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The exact equations of motion for the space- and time-dependent coordinates of an arbitrary many-body
system have been derived previously. These equations are partial integro-differential equations whose
kernels are generalizations of time-correlation functions. In this paper the equations are rewritten using
flux operators satisfying conservation equations, and the memory-retaining nonlocal generalizations of the
equations of nonequilibrium thermodynamics are obtained. The formalism is applied to energy transport,
and the usual expression for heat conductivity is derived without making the usual assumptions. Finally, a
simple function is assumed for the kernel, and the equation then reduces to a well-known heat-conduction

and -wave equation.

I. INTRODUCTION AND SUMMARY OF
PREVIOUS RESULTS

N the first paper! of this series, the exact equations

of motion for the space- and time-dependent co-
ordinates of an arbitrary, isolated, many-body system
are derived using a method similar to the method of
Nakajima? and Zwanzig.? This general formalism has
been applied in a high-temperature approximation to
the derivation of the linear equations of motion of
nuclear magnetism.# In this paper we obtain exact
equations that are generalizations of the phenomenolog-
ical equations of nonequilibrium thermodynamics, and
then we apply the formalism to energy transport.

In this section we summarize the main results of the
previous paper! and compare that work with the work
of Richardson,® Zwanzig,® Mori,” and others. In Sec. IT
we use flux operators satisfying conservation equations
to rewrite the general equations of motion and obtain
memory-retaining nonlocal generalizations of the equa-
tions of nonequilibrium thermodynamics. In Sec. III
we apply the general formalism to energy transport
and derive the usual expression for the heat conduc-
tivity without making the usual assumptions, which
are reviewed in detail by Zwanzig.® Finally, in order to
make contact with the previous work of others, a
simple function is assumed for the time-correlation
function appearing in the equation of motion, and the
equation immediately reduces to a well-known heat-
conduction and -wave equation. In Appendix A we
derive some formulas useful for simplifying the equa-
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tions of motion in applications. In Appendix B we dis-
cuss a projection operator related to an operator P(¢)
defined below, and we discuss how this operator is
related to an operator introduced by Mori” In Ap-
pendix C we show how our formalism can be modified
so that it will be more similar to Zwanzig’s.®> Appendix
C may be read independently of Appendix B, and both
may be read independently of Secs. IT and III.

Let F,(r) denote the quantum-mechanical (i.e.,
Hermitian, linear, and possibly noncommuting) oper-
ators whose expectations we wish to describe as func-
tions of position and time. Here # takes the values 1,
2, -+, m labeling the different operators, and these
operators depend explicitly upon position r. The quan-
tum-mechanical and statistical expectation of F,(r) is

(Fa(1) )e= Tr[ Fa(1)p(2) ], (1)

where p(f) satisfies the Liouville equation.! The equa-
tions of motion that we will discuss are equations for
the space and time dependence of the expectations
(F n(r) >t'

In order to simplify the derivation of the equations
of motion of the (F,(r)); from the Liouville equation,
it is convenient to introduce additional variables
(1, ) defined to be functionals of the (F,(r)); as
follows. The \,(r, f) are obtained from the (F,(r));
by solving the m simultaneous, nonlinear, integral
equations

(Fan(1) )e
Tr {F,,(r) exp[— %) f &'\ (Y, t)Fn'(r’)]}

T {exp [— = [ e, t)Fn'(r’)]}

n.—_l,z’...’m,

(2)

where the \,(r, £) are the unknowns and where for the
moment the (F,(r)); are taken to be known functions

9P. A. M. Dirac, Proc. Cambridge Phil. Soc. 25, 62 (1928).
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of r for each value of £1° It follows from the form of
Eq. (2) that the N\,(r, £) are the same functionals of
the (F,(r)), regardless of the value of ¢. Nevertheless,
since the dependence of the (F,(r)); upon r will be
different for each value of #, we have written the
(1, £) as functions of ¢ as well as of r.

Equation (2) is a generalization of the usual formula
for calculating the expectation of F,(r) in equilibrium
statistical mechanics. It is not the same as the usual
formula since the F,/(r') in the exponential are not
constants of the motion in general. The use of Eq. (2)
does not involve an assumption that the system is in
any sense close to equilibrium at time . It does not
involve any assumption. Equation (2) is just the
definition of the A\, (T, ?).

The \.(r, £{) are called the thermodynamic con-
jugates of the (F,(r)). In the preceding paper,' an
expression for the entropy and other thermodynamic
equations involving the (F.(r)). and the A (r, ) are
written down for systems arbitrarily far from equilib-
rium. This use of equilibriumlike formulas on systems
not in equilibrium is implicit in Jaynes’s publications,!
which motivated the preceding work.! Jaynes’s ideas
have also been expanded in this direction by Schweg-
ler? Much earlier, the same use of equilibriumlike
formulas was made by Bergmann and Thompson®® and
Richardson,® although they started from a different
point of view than Jaynes. However, this use of equilib-
riumlike formulas on systems not in equilibrium,
although elegant, commands attention only because
the \.(r, #) also appear in the equations of motion for
the (F.(r) ).

The exact equations of motion derived in the previ-
ous paper! are

(T (1) )e/0t = (Fu(x, £) )
td/ & ,Km.' . /’ ’ A /’ ¢ ,
+f0tzn;/r (5,8, ¥, V) (¥, )

"=1:27'°"m: (3)

where the kernel, which is a generalization of a corre-

107t is easy to see how this solution can be accomplished ap-
proximately by Fourier transformation if the exponentials are
expanded about exp(—f3C), for example, and only linear terms
are kept, and if

8
/ B’ Tr{Fu(r) exp(—p'3C) Fu-(r') exp[— (8—4") 51}
0

is a function of r—1r’ only. In practice either this or some other
approximation usually must be made eventually. In the present
paper we consider formally the exact solution and assume that a
unique solution exists. (See Appendix C.)

