PHYSICAL REVIEW

VOLUME 160,

NUMBER 1 5 AUGUST 1967

Quantum Theory of Collision-Induced Absorption in
Rare-Gas Mixtures

Howarp B. LEVINE
North American Aviation Science Center, Thousand Oaks, California
(Received 3 January 1967)

A theoretical calculation of the collision-induced far-infrared absorption, which has been observed in
rare-gas mixtures, is carried out using the quantum-mechanical expression for the absorption coefficient.
Using a simple empirical form to describe the variation of the collision-induced dipole moment with inter-
nuclear separation, and using plane-wave eigenstates (i.e., assuming straight-line collision paths), an analytic
expression is obtained for the spectrum which agrees well with the experiments. Comparison with a previous
classical calculation based upon the same model shows that quantum effects are small at room temperature
except in the high-frequency wing of the spectrum. A number of analytic integrations allow us to derive
simple expressions for the correlation function, relaxation time, static dielectric constant, and other spectral

invariants.

I. INTRODUCTION
OLLISION-INDUCED f{ar-infrared absorption in

mixtures of helium-neon, helium-argon, and neon-
argon was discovered by Kiss and Welsh,'2 who also
suggested its physical origin. More recently, the inter-
ferometric experiments of Bosomworth and Gush? have
located the peak of this absorption and measured much
of the wings for both helium-argon and neon-argon
mixtures, although these experimenters were unable to
see the helium-neon spectrum.

Previous work on the theory of these spectra has
appeared. Poll and van Kranendonk* gave an analytic
theory for the integrated absorption, and Tanimoto®
has carried out a numerical calculation of these spectra.
More recently, Levine and Birnbaum® presented an
analytic theory of these spectra, based upon classical
radiation theory. Despite the fact that the observed
spectra do not entirely satisfy the apparent criterion
#iw/kT<K1 for the applicability of a classical approach,
the latter authors were able to obtain good agreement
with experiment.

Tt is of interest to see in a clear way what role quan-
tum effects play in these spectra. To do this, it is neces-
sary to carry out a calculation based upon the general
expression for the absorption coefficient derived in
quantum mechanics. Such a calculation is carried out
in this paper, using the same model for the variation of
the dipole moment with internuclear separation, and
the same assumption of straight-line collision paths as
was used by Levine and Birnbaum. It is found that the
spectra can be expressed in a simple analytic form.
Examination of this form then shows that quantum
effects are unimportant at room temperature except
in the high-frequency wing. At lower temperatures the
range of frequencies over which quantum effects are

1Z. J. Kiss and H. L. Welsh, Phys. Rev. Letters 2, 166 (1959).

2 R. Heastie and D. H. Martin, Can. J. Phys. 40, 122 (1962).
(1;61)55 R. Bosomworth and H. P. Gush, Can. J. Phys. 43, 729
(1; 6]1.)'1). Poll and J. van Kranendonk, Can. J. Phys. 39, 189

5 Q. Tanimoto, Progr. Theoret. Phys. (Kyoto) 33, 585 (1965).
¢ H. B. Levine and G. Birnbaum, Phys. Rev. 154, 86 (1967).
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unimportant diminishes, but possibly except for helium-
neon mixtures below about 150°K it appears as if this
range is sufficiently broad so that as a practical matter
quantum effects can be ignored.

In Sec. IT we derive the absorption coefficient. In
Sec. III, we derive analytic expressions for several
spectral invariants. In Sec. IV we discuss the evalua-
tion of the parameters of the model. In Sec. V, we derive
analytic expressions for the correlation function and
relaxation time. In Sec. VI, we compare the classical
and quantum spectra, and make some concluding com-
ments. A number of mathematical details are contained
in four appendices.

II. DERIVATION OF THE LINE SHAPE

An expression for the absorption coefficient may be
derived from the quantum-mechanical “golden rule.”
It reads

472
a(w) = Z Z wab! <,U'z>abl 2
eV oa b
X (1 — g #ad/FT) P §(wap—w) , (2.1)

where V is the volume of the sample, P, is the statistical
probability that the sample is in the initial state g,
fiwap= Ey— E, is the energy difference between a final
state b and an initial state @, and ¢ is the speed of light.
The matrix element {u.)qs is for the z component
(chosen arbitrarily) of the total dipole moment of the
system. By a straightforward procedure, outlined in
Appendix I, Eq. (2.1) may be reduced to a form which
expresses a(w) in terms of transition matrix elements
for two-molecule systems. For a system without bound
states, or for which the equilibrium population of the
bound states is small enough to be neglected, this re-
duction leads to

