +—3(op ——o_ )],
on=(1/20) [0y ++3 (o4 ——0_4) ].

Our main aim is to bring out explicitly the magnetic
field dependence of the right-hand side of Eq. (1). For
this we shall make use of the equations
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!R. Kubo, J. Phys. Soc. (Japan) 12, 570 (1957); H. Nakano, Progr. Theoret. Phys. (Kyoto) 15, 77 (1956); 17, 145 (1957);
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3We use a form of Kubo theory given by S. F. Edwards and J. J. Sanderson [Phil. Mag. 6, 71 (1961)] and by R. Balescu
[ Statistical Mechanics of Charged Particles (Interscience Publishers, Inc., New York, 1963), Chap. 13].
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which are obtained from the Liouville equations for the
Green’s functions and the distribution fy (%, v) . 8 (x—2')

stands for the product
0(X1—X1)8(Xa—Xp') « + + 8 (X —Xn").

If we multiply Eq. (3a) by v, and then integrate
over dT' and similarly multiply Eq. (3b) by v’
and then integrate over dI', we obtain

/ ar [izv,l— 2 Ei(x,) —Qv,z]
m
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where
E(x,)=2.(3/0%,) (¢/| X-—Xa |), and Q=eB/me.
n¥Er

From these two equations and similar ones for the
other components we get

i(z:l:ﬂ)/dI‘v,iR(x, v| o, v';2)
= 2 [Ir B =) R(x, 019,05 5) 0 (0, 9),, (40)
i(z:FSZ)/dI"v&’R(x, v|a,v;3)

=— ;:;zf AT'EL(x)R(x, v | &', 9'; 2) +oes fi (%, 0).

(4d)

To obtain oy 4(2), we multiply Eq. (4c) (upper sign)
by v.+'e28[i(z+2) ], integrate over dT' and sum over
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If we now make use of Eq. (4d) (upper sign) in the
first term on the right-hand side of Eq. (5) we get

e
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Since

fw(x, v) = exp(—BH)

= exp[ va,z—}-ZVu(] Xi—X; l)]

=1 <j

is an even function of velocities, the last two terms on
the right-hand side of the above equation are zero.
Therefore

4
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and s, we obtain (2#£9). (6b)
3
o+ +(2) = .—-—-‘i@—g—- It should be noted that we started with an expression
im(z+9) for o 4 (2) which is written in terms of velocity corre-
lation. By our reduction technique it now appears as
f dTdTE, (%) R(x, v | &', v'; 2) v/, an electric field correlation. In this process magnetic
=l field dependence has been extracted out explicitly
28 though not fully. The advantage of this reduction will
+—— g f AT v fn (2, V), be seen later. Following similar method one can bring
i(219) rea out the reduction of oy _(z) and o_ 4.(2). We shall give
(% —Q). (5) the final results without going through the details:
’ N 2 —
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(6¢)
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Using Eq. (2b) we get the expressions for the Cartesian components
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For o3, 032, 013, and o33 we use two more equations,
/dF [izvr;;— iEﬂx,)] R(x,v|«,v;2) =vs'fw(a, V)
and
/dI" [izv33'+ ”% E;;(xs’)] R(x, 0| &, v'; 2) =vg3 f(x, 0),
similar to Egs. (4a) and (4b) and obtain
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As remarked earlier, so far we have been partly
successful in bringing out the explicit @ dependence of
the components of the conductivity tensor. This is
because the explicit Q-dependence of R(x, v | ', %'; 3) is
not known. However with the aid of Eq. (8a) it is pos-
ible to show that the integral [[dvdv’R(x, v | &', ¥'; 2)
is independent of magnetic field. This is shown as
follows: If we apply an external electric field & along
the direction of the magnetic field, the current along
the electric field is given by

J3(2) =033(2)83(2).

We make use of the fact that this current is not affected
by the magnetic field. Therefore o33(z) must be inde-
pendent of Q. Expression for o33(z) in Eq. (8a) clearly
shows that it is possible only if [[dvdv'R(x, v | &/, ¥'; 2)
is independent of Q because

/derng(x, )

r=1

is independent of Q. That [[dvdv'R(x, v | &/, v'; 2) is
independent of @ can be shown in another way. In
the absence of magnetic field this integral is
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[ [dv*dv¥ R(x*, v* *'+ 2) where v¥=v—eA/c. Itis
readily seen that these two integrals are equal because
the Jacobian of the transformation of the variables is
unity.? Therefore the only Q-dependence of the com-
ponents of conductivity tensor are those that appear
explicitly in the expressions given by Egs. (7) and (8).
We have thus achieved our goal of bringing out the
explicit magnetic field dependence of the conductivity
tensor.