UE. T. Jaynes, in Lectures in Theoretical Physics, Brandeis,
1962, Statzstwal Physics (W. A. Benjamin, Inc., New York,
%?32)7) Vol. 3, p. 181; Phys. Rev. 106, 620 (1957), 108, 171

2 H, Schwegler, Z. Naturforsch. 20a, 1543 (1965).

(1;’51;) G. Bergmann and A. C. Thompson, Phys. Rev. 91, 180
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lation function, is given by
K (1, 8,1, )
= Fu(r, DT (t, Y[1=P ) I (', ) ), (4)

and the symbols used here have the following
definitions.

The angular brackets on the right of Egs. (3) and
(4) are defined by

(4)= Trl Ao (t)], (5)

and the bar over an operator is defined by

1
A= / o (0)* A (1)~ du—(A):, 6)
0
where A may be any operator and where
exp [— > [ e, t)Fn(r)]
o(t)= (7

Tr {exp[—— )X [ &, t)F,,(r)]}.

Equation (6) defines an operator average of the opera-
tor A at time {. This time must be the relevant time,
which is # in Eq. (4). A bar over an operator has
been used by Jaynes to represent a Kubo-Tomital
operator average with exp(—g3C) instead of o(#) and
without subtraction of the expectation (5). The opera-
tor average (6) is a generalization of the Kubo-Tomita
average. In classical statistical mechanics, o(#) will
commute with 4 so that the integral may be performed,
and A4 reduces to simply 4 — (4)..

The operator F,(r, f) is a Schrodinger operator
defined by

Fu(r, )y=if'[3e(8), Fa(r)], (8)

where 3C(¢) is the total Hamiltonian whose time de-
pendence causes the deviations from equilibrium that
interest us.

The operator P(t) is defined by

6a'(t)
pia= 3 [ @ )
Z 5(Fa(1) )y
where 4 may be any operator and must include all
operators following P(f)."® Finally, the operator
T (¢, ¢') is defined to be the solution to the differential
equation

AT (1) /o =T, ¢)[1—P{') EL(Y) (10)
with the initial condition 7'(¢, {) =1. Here L(¢) is the
14 Although Egs. (4) and (6) are not identical to Eq. (1-34),

they give the same result when used in Eq. (3) or (1-33) because
of the identity

Tr[Fn(r) 4],

z[dwﬁ",,(r, £) YA (1, £) =0.

This identity follows from Egs. (5), (7) (8), and (1-32).
1 R. Kubo and K. Tomita, J. Phys Soc, Japan 9, 888 (1954).
16 For example, the P (#') appearing explicitly in Eq (4) oper-
aﬁtes ?;30 on the o (¢') which is to the right of P(#), as implied by
g.
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Liouville operator defined by
L) A=r"[35c(8), 4], (11)

where again A4 may be any operator and must include
all operators to the right of L(#). The operator T'(¢, ¢)
advances quantum-mechanical operators on the right
from time # to time ¢ while subtracting out a part at
each step. .

As may be seen from Egs. (4)—(11), both (F,(z, £) )
and K. (1, ¢, 1, ') in Eq. (3) depend upon the M\, (1, £)
or equivalently the (F,(r));. Because this dependence
is nonlinear, it is convenient to take a slightly different
point of view. Instead of considering the A\,(r, ¢) as
having been eliminated in favor of the (F,(r)); con-
sider Egs. (2) and (3) as being 2m coupled equations
to be solved simultaneously for the 2m unknowns
(Fa(r) s and Na(1, 7).

Sometimes it is convenient to consider a linear ap-
proximation to this formalism. We can obtain one by
expanding o (¢) in Eq. (7) about

exp(—B3¢) /Trlexp(—pB3c) ]

and keeping corrections to first order only. Then P(¢)
and K, (1, ¢, ', ') become independent of the \,(r, #)
or the (F.(r)); and depend only upon B, and then
Ko (1, 8, 1, ') reduces to a correlation function. If the
correlation time is short, P may often be neglected in
Eq. (10), and Eq. (4) reduces to the usual expression
for a correlation function.® However, our main interest
is in problems for which the correlation time is not
short and memory effects are important and therefore
for which the operator P is essential. Furthermore, it
frequently is necessary to make an approximation differ-
ent from the above linear approximation. For these
reasons we postpone approximations until they are
absolutely necessary. Our present development will be
exact; we mentioned the above approximation only to
make contact with well-known concepts.

The first term on the right of Eq. (3) does not
directly change the entropy'® and hence is called the
reversible term. On the other hand, the integral term
will cause relaxation and will change the entropy in
general and hence is called the irreversible term. In
applications of these equations so far worked out, the
reversible terms are either zero or can be calculated
exactly in terms of recognizable quantities such as the
(Fn(r)): and the N\, (1, £). The kernel K, (1, ¢, 1, t')
usually cannot be calculated exactly, but its approxi-
mate functional form can sometimes be guessed, as we
will illustrate in Sec. III.

