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The formal properties of the Fock expansion of helium-atom wave functions provide a frame within which
the behavior of doubly excited 'I' states can be simply expressed. The convergence of the expansion is
investigated.

I. APPLICATION TO DOUBLY EXCITED
STATES OF HELIUM

~
OR many applications of wave mechanics to two-

electron systems it is important to have a good
representation of the wave function in the region of
configuration space where both electrons are near the
nucleus. This is just the region where most methods
represent the wave function in only an average way.
An expansion developed by Fock' and generalized by
Demkov and Ermolaev' seeks to represent the wave
function exactly when both electrons are near the
nucleus. The method has been applied by Ermolaev
and Sochilin' and by Frankowski and Pekeris4 to the
calculation of ground-state energies of atomic helium
in the nonrelativistic approximation with favorable
results.

It has become evident in the last few years that 'P'
auto-ionizing states of helium converging to the m=2
level of the positive helium ion exhibit remarkable
properties which have been qualitatively related to the
magnitude of their wave functions in the region of r1,r2
space where both electrons are near the nucleus. ' ' In
the ultraviolet absorption experiments of Madden and
Codling, two Rydberg series of such levels were found
which exhibited greatly different decay widths and
oscillator strengths. Cooper, Fano, and Prats' argued
that the existence of two 'I' series with greatly different
widths and oscillator strengths would imply that the
wave functions for these states could not be of the form
2sep and 2pes, but would instead be -,'%2(2smp+2pms)
and zv2(2sep —2pms). The states whose wave functions
were zrv2(2snp+2pes) were called 2m+ states and
those with wave functions —',&2(2sep —2pns) were called
2e—states. In the region near the nucleus, the plus
state is much larger than the corresponding minus
state, hence its overlap with the ground state would be
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much larger. This would then account for the difference
in widths and oscillator strengths of the two series.
Detailed calculations of the doubly excited 'I' wave
functions did indeed bear out this interpretation, ' but
also predicted the existence of a third series called 2pnd,
whose states have decay widths smaller by a factor
of 10 than the 2e—.An analysis" of the wave functions
for these states showed that their magnitude was also
very small near the nucleus even though they contained
large mixtures of the 2sep and 2pns configurations. The
design of detailed calculations has not been suited to
provide any clear indication of the physical mechanism
from which these properties arose. On the other hand,
the classification scheme of Copper, Fano, and Prats,
while certainly relevant, did not provide a framework
within which to include three rather than two series.
The physical mechanism is still unknown, but we will
show in this paper how the Fock. expansion may provide
a more suitable framework for the description of the
empirical evidence. A method of approximate solution
of the Schrodinger equation within this framework is
being developed.

Previous applications of the Fock expansion have
been limited to obtaining good trial functions to use in
a variational principle for lower-lying bound-state
energy levels. For these purposes, a proof of the
convergence of the expansion was not of great im-
portance. Since, in this paper, we are assuming a
general validity of the Fock expansion over an extended
energy range, the question of its convergence is much
more important. It will be shown that for sufficiently
small values of the mean-square distance of the two
electrons from the nucleus, the Fock expansion con-
verges in the sense that the integral of the square of
the wave function over all coordinates, except the
mean-square distance of the two electrons from the
nucleus, converges.

The basic idea of the Fock expansion is to write the
wave equations for two electrons in the field of an
atomic nucleus in the coordinates E= (rts+rss)r's and
five angular coordinates, " then expand the wave
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where

1 d t d LP L22

A.2= — —
~

sin'u cos'u—+ +, (2)
sin'u cos'u du k du sin'u cos'u

and

C(u, 812)= 2z /si nu+2z/cosu 2/(—1 sin—2u cos812)'", (3)
coseyp= 'f j ' t'2.

The operators L12 and L22 are the usual orbital
angular-momentum operators for the two electrons.
The operator h.' is Casimir's operator for the 06 group.

Dividing (1) by —k2, expressing E in units of ik,
expanding P as

where

oo [n/2]
f= e ~P P—R"+"(ln 8)&'U„(1') (u,ri,r,)/j !,

n=o ~=o

[22/2] =22/2, 22 even
= (rl —1)/2, rl od.d. , (4)

substituting into (1), and equating to zero like powers
of E and lnR gives

[—A.2+ (22+ v) (I+v+4)]U„(l)
=[—C/(ik)+2(22+ v)+3]U

+2(22+ v+2)U (i+1) 2U (i+1&+U (i+2) (5)

where it is understood that U "'=0 if j)[22/2].
This is essentially the Pock expansion, although it

divers in form from that employed by Fock in that the
series is multiplied by e ~ and a factor of 1/j! is
introduced to simplify the recurrence relation.