47r2wnAnB/ B \3/2
a(w)= ) /dkexp(—-ﬁhzk?/Zm)
he \Zrka
X / Al [ (D) 1| 2(1— P2 5(w' —w) ,  (2.2)
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Fic. 1. Absorption coefficient for a helium-argon mixture at
295°K. Points are experimental data of Ref. 3; solid line is theoreti-
cal curve based upon Eq. (2.16) and constants of Table I.

where
2

ho' =—(k'2—Fk2) (2.3)
2m

is the energy difference between an initial scattering
state of energy %%2/2m and a final scattering state of
energy #%k'2/2m, m is the reduced mass of a colliding
pair, 3=1/kT, and n4, np are the number densities of
the two species. In Eq. (2.2), the matrix elements are
for the dipole moment of a pair of atoms in the relative
coordinate system, and these may be written as

(12D )y o= (873)~1 / exp[i(k—k’)-r]x*(x)
Xxk(r)ﬂz(r)dr )

where (87%)~1/2 exp(sk-r)Xi(r) is the scattering-state
wave function in terms of the relative coordinate r
written as a product of a d-function normalized plane
wave and a correlation part Xi(r). Equation (2.2) was
used by Tanimoto® numerically to derive a line shape
for rare-gas mixtures. He assumed exponential forms
for both u(r)=pu(r)r/r and for the potential.

In the calculation which follows, we have not used
exponential functions, but instead have resorted to a
simple model: (1) straight-line collision paths, i.e.,
zero interatomic potential; and (2) a dipole function of
the form u(r)=puoeyr exp(—v%?). The reasons for this
choice have been pointed out previously.® These include
mathematical convenience, the provision of a basis
from which one might judge the sensitivity of the cal-
culation to the forms assumed for u(r) and for the
potential, and a simplicity which nonetheless contains
all the important physical features. The classical theory
based upon this model leads to spectra which are ex-
pressible in a simple analytic form and which are in
quite good agreement with the measurements. As we
shall see, this model, in the quantum case as well as in
the classical case, enables us to obtain a simple analytic
expression for the spectrum.

(2.4)
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Generally speaking, the function
(87%)~*/2 exp(ik- 1)Xu(r)

which appears in Eq. (2.4) is the relative coordinate
wave function for a pair of colliding atoms. If the system
has a nonvanishing central potential, it is natural to
rewrite this in polar coordinates. However, in our model,
where we take the potential to be zero, we have Xy (r)=1,
the wave functions are plane waves, and it is more con-
venient to remain in Cartesian coordinates. Introducing
the induced-dipole function

(2.5)

into Eq. (2.4), the integral is elementary and we have

p(r) = poys exp(—vy%?)

o
1673124

(k.—k.)?

<l‘z (rel))k’ k=
(k—K)?

Xep| - I eo

4y
Then, replacing |{u.™" ) x|% in Eq. (2.6) by
F a1 24 | o ™ i e 2 | s ™ i e 23
which is clearly equivalent, we see that we can write
4; | (=D | *6 (00" — )
w2 9

=— — [ etk 5 (0 — ) gk, (2.7)
768yt 9q )

where
g=(2y?)~. (2.8)

Fixing the direction of k and writing k’ in polar form,
the integral in Eq. (2.7) is elementary:

/ e B D 50— )0

mw
=—T[e eI _gmetD?]  (2.9)
figk
where
2me\ 12
vsv(k)=(k2+ - ) : (2:10)

Differentiating the right side of Eq. (2.9) with respect
to ¢, as required by Eq. (2.7), and combining these
results with Eq. (2.2), we obtain

rwnAnBugzm/ n?

124%y4  \2mmk

a(w)=

3/2
) (L=l U (), (2.11)
T

where

V)= / kdk e~ ¥ {[1+q(v—k)*Jemo—P*
“ 0

—[4+g@+k)* e e+%}, (2.12)
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with e?=p#2/2m. In Appendix II, we show that

Ule)= [exp(36%w) Jx2K o x(1+462)1/2] ’
4€X(1+67)

(2.13)

where

= (w/7)(Bm)!/?

is the dimensionless frequency variable of the classical
theory, K, is a modified Bessel function of the second
kind, and

(2.14)

0="3vh(B/m)"/?

is the correction factor for quantum effects. It should
be observed that 6 is proportional to the ratio of the
thermal de Broglie wavelength to the range of the dipole
moment, and expresses the dynamical effects of quan-
tum mechanics. Combining Egs. (2.11) and (2.13), we
have