The idea of deriving equations such as Eq. (3) is an
old one and recently has attracted much interest. By
using a qualitative argument, Richardson® wrote down
an equation identical to Eq. (3), but did not derive
it and did not write down an expression for

Ko (r, 8,1, 0).
17 R, Kubo, J. Phys. Soc. Japan 12, 570 (1957).

18 Proof: Combine Egs. (3) and (8) and the identity in Foot-
note 14 with an expression for d.S(¢) /d¢ similar to Eq. (1-17).
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By making several plausible assumptions, Zwanzig®
derived approximate equations similar to Egs. (3) and
(4), but only for classical statistical mechanics. By
making several additional plausible assumptions,
Sewell® derived an approximate quantum-mechanical
generalization of Zwanzig’s formalism. Zwanzig intro-
duced a density defined in the m-dimensional space
spanned only by the expectations of the macroscopic
observables and hence defined in a space of much
smaller dimensionality than the phase space of the
entire system. This density is initially microcanonical.
The exact formalism of Egs. (2)—-(11), on the other
hand, always uses a generalized canonical density
operator (7) defined in the space of the entire system.
This generalized canonical formalism is superior be-
cause carrying out explicit calculations in applications
is much easier with it. Furthermore, only one assump-
tion is necessary for its derivation from Hamiltonian
mechanics, and that assumption is that the initial con-
dition for the density operator p(Z) at =0 be Gibbs’s
canonical density or the like.

We may express this initial condition in a convenient
and concise form by using the following formal device.
We require that the set of operators F,(r), n = 1,
2, «++, m include operators that can be combined in a
linear combination that equals the total Hamiltonian
3¢(0). Then, for suitable values of A\,(r, 0), the expo-
nents in Eq. (2) will reduce to —33¢(0) where 1/%8
is the temperature, in which case Eq. (2) becomes the
usual equilibrium statistical-mechanical expression for
the expectation of F,(r). It follows that, for systems in
equilibrium at temperature 1/kB3, the A,(r, 0) will
take just those values. Then the exponents in Eq. (7)
will also reduce to —B3C(0), and therefore

p(0) =a(0). (12)

Equation (12) can also be true even if the system
is not in equilibrium at ¢{=0. In the derivation of the
equations of motion (3), only the initial condition (12)
need be assumed; it is not necessary to assume that the
system is in equilibrium at {=0.

Since Eq. (12) is the only assumption necessary for
deriving Egs. (3) from Hamiltonian mechanics and
since Eq. (12) or the like is always assumed in sta-
tistical mechanics, there is no restriction to the gen-
erality of Egs. (3). They apply to any system regardless
of its complexity or of the experiment performed on it.

By making an assumption different from Eq. (12),
Mori has also derived equations of motion for the ex-
pectations of macroscopic observables using Zwanzig’s
method.? Mori’s initial condition is a linear approxima-
tion to ours and is obtained by expanding ¢(0) about
exp(—p3¢) /Tr[exp(—p3C)] and keeping the correc-
tions to first order only. This linear approximation
applies either if the temperature is large compared with
certain energies, as in Ref. 4, or if the system is only
slightly disturbed from equilibrium. In his derivation,
Mori restricts the Hamiltonian to be time-independent

19 G, L. Sewell, Physica 31, 1520 (1965).



178

and assumes that the invariant part of the observables,
i.e., the part that is diagonal in a representation in
which the Hamiltonian is diagonal, has been removed.
Furthermore, his formalism does not include anything
corresponding to our A\, (r, £) and so cannot yield the
equations in Sec. ITI, for example. We have discussed
the limitations to Mori’s work in greater detail previ-
ously.® In Appendix B, we discuss some similarities
between his work and ours.

The following authors have also used Zwanzig’s
method.? Fano® has given a general discussion of relaxa-
tion and applied it to a system interacting with a
thermal bath, a concept we did not need to consider.
Zwanzig has given a simplified derivation of the master
equation?? and demonstrated the identity of three
versions of this equation.® Emch? and Mathews? have
also derived generalized master equations.

II. THE EQUATIONS REWRITTEN USING
FLUX OPERATORS

The flux operator J,(r, f) corresponding to the
operator F,(r) is defined to be the solution to

Ve Ju(r, ) =—F,(r,t), r inside ®, (13)
and is defined to be
J.(x, £) =0, r outside @, (14)

where ® is the region of space occupied by the system.

BALDWIN ROBERTSON
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Equations (13) and (14) do not determine J.(r, £)
unambiguously. To obtain a solution different from a
given solution to Egs. (13) and (14), add VXA,(r, 1),
where A,(r, {) may be any operator such that VX
A,(r, t) is zero for r outside ®. Fortunately, this
ambiguity does not appear in the exact equations of
motion that we will derive although it does appear in
the expression for the time-correlation function.

Solutions to Egs. (13) and (14) for the momentum
density, the stress tensor, and the energy flux have
been known for a long time for a system of noninter-
acting particles. For interacting particles, approximate
solutions for the stress tensor and the energy flux have
been obtained by Irving and Kirkwood? and for the
energy flux of a lattice by Hardy.” Of course exact
formal solutions can easily be written down.”®% An
exact solution will be necessary whenever higher-order
gradients are important.

Equation (13) is the operator version of the conserva-
tion equation

8<Fn(r) >¢/at=—V' Tr[Jﬂ(r; t)p(t)], (15)

which follows from Egs. (1), (8), and (13) and the
Liouville equation. We now rewrite the equations of
motion using Eq. (13) and obtain an expression for
the trace on the right of Eq. (15).