Before .ending this section we shall simplify the
expressions for the conponents of the conductivity
tensor by using the conclusion obtained above and the
Onsager symmetry relation

|

6!“‘('21 Q) =UVu(Z; _Q) .
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f ATdT Ey(x) R(x, v | o, o3 3) Eua(x)),
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for the expressions (7b), (7c), and (8b) to be
compatible with the above symmetry relation. Using
these identities in Egs. (7) we get the simplified

Since the integral [[dvdv'R(x, v | &/, v; 2) is inde- expressions.
B (2240 ,
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But since ¢13(z) should vanish for @=0, we must have
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Hence
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III. MAGNETIC FIELD DEPENDENCE OF THE
COMPLEX CONDUCTIVITY TENSOR

From these one can easily write down the expressions
for the conductivity tensor in the absence of magnetic
field. One can then see that the conductivity tensor in
the presence of the magnetic field is related in a very
simple way to the same tensor in the absence of the
magnetic field. We give these relations below:

(EAD) oy
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1268 —— ( 2__ 92)2 ~ /drvrlfN(x> v), (10a)
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4 A similar argument is made in proving Van Leeuwen’s theorem on the absence of diamagnetism of a classical electron gas. See,
for example, J. H. Van Vleck, Theory of Electric and Magnetic Susceptibilities (Oxford University Press, London, 1952).
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and
2

= 0 =
0'13(2) = 22 013 =°(Z) =0.
Similarly 031(2), 023(2), 032(2) all are zero because,
conductivity tensor in the absence of magnetic field is

diagonal.
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The damping of electron-plasma oscillations, in a hot plasma in an external uniform magnetic field in the
presence of weak Coulomb collisions, is investigated by using the Fokker-Planck equation. The electron-ion
collisions play the dominant role; nevertheless, the electron-electron collisions become important as the
wavelength decreases from infinity. As far as the electron-ion-collision contribution is concerned, the fric-
tional term exceeds the diffusion term; but in the electron-electron case, both the frictional and the diffusion
contributions are of the same order. The two-body Coulomb collisions have a stabilizing effect on these
plasma waves; the magnetic field, however, does not affect the longitudinal waves, but has a tendency to
stabilize the left-handed polarized wave and to destabilize the right-handed polarized wave.

I. INTRODUCTION

HE small-amplitude oscillations in a fully ionized

plasma in a uniform external magnetic field were
studied by Bernstein.! He showed that in a collision-
free plasma, the self-excitation of the waves around
thermal equilibrium is not possible.

Comisar? and Buti and Jain® studied the high-
frequency plasma waves in a hot plasma in the absence
of any external magnetic field, but they took into
account the weak Coulomb collisions by using the
Fokker-Planck equation of Rosenbluth ef al.4 They
found that the electron-ion collisions play a more im-
portant role in damping the longitudinal as well as the
transverse waves; the electron-electron collisions have
to be taken into account only if one is interested in
finite-wavelength disturbances.

The wave motion in a plasma, where the collisions
are too frequent and the applied magnetic field is
strong, has been studied by Oppenheim® and Liboff®
using the models known as the isotropic Fokker-Planck
model and the Liboff-Krook model, respectively. Both
predicted an infinite number of Larmor resonances; in
addition, Oppenheim’s model described the diffusion
process in velocity space. In the cold-plasma regime

* National Academy of Sciences—National Research Council
Resident Research Associate.

11, B. Bernstein, Phys. Rev. 109, 10 (1958).

2G. G. Comisar, Phys. Fluids 6, 76 (1963); 6, 1660 (1963).

3 B. Buti and R. K. Jain, Phys. Fluids 8, 2080 (1965).

4+ M. N. Rosenbluth, W. M. MacDonald, and D. L. Judd, Phys.
Rev. 107, 1 (1957).

5 A. Oppenheim, Phys. Fluids 8, 900 (1965).
8 R. L. Liboff, Phys. Fluids 5, 963 (1962).

and thelong-wavelength-magnetohydrodynamic regime,
to lowest order, these two models gave the same results.

Following Comisar and Buti and Jain, we consider
the effect of an external uniform weak magnetic field
on the plasma waves when the collisions are not too
frequent, which allows us to neglect the many-body
collisions. The magnetic field B, does not affect the
nature of the collisions, provided the Larmor radius Ry,
is much larger than the Debye length \p, i.e., if the
plasma frequency w, is much larger than the electron
cyclotron frequency Q@=eB/mc. For such small mag-
netic fields, the radiation is also negligible; so the
Fokker-Planck coefficients remain unaltered and we
can use the Fokker-Planck equation of Rosenbluth
et al.* In this study, we take the contributions of the
frictional and the diffusion terms separately, both for
the electron-electron and the electron-ion collisions;
in the former case both contributions are of the same
order, but in the latter case frictional contribution is
much larger than that of diffusion, which is comparable
to the contributions caused by electron-electron col-
lisions. The magnetic field as well as the collisions tend
to stabilize the system under consideration.

It is, perhaps, proper to remark that the Fokker-
Planck equation of Rosenbluth et al. is not strictly
valid for high frequencies, particularly near the electron-
plasma frequency.”® It was shown by Price® that this
equation is correct to the order (1/InA). Strictly speak-

7C. Oberman and J. Dawson, Phys. Fluids 5, 517 (1962).

8 C. Oberman, A. Ron, and J. Dawson, Phys. Fluids 5, 1514

(1962).
¢ J. Price, Phys. Fluids 9, 2408 (1966).