The method of solving the set of equations (5) has
been discussed. by I'ock. ' Here we are primarily in-
terested. in the equation for Uo(", that is

(—A2+ v(v+4)) Uo"'=0, (6)

which will be called the "idicial equation. " Once this
equation has been solved, all other coefFicients are
determined uniquely (for a given I.;J(vI, parity, and
symmetry) with the exception that the coeKcients
U„( ), where e is even, may have added to them any
eigensolution of the equation

(—A'+ (22+ v) (22+ v+4)) f=0.
12 I'. Smith, Phys. Rev. 120, 1058 (1960).

function in powers of E. and lnE. The 6ve angular
coordinates may be chosen in a variety of ways, but
for definiteness the set ri, r2, and u, where tanu=r2/ri,
will be used here.

The wave equation for the helium atom when written
in the coordinates r~, r2, E, and n, and in atomic units is"

—d2 5 d A2 C(u 812)
+— ——+ +k' 4=0,

dE.2 R dE E'

AVe shall remove this arbitrariness by a standardizing
convention, namely, by requiring U„") to be orthogonal
to all eigenfunctions of A2 with eigenvalue (rl+v)
X (n+v+4) if 22 is even. Since each U„(&') will now be
unique, the power series will be unique. These solutions
to the Schrodinger equation will be called "standardized
solutions. "

Different standardized solutions exist whose Uo( )'s

are, respectively, equal to all different eigenfunctions
of A.'. Because A.' has an infinite number of eigenvalues,
an infinite number of standardized solutions will exist
for each energy. Solutions which satisfy the physical
boundary conditions at large E should be regarded as
superpositions of standardized solutions.

Equation (6) is an eigenvalue equation for v which
has been solved by Morse and Feshbach. "The solutions
which have total L' (L=L1+L2) and parity as good
quantum numbers, and. which are symmetric or anti-
sylrunetric under exchange of the spatial coordinates of
particles 1 and, 2, can be taken to be

Uo( &=2v2[f1,&2~LM(u, ri, r2)+(—1)s+"+'2 L(M

Xfl, l, LM(u, ri, r2)] (8)
with

S=sp&n) v=li+l2+2m, m=0, 1, ~ ~

fhl2mLM (u, ri, r2)

(li+l2+ 2m) (m+ Ii+l2+ 2) !(m+li+ 2 ) !-1 (2

m (($2+2) !(m+$1+ 2)!

X (cosu)" (sinu)'2F( —m, m+li+l212~4+2 (sin'u)

X Jl l LM (r1 r2) ~

The function F(—m, m+Ii+4+2
~

l2+22
~
sin'u) is a

Jacobi polynomial in sinu and 'gl, &2LM is defined in
terms of spherical harmonics and. Kigner coefficients as

JJlil2LM(rl r2) 2 I l, (r1)I l M—(r2)

X (li,&l,loll —
&

~

lil2I.M) . (9)

The symmetry or antisymmetry of (8) under ex-
change of the spatial coordinates of particles 1 and. 2
follows from the relation"

I"(c)I'(1—c+a+m)
F(—m, m+aiciZ)=

I"(1+a—c)I'(m+ c)

XF(—m, m+a~a —c+1j1—Z) (10)

and the fact that sinn ~ coso. under interchange of the
particles. The parity of fl &2%mr (M, urr' i)2under inversion
of the coordinate axes is (—1)"+"= (—1)" where
v = li+l2+2m.

The 6rst coefhcient Uo(') is determined by its quan-
tum numbers, s, l~, l2, I., and M. The higher coeKcients
are completely determined by recurrence relation (5),
the standardizing convention, and the requirement that
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the wave function )p have L, 3II, and parity as good
quantum numbers and that it be either symmetric or
antisyimnetric under interchange of the spatial co-
ordinate of the two electrons. Because A.' and (. do not
commute, the different standardized solutions must be
added together in such a way that the boundary condi-
tions at large R are satisfied. To do this would require
an explicit determination of all the U„(&)'s, which has
not yet been done. For small values of R, however, only
the 6rst few terms of the power series will be important,
and these few terms are determined to within a few
constants. The central point of this paper is that even
though the helium wave-function problem has not
actually been solved, some of the properties of the
doubly excited states of helium can be related to the
order of magnitude of the first few constants. The wave
functions for the doubly excited 'I" states of helium
will be considered from this point of view.