By inserting Eq. (13) into Egs. (3) and (4) and
performing an integration by parts, we get

t
HFn(2) Yo/t = =+ (Ju (1, ) Y— V- [ @y f B K (£, 4, 7, 0) V0 (T, ), m=1,2, +++,m, (16)
0 n/

where the kernel is a dyadic given by

Kane (7, 8, ¥, 1) = (Ju(x, ) T(t, ) [1=P () o (¥, ) )ur.

(17)

The surface term is zero since K, (1, ¢, ', ) is zero outside the system, as may be seen from Egs. (17) and (14).
Notice that Egs. (16) follow from Eq. (15) and the expressions

Tr[Ju(x, p(t) 1= (Ju(r, ) )t f 'y / Ko (4, 6, 0, ) VN (U, ), m=1,2, 0+, m,  (18)
0 n/

2 See the Conclusion and Appendix C of Ref. 1.

21 . Fano, in Lectures on the Many-Body Problem, International
School of Physics, Ravello, 1963 (Academic Press Inc., New
York, 1964), Vol. 2, p. 217; Phys. Rev. 131, 259 (1963).

2 R. W. Zwanzig, in Lectures in Theoretical Physics, Boulder,
1960 (Interscience Publishers, Inc., New York, 1961), Vol.
111, p. 106.

28 R, Zwanzig, Physica 30, 1109 (1964).

24 G, Emch, Helv. Phys. Acta 37, 532 (1964).

% P, M. Mathews, Physica 32, 2007 (1966).

(12‘5_{).) H. Irving and J. G. Kirkwood, J. Chem. Phys. 18, 817

2 R. J. Hardy, Phys. Rev. 132, 168 (1963).

28 For example,

Julr, )= f G(x, ) Fu(r', D,
®R

where G(r, r') is not an operator but is an ordinary Green’s
function defined to be the solution to
V.-G(r,r)=—6(r—1')

for r’ and r inside ® and defined to be zero for r’ inside ® and
r outside ®. This expression for J.(r, #) satisfies Egs. (13) and

(14) exactly. However, G(r, r’) has not been defined unambig-
uously here.

For an infinite region ®, the solution to the above equation
with VXG(r, r')=0 is easily shown to be G(r, r')=
V(1/4x | r—1’|). However, this Green’s function cannot be used
for a finite region & because then J.(r,£) and Tr[J.(r,)p(8)]
would not be zero for r outside ®.

This exact solution (see Ref. 29) with VX Ja.(r,#) =0 does
not reduce to the usual approximate solutions (see Refs. 26 and
27) with vXJ.(r, £) #0. An exact solution that does reduce to
the usual approximate solutions when & (r— r;)is Taylor-expanded
about § (r—r;) can be obtained by using

S(r—r;)=6(r—r1;) — V-/ria(r—-r')dr’
I;

instead of the usual Taylor expansion. Here the path of integra-
tion may be along any contour entirely within the system.
This formula can often also be used on expressions involving
quantized field operators since the expressions are often antisym-
metric functions of two spatial arguments one of which is inte-
grated over all space.

29 A, Kugler, Z. Physik 198, 236 (1967).
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whose derivation is simijlar to the derivation of
Eqgs. (16).

Equations (16) are the desired equations of motion.
Equations (18) are the memory-retaining nonlocal
generalizations of the equations of nonequilibrium
thermodynamics. Here the Tr[J.(r, #)p(f)] are the
fluxes, the (J.(r, #)): are their reversible parts, the
VA (r, {) are the thermodynamic forces, and in a
linear approximation the K., (1, ¢, ', ') satisfy reci-
procity relations.! The above equations are all exact
and have no restriction to their generality, although
Egs. (3) and (4) or a combination of these equations
may be more convenient to use, as we shall discuss
later.

Notice that the ambiguity arising because only
Vv-J.(r, ) is specified does not appear in Eq. (16).
This follows because the V- in the last term cancels
‘to zero the ambiguous part of K. (r, ¢, ', '), arising
from the ambiguous part of J.(r, £). Also the - V, after
an integration by parts, cancels the ambiguous part
of Kunr (1, ¢, 1, ') arising from the ambiguous part of
Ju(r', ). Of course, the ambiguity does appear in
Egs. (17) and (18).

We now list some identities useful in simplifying the
application of Eq. (16). We may easily prove®

P()T(¢t, ¢)[1—P(¢)]=0. (19)
Equation (9) gives
Tr[Fo(r) P() A]= Tr[Fa(r) 4] (20)
Finally, in Appendix A, we prove that
P()Fu(1)o(f) =Fu(r)o (D). (21)

These identities are applied as follows.

Because of Eq. (21), the [1—P(#)] in Eq. (17)
frequently simplifies that expression for K, (1, ¢, 1/, ¢').
If J. (2, t) is equal to a linear combination of Fy(r'),
Fy(r'),~++, F,(r'), then Ky (r, ¢ 1/, #)=0 for all »
and r. As a result some of the integral terms in Eq.
-(16) will be identically zero. For the remaining integral
terms, the [1—P(#)] automatically accomplishes a
subtraction of an average flux. Such a subtraction has
been discussed by Green® and McLennan.®

Because of Eq. (19), a [1—P(#)] can also be intro-
duced to the left of the operator T'(¢ ¢) in Eq. (17).
This also simplifies the expression for K. (r, ¢, 1/, t').
If J.(r, #) is equal to a linear combination of Fi(r),
Fy(r), «++, F,(r), then Eq. (20) gives Kuur (1, £,17, 1) =
0 for all #»’ and r'. As a result, some of the equations of

3 Proof: Every term but the first in the infinite series in Eq.
(1-B1) has a factor [1—P( )] to the left. So, if we multiply the
series on the left by P(#) and apply Eq. (1-25), only the first
terms will survive, and we get P(¢) T'(¢, ') =P (¢). )

31 M. S. Green, Phys. Rev. 119, 829 (1960).
(13926%) A. McLennan, Progr. Theoret. Phys. (Kyoto) 30, 408
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motion (16) reduce to conservation equations

I(Fn(r) )o/ot= =V (Ju(1, ) )y, (22)

which of course also follow directly from Egs. (13)
and (1) and the Liouville equation.