(2.15)

a(w)=

“027‘.3nAnB(2>1/2

6hcy? \r

fio \ 3K o[ o(14-62)1/2]
Xsin (--)———————— (2.16)
2kT 1462

In the limit % — 0, this reduces to the classical result®

po*mnang
a(w) = ag(w)=——"—"—

1/2
> 2 Kq(x). (2.17)
12¢y?  \amkT
III. INTEGRALS OF THE ABSORPTION

SPECTRUM

Before proceeding with a discussion of the spectrum,
Eq. (2.16), it is convenient to write down some integrals
of the absorption coefficient, as we did in the classical
analysis.5 It proves possible to obtain these integrals
in terms of elementary functions, although the mathe-
matics is somewhat more difficult than in the classical
case. We consider the Kramers-Kronig transform

2¢ 1 ow)dw
€0)—1=— / ,
T Jo 2

[6)

3.1)

and in addition the first two moments of this transform,

© aw)dw
3156/ , 3.2)
0 w
and
1 00
By=— f a(w)do. (33)
2w Jo

The coefficients on the right sides of Egs. (3.2) and (3.3)
have been chosen to conform with definitions used by
Poll and van Kranendonk* in their work on integrated
absorption. In Appendix ITI, we show that the following
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F1a. 2. Absorption coefficient for a neon-argon mixture at 295°K.
Points are experimental data of Ref. 3; solid line is theoretical
curve based upon Eq. (2.16) and constants of Table I.

hold:
o amp [\ 12
e'(0>~1=———(—) Fu(®), (3.4)
2T \2
4 2,2 1/2
i ) B@), (35)
392 \2mkT
and 5 2,2 1/2
g = m(i) Fz(a) s (3.6)
8ymc 2
where
Fo(6)=(1+36%) (14622, 3.7
Fu(6) =3[ (54469 (1462430~ tan-16],  (3.8)
and
Fy(0)= (146212 (3.9)

are the quantum correction factors.

IV. EVALUATION OF PARAMETERS

As was done in the classical analysis,® we have deter-
mined the parameters uo and v for He-Ar and Ne-Ar
by fitting the theoretical expression, Eq. (2.16), to the
height and frequency of the experimental peaks ob-
served by Bosomworth and Gush.® For He-Ne, the
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F1c. 3. Initial-state averaged transition probability for a helium-
argon mixture at 295°K. Points are experimental data of Ref. 3;
solid line is theoretical curve based upon Eq. (2.16) and constants
of Table L.



162

NEON-ARGON
295°K

£n G(o)
T

21—

23 1 | 1 | 1 l
0] 100 200 300

Wave Number (cni'}

F1c. 4. Initial-state averaged transition probability for a neon-
argon mixture at 295°K. Points are experimental data of Ref. 3;
solid line is theoretical curve based upon Eq. (2.16) and constants
of Table I.

determination of parameters is more difficult because
the only available data are those for the high-frequency
wing of the spectrum, as seen by Kiss and Welsh.!
Figures 1 and 2 show A(o)=a(o)(®mpna)"(No/Vy)?
(No=Avogadro’s number, V=22413.6 cm?; 0 =w/2mc)
for He-Ar and Ne-Ar, respectively. Figures 3 and 4
show the quantity G(o)=o0"14(s)[1—exp(—hca/kT) T,
which falls off exponentially with ¢, as observed by
Bosomworth and Gush.® Figure 5 shows A(o) for
He-Ne, with the parameters chosen to fit the experi-
mental data at two points: 500 cm™! and 575 cm™. As
was discussed previously,® the data below 475 cm™! are
probably not reliable; above 575 cm™, the absorption
has become so weak that the accuracy of the data
prohibits a very meaningful fit. The derived parame-
ters, and hence the over-all spectrum, for He-Ne, is
therefore to be thought of as only roughly correct. In
Table I, we list the parameter values we have obtained
from the quantum line-shape formula Eq. (2.16). We
also give the values obtained previously using the clas-
sical formula, Eq. (2.17). The small differences between
these values indicate the relative unimportance of the
quantum effects at the temperature of the experiments.
This will be discussed further in Sec. VI.
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F1c. 5. Absorption coefficient of a helium-neon mixture at
295°K. Dashed line is experimental data of Ref. 1; solid line is
theoretical curve based upon Eq. (2.16) and constants of Table I.
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TasLe I. Dipole moment parameters (y in A71; uo in debyes).
p