Since v has the parity of the wave function, its lowest
value is 1 for 'I" states. The next lowest value is 3, but
now there are two possibilities, l1+l2 ——1, 2N=1 and
E1+l2 3, 2)2=——0. The fact that the wave functions for
the 222+ states are large near the nucleus implies that
they would have a large component of the power series
which starts as R to the erst power; conversely, the
2e—states would have a small component of the power
series which starts as R to the first power and a large
component which starts as R to the third power. If the
zero-order wave functions of Cooper et al. are expanded
as power series in R, this is indeed found to be the case.
In fact, if instead of the function 2s22p —2p)2s one
chooses a(2s22p) b(2ptts) as—a zero-order solution,
where b/a=-,'%3(1—1/22')')'= 1.155, one 6nds that such
a function has a series which starts as R to the third
power. Furthermore, the coefficient of R' is a constant
times sin(2F (—1, 4

I

—',
I

sin2(2) 71M (r1), as it must be since
the indicial equation also applies to the zero-order
helium wave functions. (This eigenfunction corresponds
to 1=3, l1+l2 ——1, 2)2=1.) Near R=O, the term h2/R—
in Eq. (1) is approximately —) ()+4)/R2, which can
be viewed as a generalized angular-momentum barrier.
Electrons in the minus states see a higher generalized
angular-momentum barrier than electrons in the plus
states.

II. CONVERGENCE OF THE FOCK EXPANSION

The F os expansion will be a solution of the
Schrodinger equation in the region over which the series
converges. The physical solutions are superpositions of
the standardized solutions, and it is possible that a
superposition of the standardized solutions will converge
even though the standardized solutions diverge. How-
ever, the convergence of the standardized solutions
would be a suAicient condition for the convergence of
the physical solutions.

In this section, it will be shown that the Fock
expansion converges in the sense that f(R,n, rr, r2) is

where X=l1+l2+22)2, and the prime means that the
terms for which X=22+) are omitted. It is more con-
venient to sum over the variable X rather than m, and
to this end the basis functions are rede6ned as f(,(2 LM= f),(2LM". In the following discussion the subscripts
I.M can be dropped since they are not summed over.
For conciseness, the integral fG„+„(n,r1,r2,u', r1,r2')
Xp(n, rr', r2)dQ will be written in operator form as G„+„(f..

We shall now show that the function

oo [n/2]

(p(R, (2,r1,2'2) = p p R"+"(lnR)'U„("(a, r1,r2)/j! (12)
n=o ~=o

is square integrable over n, r&, and r2 for suQiciently
small values of R. This will be shown by using the fact
that

I fp(R, n, r1,r2) II
=— dn (p*p

[n/2]
& 2 2 IRI"'"flnRI'IIU. (J'll/j!, (13)

n=o ~=o

dQ= sin'n cos'edndr~dr2, and then showing that the
series

eo [n)r'2]

2 2 R-'f1~i IIU.(»lf/j!
~'=o

(14)

converges.
The recurrence relation (5) when written in operator

form is, for v=o,

U„(»=G„LC/(ik) +2 (n+1)+37U„1(')
+2 (22+ v+ 2)G„U„(~"

2G„U„1(i+1)+G U (i+2) (15)

Taking the norm of both sides, one has

II U. ( )
II

&{IIG.cll/ I
k I+(2(~+.)+3)IIG.II }f1 U„,( )

lf

+2(~+.+2)IIG.fix IIU.(~')
ll

+2IIG.llxllU. 1('+"ll+IIG.llxilU. (~»il}. (16)

It is shown in the Appendix that the norm of 6„ is
1/L2(22+) )+37, so that

IIU-"'ll &LR/(~+ ~+»'"7ll U--1"'ll+ IIU-' "ll
+ (IIU-(~"II+2ll U.—(~"II+ IIU-(~2) II)

xf 2(~+~)+37, (17)
where I(.= (2s+2)/Ik I. This inequality is valid when

square integrable over the 6ve angular coordinates for
I
R

I
&-,', where Ris m. easured in units of ik

The analysis of convergence is most conveniently
carried out if the recursion relation (5) is expressed in
integral form. The modi6ed Green's functions for the
operator {—cV+ (22+ v) (n+ P+4) }is, in the coordinated
representation,

f),(2 LM(&2'12'2) fl1)2 LM(& 2'1)'2)
G-+.=Z' Z (11)

11(2 X(X+4)—(22+) ) (22+) +4)
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j([n/2], but is not valid when j=[n/2]; conse-

quently, (17) does not enable one to relate the norm
of U„(&' to the norm of Uo(". To obtain an inequality
which will enable us to ~elate IIU„&"ff to IIUO"'ll we

must consider the conditions' which determine U„&"~'&.