Frequently J.(r, ¢) is a sum of two or more terms not
all of which are linear combinations of the F,(r).
Then only the part that cannot be written as a linear
combination of the F,(r) survives. This can consider-
ably simplify the expressions for the Ky, (r, ¢, 1/, t')
that are not zero. There are also other ways of simplify-
ing the kernels, as illustrated, for example, in Ref. 4.

For some applications of the general formalism, it is
convenient to write F,(r, {) as the sum of two terms,
one of which is easily recognized as it stands and the
other of which is put into Eq. (13). Then the equations
of motion will have some terms as in Eq. (3) and
others as in Eq. (16).

Combinations of Egs. (3) and (16), such as these, are,
in general notation, the memory-retaining nonlocal
generalizations of the equations of quantum hydro-
dynamics. The equations of quantum hydrodynamics
were first derived by Irving and Zwanzig, using the
Wigner distribution function. Green,®* Richardson,?
and Kadanoff and Martin,® have also discussed
hydrodynamics extensively. In the present paper, we
will not consider hydrodynamics further, but instead
will discuss just energy transport.

III. THE MEMORY-RETAINING NONLOCAL
EQUATIONS OF ENERGY TRANSPORT

In this section we apply the previous general for- -
malism to one of the formally simplest situations—
energy transport. We derive the equation of motion
and the well known expression for the heat conductivity.

If the only observable we consider is the energy
density, then the only operator F,(r) is the Hamil-
tonian density 3¢(r), and Egs. (2) reduce to

Tr {JC(r) exp [— / a&r'B(r', H)se(r’) ]}

Tr {exp [— ] ar'B(r’, )3 (r’) ]}

where we have written 8(r, £) for the thermodynamic
conjugate to (3C(r) ):. As before, this equation involves
no assumption but serves merely to define 8(r, £) as a
functional of (3¢(r) ).

@e(r) )= , (23)

( 3935]1.) H. Irving and R. W. Zwanzig, J. Chem. Phys, 19, 1173
1 .

3 M. S. Green, J. Chem. Phys. 20, 1281 (1952); 22, 398 (1954).

3% L. P. Kadanoff and P. C. Martin, Ann. Phys. (N.Y.) 24, 419
(1963) ; P. C. Martin, in Lectures on the Many-Body Problem., Inter-
national School of Physics, Ravello, 1963 (Academic Press Inc.,
New York, 1964), Vol. 2, p. 247; in Statistical Mechanics of Equi-
librium and Nonequilibrium, International Symposium on Statisti-
cal Mechanics and Thermodynamics, Aachen, 1964 (North-Holland
Publishing Company, Amsterdam, 1965), p. 100,
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Although in this example the generalized canonical
density (7) takes a form identical to Mori’s local
equilibrium density,® we use it in a way other than
does Mori. For us, o(f) is just a convenient operator
we have defined, and its use involves no assumption
that p(#) is at all like ¢(#). In order to simplify the
equations of motion, however, we do assume the initial
condition (12) for p(#), but this assumption is funda-
mental to statistical mechanics.

In the example considered in this section, the total
Hamiltonian is

se= / se(x) d, (24)

and the energy-flux operator J.(r) is the solution to
v-J.(r) =—=5c(r). (25)

These operators are time-independent because the
system we consider has a time-independent Hamil-
tonian density 3¢(r).

In this example, Egs. (16) and (17) reduce to

6—%(;—)—)‘ —_v. fn “ar f FK(x, L, t, )
* Vlﬁ(r,: t,) ’ (26)
K(r, t, 1, ) =(Je(0) T (2, ) Jo(¥') ), (27)

where a term does not appear in Eq. (26) because
(Je(x) )¢ is zero.

The proof that (J.(r)); defined by Egs. (5) and
(25), is zero is as follows. The trace, if it is real, of an
operator is invariant under time reversal of that
operator. Now JC(r) and therefore 3C are unchanged
under time reversal. But J,(r), which includes a factor
i, changes sign under time reversal. Therefore,
{Je(r) )i=—(J.(r) ); must be zero.

A similar argument shows that the P(#) appearing
explicitly in Eq. (17) does not survive in Eq. (27)
although P(#) remains in Eq. (10).

We have not proved that the expectation of the
energy flux Tr[J.(r)p(#)] is zero. That quantity is
given by the right side of Eq. (26) without the diver-
gence operator.

Equation (26) can be written with 8(r, f) as the
only unknown by use of Eq. (A6) and Eq. (A5),
which for the present problem becomes

a(3e(r) ) __ ap(r', 1)
at a

Equation (26), when combined with Eq. (28), is a
generalization of the heat-conduction equation, but
because of the time integral does not predict an infinite
velocity. Equations (26) and (28), which are to be

f B (Be(D)F () ) (28)

% H. Mori, J. Phys. Soc. Japan 11, 1029 (1956); Phys. Rev.
112, 1829 (1958); 115, 298 (1959) ; H. Mori, I. Oppenheim, and
J. Ross, in Studies in Siatistical Mechanics (North-Holland Pub-
lishing Company, Amsterdam, 1962), Vol. I, p. 271.
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used with Eqgs. (5)-(11), (23)-(25), (27), and (AS6),
are the memory-retaining nonlocal equations of energy
transport. These equations are all exact and apply to
any system and to any experiment that can be described
with a Hamiltonian that is time-independent for ¢>0.