Formula used He-Ne He-Ar Ne-Ar
a(w) [Eq. (2.16)] vy 1.870 1.338 1.443
mo 0.121 0.166 0.223

ao(w) [Eq. (2.17)] vy 1920 1.357 1.446
uo 0.121 0.166 0.223

V. CORRELATION FUNCTION AND
RELAXATION TIME

According to the theory of Kubo,” the imaginary
part of the complex dielectric constant e=e'—ie’’ is
given by

1 fiw
€ (w)=5;l tanh(Zk—‘T)
>< / " coset(P(0)- PO+P() PO)), (5.1)

where () denotes a Boltzmann average and P(z) is the
Heisenberg representation of the total moment of the
system. Combining this equation with our expression,
Eq. (2.16), for the absorption coefficient, and using the
relation €’(w)=ca(w)/w, we can obtain the correlation
function B($)=3%(P(0)-P(®)+P(?)-P(0)) by a Fourier

inversion:
,uo27mAnB <21r1’}'L)1/2
H=—oA—
6v+(1+0)\ T

© e
X/ cosh(————)xZKg[x(l—}—ﬁ?)”?] coswidw ,  (5.2)
0 2kT

where x is given by Eq. (2.14). Since K 5(y) is asymptotic
to (w/2y)'/2 exp(—y) at large y, the integral in Eq. (5.2)
is always convergent. It is evaluated in Appendix IV,
where we obtain

B()=

uoznA%B<27Tm>5/2
32y8 \kT
X {(C2 24 2iC10) 512+ (C2+£2— 25C10) 512, (5.3)

with

C=~"Ym/kT)"2. (5.4)

This function behaves like a Gaussian at small times
and falls off as /% at long times. We have previously
derived the classical limit of this function.® Because of
the excellent agreement between the theoretical and
computed spectra, the correlation function at 295°K
is for all practical purposes a Fourier inversion of the
experimental spectrum, and hence is the true correla-
tion function for He-Ar. In Appendix IV, we also derive

”R. Kubo, J. Phys. Soc. Japan 12, 570 (1957).
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the relaxation time, defined by

r= / ) B()di/B(0), (5.5)
and find '
m\ 12

This result goes over to the previously derived classical
result® as % — 0. Equation (5.6) shows that the effect
of quantum mechanics is to reduce the relaxation time,
which is to be expected since the spreading of wave
packets clearly must speed up the washing out of
correlations.

VI. CONCLUSIONS

The spectra computed above are in good agreement
with the experimental results. This is not surprising,
since a previous classical calculation using the same
model also was in good agreement with the experiments,
and the additional refinement of quantum mechanics
should only serve to improve the situation. Of greater
interest is the relation between the theoretical classical
and quantum expressions for a fixed set of parameters,
since such a comparison serves to delineate the impor-
tance, or lack thereof, of quantum-mechanical effects
in determining the character of this spectrum.

Whatever comparisons we make, of course, are be-
tween the two theoretical spectra, Egs. (2.16) and
(2.17), and are therefore not independent of our model.
Calculations based upon a more precise model would
lead to differences between classical and quantum
spectra somewhat different than we will find here. This
is particularly true when we consider the temperature
dependence of our spectra, since the parameters we
have used can only be optimum at 295°K, the tempera-
ture .at which they were fit to experimental data.
Nevertheless, the relative behavior of a(w) [Eq. (2.16)]
and ao(w) [Eq. (2.17)] should be fairly independent
of the model, and least provide a good general idea of
the importance of quantum effects. Ideally, we should
directly compare the analytic forms of the spectra,
Egs. (2.16) and (2.17). However, because of the
transcendental nature of the Bessel function, it is
somewhat simpler to compare numerical calculations
of the spectra at various temperatures.

As shown in Table I, fitting the two theoretical ex-
pressions, Egs. (2.16) and (2.17), to the experimental
data yields nearly identical parameters for the dipole
moment. The small differences are an indication, for
He-Ar and Ne-Ar, that quantum effects are unimportant
at the peak frequency at T'=295°K. For He-Ne, where
the fit was made at 500 cm~! and 575 cm™%, the results
indicate that the quantum effects are still small at about
twice the computed peak frequency, although this
statement is less firm in view of the uncertainty in the
experimental data. To obtain a better idea of the im-
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F1c. 6. Theoretical absorption coefficients for a helium-neon
mixture at 295°K. The curve labeled QM is based upon Eq.
(2.16); the curve labeled CL is based upon Eq. (2.17).