These conditions are that U ~"12~ is a solution of

(—h.'+ (n+ v) (n+ v+4) }U„'""]=0 (18)

and that

[—C/ik+2(n+ v)+3]U„,(["/']—')+2(n+v+2) U '"/']

be orthogonal to all eigenfunctions of h.' with eigenvalue

(n+ v)(n+ v+4). If g is a function identical to U„[""',
except that it is normalized to 1, the second condition
becomes

(g I [—C/ik+2 (n+ )+3]I
U„«"/'] —'&)

+2(n+v+, 2)(g I
U„[" ])=0 (19)

which implies

(glU-'""'&&
I
&glCIU--i"""' "&ll

[2(n+v+2) I&I ]+I&glU.-i"""' "&I.
Now,

I &glclU„, «-/]-»

((&g I
C2

I
g&}1/2((U i([&/2]—i)

f
U i([~/2]-i)&}i/2

& [(2z+2) (n+ v+2)'/'jff U i'[""] "If (21)

where the last step follows from Kq. (A10). Since
IIU„[""]If=(g I

U [""]),we have

IIU '""'II&[K/(n+v)'"+1]IIU
K= (2z+2)/fk I. (22)

Furthermore, (19) implies that (17) may be modified
for

If U„ i["/'] 'll& so that

If
U &[ /2] —i&ff

([K/(n+ v —1)'/'+1]
I I
U„2«""] ') ll. (23)

Inequalities (17), (22), and (23) enable us to relate

IIU "'ll to IIU "'ll since, given a value for IIUO"'ll we

could obtain an upper bound on IIU„"'ll by iterating
(22) and (17).We may also And a set of numbers A „&/)

which will bound the number
If

U„&/)
If from above if we

can And a set of A„&&')'s which satisfy (17), (22), and

(23) with the inequality signs reversed and A 0&'))
ll Uo

I f.
A set of coefficients A „(&) chosen as follows satisfy these
conditions

We note that A„"'&A (&), so that

00 [n/I'2]

]t&~"IIUoff+2 I~I "+A."' 2 f1~I'/j]
n 1 j=0

«"IIUoII+~~/"" & A-+ (o)~"+" (»)
n=O

By the ratio test, the series (24) converges for
I
R

I
(-', ;

thus the Fock expansion converges in the sense that
f(R,ni, ri, r&) is square integrable over the angular
coordinates.

This proof of convergence suffers from two limita-
tions, namely, (1) the series has been shown to converge
only for 2(—',, and (2) the series converges only in the
sense that f is square integrable over the Ave angular
coordinates. The 6rst limitation is of no consequence
for our purposes, since we are interested in the region
where R is small; however, because we have bounded,

IIG„+„Uff by IfG„+„If IIUff we can expect that a better
bound which takes into account the cancellation of
contributions from diGerent parts of the integration
region would enable a larger radius of convergence to
be shown.

The second limitation is not as serious as it appears.
Although the proof given here could mean that the
standardized solution ][ could have any finite number
of points of discontinuity as a function of the five
angular coordinates, the series quite likely has, at most,
only one point of discontinuity which is at r&

——r2. That
this is the case can be seen by studying the Fock
expansion for a wave function which is the solution of
a Schrodinger equation with 1/ri2 replaced by a finite
multipole expansion. In this approximation, the Fock
expansion can be shown to converge absolutely; hence
the standardized, solutions will be continuous functions
of all five angular coordinates. The proof fails for the
infinite multipole expansions, strongly indicating that
the Fock expansion has at most one discontinuity and
that this discontinuity would occur only at r& ——r2. This
possibility is reasonable since the potential is infinite
at that point. One would have to include the require-
ment that the wave functions be continuous at r~ ——r2 in
the boundary conditions on the physical solutions. This
requirement in no way changes the discussion presented
in Sec. I.
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APPEIIx
We must evaluate the norm of the operators

G„+„C('), i=1, 3

and integrating by parts n times. The only term of (A4)
which contributes is the term with s=0. After the
differentiations are carried, out, the integral which is
left is a P function, and when that is expressed as a ratio
of y functions one obtains the result

where the Ct"s are the three terms of C in Eq. (3)."
The norm of an operator A is dehned as (fl, l,"I