Of course, the more complicated the experiment, the
more complicated the kernel (27). If phenomena other
than energy transport occur, it would be better to
include more observables in our formalism than just
the energy density. Then there would be more equa-
tions of motion and more kernels in each equation, but
each kernel would be simpler than if we did not include
more observables. For the present example, the kernel
(27) will be simplest if we restrict our discussion to
experiments in which no mass, momentum, or charge
transport occurs, no electric or magnetic fields are
applied, and no phase transition occurs. The experi-
ment is to be such that only energy transport will occur.
Furthermore we restrict our discussion to systems ap-
proximately in local equilibrium, and we consider
small deviations from that state. Then the dependence
of the kernel on its position and time arguments will
be simplified.

These restrictions will not only make the kernel
simple, but they will also permit identification of
1/kB(x, t) as the temperature read by a thermometer at
position r at time f. We can see this by supposing
Jc(r), when integrated over a small region containing
a particular position r,, to be the Hamiltonian of a
thermometer located at r,. We also suppose this
thermometer has a large heat conductivity, has a small
heat capacity, interacts weakly with its surroundings,
and is smaller than distances over which 8(1’, ¢) changes
appreciably. Then the thermometer will be nearly in
equilibrium, and 1/k8(x, ¢) will be its temperature as
may easily be proven by an argument similar to one
given previously.! Finally, provided the interaction
between the thermometer and its surroundings is not
too weak compared with the heat capacity of the ther-
mometer, the temperature of the thermometer will be
the same as the temperature of its surroundings, and
B(r', t) for r’ near the thermometer will equal B(ro, ?).
This completes our identification of 1/k3(r, £) as the
temperature. A discussion of the definition of tempera-
ture has been given by Garcia-Colin and Green.¥

In order to simplify discussion of some of the features
of Egs. (26) and (28), we now make the near-equilib-
rium approximation discussed in Sec. I and described
in detail in Appendix C of Ref. 1. In this linear approxi-
mation, B(r, £) is a constant, 8, plus a small correction
term, which we keep in the equations to first_order
only. As a result, both K(r, ¢, t/, ¢) and (3¢(r)3¢(zr’))
are now independent of the correction term and depend
only upon the constant 8, and hence K(r, ¢, 1/, ')
becomes a function of ¢ — ¢ only.

Next we make the long-wavelength approximation.

3 L. S. Garcia-Colin and M. S. Green, Phys. Rev. 150, 153
(1966).
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Then (3¢(r)3C(r’)) is nearly zero for |r — 1’| much
larger than a correlation length that is short com-
pared with the distance over which 98(r, ) /3¢ changes
appreciably. So 08(1r’,#)/dt can be replaced with
dB(r, t)/d¢t and taken outside of the integral in Eq.
(28). The coefficient of 38(r, ) /0t in Eq. (28) then is
C/kp?, where

=t [ a GemR()) (29)
is the heat capacity per unit volume. Also in this ap-
proximation the wavelength of variations in 8(r, #) is
much longer than the distance | r—1’ | for K(z, ¢, 1', #')
to be nearly zero. So V/B(r’, #) can be replaced with
VB(r, t') and taken outside of the space integral in
Eq. (26).

We also make the short-correlation-time approxima-
tion. Then K(r, ¢, 1/, ¢') is nearly zero for {—¢# much
larger than a correlation time short compared with
the time required for VA(r, ) to change appreciably.
So VB(r, ¢') can be replaced with VB(r, {) and taken
also outside of the time integral in Eq. (26). The
va(r, &) in Eq. (26) then is dot-multiplied by
—V-x/kf3?, where

x=h@? / Pz / & (Ju(1) exp(—iLeN T (X)) (30)
0

is the usual expression for the heat-conductivity dyadic
first derived by Green.** Here we have used ¢#/'=¢—1
and replaced the upper limit by infinity, since after a
short time the integrand quickly approaches zero. The
operator 7'(¢, #') in Eq. (27) has been simplified in this
short-correlation-time approximation by dropping the
P from Eq. (10).

Apart from the near-equilibrium approximation,
which can be removed, the only approximations and
restrictions that we have made in deriving Egs. (30)
and (31) are just the conditions required in the defini-
tion of the heat capacity C and the heat conductivity
x. We have derived the usual expression for ¥ without
making any of the usual assumptions described in the
reviews by Chester® and Zwanzig.?

Finally, in order to compare our exact Egs. (26)
and (28) with the previous work of others, we assume
a simple function for the time dependence of
K(r,t — ¢, r/, 0). This assumption replaces the short-
correlation-time approximation although we do con-
tinue to make the long-wavelength approximation.

Now the long-wavelength approximation to
{e(r)3e(r’)) can be conveniently expressed formally
by means of

(@e(r)3e(r') )= (C/k)5(r—1'), (31)

where the coefficient is chosen to satisfy Eq. (29). The
5(r—1’) here is meant to be just a concise formal way

8 G, V. Chester, Rept. Progr, Phys. 26, 411 (1963).
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of stating that (3¢(r)3C(r’) ) approaches zero in a dis-
tance short compared with the distance over which
dp(r, £) /3t changes appreciably. Of course (3¢(r)3C(r’))
is not really infinitely sharp. We express the long-wave-
length approximation to K(r, ¢, r/, ') in a similar way
below.

