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Conductivity of a Plasma in a Steady Magnetic Field
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We derive expressions for the complex conductivity tensor of a homogeneous classical plasma in an ex-
ternal uniform magnetic field, in terms of electric field correlations, using the Kubo theory of transport
phenomena. The main aim is to bring out explicitly the magnetic field dependence of the conductivity
tensor. Exact relations between the conductivity tensor in the presence of the magnetic field and the same
tensor in the absence of the magnetic field have been obtained.

where v, = (1/rN) Lp„—(e/c) A(x„)j Lin which p, = mo-
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B= magnetic field strength(; (x, v) =—(x1, v1, xs, vs, ~ ~ ~

X1v, vtv); dI'= (dxdv), the element of volume in phase
space; P= (kT) ' and

I. INTRODUCTION

~ THIS work is based on the general theory of conduc-.. tivity developed by Kubo and others. ' The conduc-
tivity tensor can be rigorously expressed as a time
integral (correlation function) over the spontaneous
Quctuation of the current in the system. Using this
formalism Kubo et al.2 have obtained a relation between
zero-frequency conductivity and the electric field
correlation for a quantum plasma. We propose to
obtain exact relationships between conductivity and
electric field correlation for all frequencies for a classical
plasma. We start with the Kubo formula for conduc-
tivity expressed as a velocity correlation which can
be written as a certain integral in phase space over
the Green's function for the Liouville equation. By
making use of this equation we reduce the velocity
correlations to electric field correlations. Fram the
resultant expressions we obtain a relation between the
complex conductivity tensor in the presence of the
magnetic field and the same tensor in the absence of
the magnetic Geld.
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x', v'; s) is the Fourier transform of
Green's function of the Liouville operator of the system
of interacting tV-electrons and f~(x, v) is the equilib-
brium distribution functionj. We shall find it more
convenient to work with o++(s), a+ (s), o. +(s), and
o (s) rather than o11(s), o21(s), o12(z) and o22(s). In
the expression for these tensor components, v+ ——v1+iv2
are used in places of v1, v2 etc. The two sets are related by
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G. REDUCTION OF VELOCITY CORRELATION TO

ELECTRIC FIELD CORRELATION Because of the symmetry of the problem fT»=0».
Therefore'lA'e consider a fully ionised homogeneous plasma in

local thermodynamic equilibrium. The electrons move
against the background of uniformly distributed
smeared-out static positive ions. The magnetic field
is taken along the Z axis. In the framework of Kubo
theory, the conductivity tensor of such a plasma is
glv
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en by
Our main aim is to bring out explicitly the magnetic
field dependence of the right-hand side of Eq. (1). For
this we shall make use of the equations
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eWe use a form of Kubo theory given by S. F. Edwards and J. J. Sanderson LPhil. Mag. 6, 71 (1961)g and by R. 13alescu
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and
S2

ors(s) =, „, orsu~(s) =0.

Similarly o»(z), a»(s), o»(s) all are zero because,
conductivity tensor in the absence of magnetic field is
diagonal.
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The damping of electron-plasma oscillations, in a hot plasma in an external uniform magnetic field in the
presence of weak Coulomb collisions, is investigated by using the Fokker-Planck equation. The electron-ion
collisions play the dominant role; nevertheless, the electron-electron collisions become important as the
wavelength decreases from infinity. As far as the electron-ion-collision contribution is concerned, the fric-
tional term exceeds the diGusion term; but in the electron-electron case, both the frictional and the diGusion
contributions are of the same order. The two-body Coulomb collisions have a stabilizing eGect on these
plasma waves; the magnetic field, however, does not aGect the longitudinal waves, but has a tendency to
stabilize the left-handed polarized wave and to destabilize the right-handed polarized wave.

I. INTRODUCTION

t 1HE small-amplitude oscillations io a fully ionized..plasma in a uniform external magnetic Geld were
studied by Bernstein. He showed that in a collision-
free plasma, the self-excitation of the waves around
thermal equilibrium is not possible.

Comisar' and Buti and Jains studied the high-
frequency plasma waves in a hot plasma in the absence
of any external magnetic field, but they took into
account the weak Coulomb collisions by using the
Fokker-Planck equation of Rosenbluth et al.4 They
found that the electron-ion collisions play a more im-
portant role in damping the longitudinal as well as the
transverse waves; the electron-electron collisions have
to be taken into account only if one is interested in
finite-wavelength disturbances.

The wave motion in a plasma, where the collisions
are too frequent and the applied magnetic Geld is
strong, has been studied by Qppenheim' and LiboG'
using the models known as the isotropic Fokker-Planck
model and the Liboff-Krook model, respectively. Both
predicted an inGnite number of Larmor resonances; in
addition, Oppenheim's model described the diffusion
process in velocity space. In the cold-plasma regime

*National Academy of Sciences—National Research Council
Resident Research Associate.

' I. B.Bernstein, Phys. Rev. 109, 10 (1958).
s G. G. Comisar, Phys. Fluids 6, 76 (1963); 6, 1660 (1963).
3 B. Buti and R. K. Jain, Phys. Fluids 8, 2080 (1965).
4 M. N. Rosenbluth, W. M. MacDonald, and D. I . Judd, Phys.

Rev. 10'V, 1 (1957).' A. Oppenheim, Phys. Fluids 8, 900 (1965).' R. L. Libotf, Phys. Fluids 5, 963 (1962).

and the long-wavelength-magnetohydrodynamic regime,
to lowest order, these two models gave the same results.

Following Comisar and Buti and Jain, we consider
the efI'ect of an external uniform weak magnetic Geld
on the plasma waves when the collisions are not too
frequent, which allows us to neglect the many-body
collisions. The magnetic field 80 does not affect the
nature of the collisions, provided the Larmor radius EJ.
is much larger than the Debye length Xz, i.e., if the
plasma frequency co~ is much larger than the electron
cyclotron frequency Q=eBo/mc. For such small mag-
netic fields, the radiation is also negligible; so the
Fokker-Planck coefhcients remain unaltered and we
can use the Fokker-Planck equation of Rosenbluth
et al.4 In this study, we take the contributions of the
frictional and the diffusion terms separately, both for
the electron-electron and the electron-ion collisions;
in the former case both contributions are of the same
order, but in the latter case frictional contribution is
much )arger than that of diGusion, which is comparable
to the contributions caused by electron-electron col-
lisions. The magnetic Geld as well as the collisions tend
to stabilize the system under consideration.

It is, perhaps, proper to remark that the Fokker-
Planck equation of Rosenbluth et aL is not strictly
valid for high frequencies, particularly near the electron-
plasma frequency. ' It was shown by Price' that this
equation is correct to the order (1/1nA) . Strictly speak-

7 C. Oberman and J. Dawson, Phys. Fluids 5, 517 (1962).
C. Oberman, A. Ron, and J. Dawson, Phys. Fluids 5, 1514

(1962).
e J. Price, Phys. Fluids 9, 2408 (1966).