1/sin'n
I fl, l,"&= (X+2)/I I's(4+ as) (ls+ rs)]. (A6)

(A1)
The trace of G„+,, l, l,C""G„+„,l, l, is

where lfXII =1.Since ffyff = (yfy&'t', we have, for AX=y,

yly&' '= IIA1~II = &Axl»&'"= &XIAtAx&'". (A2)

We note that (A2) implies that the eigenvalues of AtA
are positive. Using the definition (A1), we see that the
norm of A tA is equal to the square root of the largest
eigenvalue of A tA. If A is partially reduced, that is,
diagonal in some of its quantum numbers, one has

ffA If=max, ffA, II, where ffA, ff
is the ith nondiagonal

submatrix of the block diagonal matrix A. (In our case,
G„+,C(') and G„+vC") are diagonal in /~ and 12, hence
i= Drls7. )

Since the largest eigenvalue of A, tA; is less than the
trace of A;tA;, an upper limit to IA ll

can be obtained

by evaluating max, Ltrace A;tA;). Furthermore, we

note that trace A;~A, = trace A;A, ~.

Consider G +„C").In this case, A;=G +„,~,~,C") and
A;t=C")G~+, , ~,~„where G +„,~,~, is PG~„P and P
projects onto the space spanned, by the functions fl, l,".
Thus we have A;A i t= Gn+v, lIl2C Gn+v, lIl2 In the
nt, rl, rs coordinate representation, Ct'ls is (2s)'/sin'cr,
and a general diagonal element of G„+„~,~,C( ) G„+„~,~, is

(2Z)2 (x+2)
(A7)

I'(4+as) (ls+-', ) l =o L(X+2)'—(n+v+2)sf

where & goes over even or odd integers as ll+ls is even
or odd. An upper limit to the sum (A7) is

n+v+3/2

/2 Ltt' —(n+ v+ 2)'j' y.+st s (tt —(tt+ v+2) )

(fl, l,"f1/»n'll
I fl, l,")&X+2 (AS)

which is of the order 1/(n+v). Hence the norm of
G„+„Ct'l is less than 2Z/(n+ v)'". In a like manner, one
sees that the norm of G C"l is less than 2Z/(rl+v)'"

A similar limit on the norm of G~„C' ) is obtained by
expressing G„+, in the coordinate representation
P, Pl, ps, where pr ——(rl —rs)/V2, ps

——(rr+rs)/K2, and
tanp=pr/ps. In this representation, G„+„Ctst is block
diagonal and Ct'l' is just 1/sin'P, so we irrunediately
obtain the limit IIG„C&"ll ~& 2/(n+ v)'". The trans-
formations from the representation n, r~, r2 to the
representation P, pt, ps is just the "kinematical rotation"
discussed by Smith. "

The inequality

&fl l "I (2Z)'/»n'~l fl l "&

Llw, P,+4)—(n+ v) (n+ v+4) $'
actually holds for a more general function

f 2 allis ftlts
&Ib

The matrix element &fl, t," I
1/sin'a

I fl, l,"& can be evalu-

ated by using the two forms of the Jacob& polynomials, provided, that llf"II=1, since

(A9)

P(—n,n+alcfZ)=P (—1)'
8=0

n!I' (c)I'(a+ n+ s)
X Z' (A4)

(n —s)!s!I' (a+n) I'(c+s)

Zl —c(1 Z)c—o

F(—n,n+a
I
c

I Z) =
C(C+1) . . (c+n 1) dZ"—

&&LZ.t- -l(1—Z) +"+'j (AS)

I' Much of the discussion given in the Appendix is an application
of the general methods of functional analysis which are expounded
in A. E. Taylor, Itttrodttctt'oct to Fmttctt'octal Amalyst's (John Wiley
Bz Sons, Inc., New York, 1961), pp. 321—364.

&f"I1/sin'nI f"&=+ (at, t,")&ft,ts" I1/sin'll
I fl, l,")

& (X+2) P (at, t,")'=X+2. (A10)

This inequality and the corresponding one for C"l and
Ctsl were used in deriving Eq. (24) of Sec. II.

The norm of G~, itself is the eigenvalue of G„+,
which is largest in absolute magnitude. A general
eigenvalue of G~„ is

1/P. (X+4)—(n+ v) (n+ v+4)j, X&n+ v, (A11)

which is largest in absolute value when X=n+v —1
and is —1/L2(n+v)+3j. Thus the norm of G„+,
is 1/(2(n+ v)+3).