We assume the time dependence of K(r, ¢, 1/, ') to
be a simple exponential with time constant 7. This
assumption and the long-wavelength approximation
can be conveniently expressed by

. ! t—¢
K(r, ¢, r,t)N%Eé(r-—r) ;exp(—-—1—>, (32)
where the coefficient x/%4? is chosen to satisfy Eq. (30).
As 7 approaches zero, the function to the right of
d(r—r') in Eq. (32) approaches §(¢—¢#), and we
recover the short-correlation-time approximation.

When the assumption (32) is inserted into Eq. (26)
and the result combined with Egs. (28) and (31),
we get

aB(x, ) /‘ ® ( t—t’)
0 e | Y — - ). /
Y i ¢ Cr exp - ve(r, t), (33)
which when differentiated once with respect to ¢
becomes

(9°8/08) +171(9/0t) = V- (x/C7) - VB.

If deviations from equilibrium are small, 8(r, £)~! will
satisfy the same equation. If x is diagonal, we get V2
on the right, and the equation approaches the Fourier
heat-conduction equation as 7 approaches zero. How-
ever, unlike the Fourier equation, Eq. (34), which
includes a second time derivative, predicts a finite
velocity of propagation of disturbances from equilib-
rium where v?=«/Cr is the velocity dyadic.

The constant 7 may be eliminated from the expression
for v2 by equating Egs. (32) and (27), integrating
over ', and setting ¢ =¢ to get

(34)

kB2 =

v=" [ e Q@) 69

A phenomenological derivation of Eq. (34) with x
diagonal has been given for superfluid helium by
Vernotte® and Ulbrich® and for dielectric solids by
Chester.®* The equation has also been derived for solids
by Guyer and Krumhansl* from the linearized phonon
Boltzmann equation by introducing adjustable param-
eters equivalent ultimately to %/C and 1/7. However,
our assumption (32) is too simple to yield their cor-
rection to the phenomenological equation. A solution
to the one-dimensional version of this equation has

#® D, Vernotte, Compt. Rend. 246, 3154 (1958).

40 C, W. Ulbrich, Phys. Rev. 123, 2001 (1961).

41 M, Chester, Phys. Rev. 131, 2013 (1963).

2R, A. Guyer and J. A. Krumhansl, Phys. Rev. 133, A1411
(1964) ; 148, 766 (1966). .
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been compared by Brown, Chung, and Matthews®
with experiments on superfluid helium and crystalline
AlO; and found to give better agreement than the
solution to the Fourier equation.

Of course the assumption (32) and the resulting
Eq. (34) are too simple to be correct except under
very special circumstances. In general, the exact
Egs. (26) and (28) must be used, and K(r, ¢, 1/, ¢) will
be more complicated than in Eq. (32).
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APPENDIX A: USEFUL IDENTITIES

In this appendix we derive some identities used in
Secs. IT and IIT and in Appendices B and C.

In order to simplify notation,” let F denote the column
vector whose elements are the operators Fi(r),
Fy(r), «++, Fu(r), and let A(#) denote the row vector
whose elements are A\i(r, £), Ao(X, £), -++, Mu(1, £).
Furthermore, let a dot between A(f) and F represent
the sum and integral

\(@)-F= 3 f Fa(r, OFa(1). (A1)

This vector notation (used in the Appendices only)

permits concise expression of the functional derivative

8o (t)/oN(t) = —Fo(t), (A2)
which follows from Egs. (7), (1-A2), and (6). By calcu-

lating the trace of F times Eq. (A2) and then using
Eq. (5), we get

8(F)./o\(t) = — (FF),. (A3)
This matrix will be useful below.
Now the identity
(AB),= (BA), (A4)

may be verified directly from the definitions (5) and
(6) where A and B may be any operators (but not
column vectors of operators, just the elements). It
follows that (FF'), is a symmetric matrix, and there-
fore so is 8(F):/o\(¢).

Finally, we use these equations to derive some im-
portant identities. By viewing (F); as a functional of
A(?) as in Eq. (2) and then calculating the total func-
tional derivative of (F). with respect to time ¢, we get

O(F)./dt=—(FF ) a\(2) /o1, (A5)

where we have used Eq. (A3). Also, by viewing o(¢)
in Eq. (7) as a functional of A(#), which in turn is a

4 J. B. Brown, D. Y. Chung, and P. W. Matthews, Phys. Let-
ters 21, 241 (1966); D. Y. Chung, dissertation, University of
British Columbia, 1966 (unpublished). .
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functional of (F);, and by calculating the functional
derivative in Eq. (9) as a total functional derivative,
we may rewrite the definition of P(¢#) as

P()A=Fo(t)+-(FF) Tr(F4),

where we have used Eqs. (A2) and (A3). Equation
(21) follows immediately from Egs. (A6) and (5).
Furthermore, Egs. (A6), (A4), (A2), and (A3) give

P(O)Ao(t) =Fo(t)-[6(A)/6(F).],  (AT)

which is often very useful.

(A6)

APPENDIX B: THE PROJECTION
OPERATOR (%)

In this appendix we develop some expressions useful
for comparing our general formalism with Mori’s.?

The Hermitian conjugate (i.e., complex conjugate
and transpose) of the operator P(#) in Eq. (9) or in
Eq. (A6) is an operator ®(¢) satisfying

®()A = F-5{4),/s(F),
=F-(FF)/1-(FA),,

(B1)
(B2)

where as usual 4 may be any operator. Equations (9)
and (B1) give

Tr[AP(¢) B]= Tr[B®(t)A], (B3)
and Eqgs. (A6) and (B2) give
P()Ac(t)=[®(H)A]e(2). (B4)

When Eq. (B1) is inserted into Eq. (B4), the result
is Eq. (A7).
Also, either Eq. (B1) or Eq. (B2) gives
®(t) F=F, (Bs)
and therefore

e eW) =C (). (B6)

Furthermore, since (FF)/ ' is a symmetric matrix,
Egs. (B2) and (A4) give

(L) AIB):=(A[C(t) B]).

Now (AB); satisfies the conditions of an inner prod-
uct between 4 and B and with respect to the weight
o (). Furthermore, even though ®(¢) and its transpose
complex conjugate P () are not equal, Eq. (B7) states
that ®(#) is Hermitian with respect to this inner
product, i.e., with respect to the weight o(#). There-
fore, although ®(¢) is not a projection operator in the
usual sense, it is a projection operator with respect to
the weight o(?).

In the linear approximation discussed in Sec. I and
described in detail in Appendix C of Ref. 1, ®(#) re-
duces to Mori’s” projection operator @ which depends
only upon 8 and not upon A(#).or {(F);.

(B7)
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APPENDIX C: ¢(f) A HOMOGENEOUS
FUNCTIONAL OF (F),

In this Appendix we show how o(f) can be written
as a homogeneous functional of (F); of degree 1. Then
our formalism becomes more similar to Zwanzig’s®
than it was before.

In many applications, it turns out that a linear com-
bination of the F,(r) equals 1. By letting { represent
a column vector whose elements are the coefficients of
this linear combination, we may express this equality as

{F=1, (Cl)

‘where the dot represents a sum and integral similar to
_that in Eq. (Al). Equation (C1) would automatically
be true if, for example, Fi(r) were the particle density
and if the total particle number N were constant.
Then {1(r)=1/N is the only nonzero element of {.

If F is such that there exists a { satisfying Eq. (C1),
then Eq. (C2) will not define A(#) uniquely since to
any solution of Eq. (2) for A({) may be added { times
any functional of (F); in order to obtain another so-
lution.” This ambiguity, which can arise even though
o(£) is always a unique functional of (F);," could lead
to an ambiguity in P(#) if P(f) were calculated using
ON(8) /6(F); instead of —(FF); 1. But if we have Eq.
(C1), then A\(¢) may be defined in a different way,
one which not only eliminates this possibility of ambi-
guity but also leads to a simpler and more elegant
formalism. This formalism is always available since an
additional operator Fo=1 can always be included in the
set of operators {F,(r) }, so that there will exist a { sat-
isfying Eq. (C1).

Given Eq. (C1), we may replace the definitions (2)
and (7) with

(F)e= Tr{F exp[—\()) - F1}, (C2)
o(t)= exp[—\(?) - F] (C3)

and still have o(f) normalized to unity.® This happens
because (1);=1, which follows from the Liouville
equation and Eq. (1) since p(0) is normalized. If we
use Egs. (C2) and (C3), then we must replace the
definition (6) with

_ 1

= [ o()eda(y=dx. (Ca)

0

Then all of the other equations in this paper except
those in Sec. IIT may be used without change.
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For the following, (1); is to be free to take any
value and is not to be restricted to satisfy (1),=1.
This last equality follows only from the Liouville equa-
tion, which is to be used only after the functional de-
rivatives in the definition of P (f) have been carried out.

We assume that Eq. (C2) uniquely defines A(£) as a
functional of (F),. We may denote this functional
dependence by A\[{(F);]. Then Egs. (C2) and (C1) give

Ma(F) J=N(F)]—{ Ina, (CS)

where ¢ may be any real positive number. Also, Eq.
(C3) defines o(¢) as a functional of A\(¢), which is a
functional of (F),. We may denote this functional
dependence by o[ (F),]. Then Egs. (C3), (C5), and

(C1) give
o[a(F)]=ac[(F).], (Cé6)

where ¢ is real and positive. This states that o[ (F)]
is a homogeneous functional of (F); of degree 1.

By differentiating Eq. (C6) with respect to ¢ and
then letting e=1, we get

[0 (#) /6(F )]+ (F)e=0(1). (%))
Combining Egs. (9), (2), and (C7), we get
P(8)p(t) =a(?). (C8)

Many other interesting identities can be similarly ob-
tained.* But Eq. (C8), which was not true with the
previous definitions,! is what interests us here.

Equation (C8) states that when P(#) operates on
o(?), it gives o(#), which is the relevant part of p(f).
Even though P(f) is nontrivially time-dependent,
both Eq. (C8) and Egs. (1-22) are true since P(¢) is a
homogeneous functional of (F); of degree zero. Now
that Egs. (C8) and (1-22) are both true, our formalism
more closely parallels Zwanzig’s? The important
difference that remains is in the dependence of P(#)
on {F),.

4 Differentiate Eq. (CS5) to get
[N (8) /8(F )]+ (F)e=—%,
which when combined with Egs. (A3) and (C1) gives
F-(FF)y1.(F),=1
or when combined with Eq. (A3) gives
(F)e=(FF)et.
This equation also follows from Egs. (C1) and (C4).