portance of quantum effects over the entire frequency
range, we have in Figs. 6, 7, and 8 plotted spectra at
T=295°K using both Egs. (2.16) and (2.17), but now
with a single set of parameters common to both curves
in each of these figures. The small difference over the
bulk of the strong absorption region is striking. The
scale of these figures does not allow a comparison in
the high-frequency wing. We therefore show in Figs. 9,
10, and 11 a plot of the ratio a(s)/aq(c) of the spectra
at 295°K computed by the two formulas versus wave
number o=w/2rc. We see that as ¢ — 0, this ratio is
<1, and in fact from Egs. (2.16) and (2.17) it is easy
to show that

lim [a(0)/ai(e)]=(14-6%)72<1 (6.1)
>0
8
CcL .
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F16. 7. Theoretical absorption coefficients for a helium-argon
mixture at 295°K. The curve labeled QM is based upon Eq.
(2.16); the curve labeled CL is based uoon Eq. (2.17).
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F1c. 8. Theoretical absorption coefficients for a neon-argon
mixture at 295°K. The curve labeled QM is based upon Eq. (2.16);
the curve labeled CL is based upon Eq. (2.17).

for all temperatures. The ratio then decreases through a
shallow minimum, after which it increases monotoni-
cally, passing through unity and ultimately diverging

1.7
1.6
L5+ T=75°K
N
Lak T=150 °K
1.3
5 12 T=295°K
o
o
~
o
<]
1.0
T=600°K
0.9
Helium — Neon
Ko =0.121 debyes
0.8 y =1.870x 108 cm™!
0.7 1 1 1 1 1

1
o] 100 200 300 400 500 600

Wave Number o (cm™')

700

Fi1c. 9. Ratio of the theoretical absorption coefficients a(s)
computed by Eq. (2.16) to the theoretical absorption coefficient
ag(e) computed by Eq. (2.17) versus wave number o for a helium-
neon mixture at various temperatures. The vertical mark on each
curve indicates the peak frequency for that temperature.
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exponentially to infinity. The latter divergence also
can be seen by using the asymptotic representation of
the Bessel function,® which leads to

exp{a[1+6—(1+69"*]}

(o) el 2 =

(6.2)

with the dimensionless frequency variable & given by
Eq. (2.14). A similar situation occurs at other tempera-
tures, and in Figs. 9, 10, and 11 we also show a(c)/ao()
versus ¢ at 7'=75° 150°, and 600°K. Examination
of these three figures shows that quantum mechanics
affects the intensity the most at very low and at very
high frequencies, and less at intermediate frequencies.
On the other hand, the range of frequencies over which
this effect is small diminishes with decreasing tempera-
ture, as is to be expected.

In addition to the relative intensity changes, other
parameters of interest include peak frequency, and the
integrals ¢’(0)—1, 81, and B; formulated in Sec. III. The
latter are readily evaluated from the formulas in
Sec. III. In Table II, we give values of the quantum
correction factors Fo(f), Fi(f), and F(6), which
measure the ratio of the quantum to the classical values
for €(0)—1, B1, and B,, respectively.

1.8
1.7+
1.6
1.5
T=75°K
AN
L4+

T =150°K
AN

T=295°K

N

Helium—Argon

0.9 Ko =0.166 debyes
y =1.338 x 108¢cm™!
0.8 I { 1 1 1 1
o] 100 200 300 400 500 600 700

Wave Number o (cm™')

Fic. 10. Ratio of the theoretical absorption coefficient a(s)
computed by Eq. (2.16) to the theoretical absorption coefficient
ao(e) computed by Eq. (2.17) versus wave number ¢ for a helium-
argon mixture at various temperatures. The vertical mark on
each curve indicates the peak frequency for that temperature.

8 Handbook of M athematical Functions, edited by M. Abramowitz
and I. A. Stegun (U. S. Department of Commerce, National
Bureau of Standards, Washington, D.C., 1964), pp. 376-8.
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The values in the table show a striking insensitivity
to quantum effects at temperatures as low as =2100°K,
particularly for Fy(6), the correction factor for 8. The
latter insensitivity is related to the observation of Poll
and Van Kranendonk* that this integral depends upon
quantum effects only via the pair distribution function.
At T=2100°K, the temperature is not yet low enough
that diffractive effects of quantum mechanics upon
scattering ‘can significantly alter the pair distribution
function for rare-gas mixtures.

The peak frequency can be obtained numerically,
or via the solution of a transcendental equation. The
latter may be expressed as an expansion in powers of 6,
which can be shown to be of the form

%o=3.046{140.636202+0(6%)} , (6.3)

where xo= ¢y~ (m/kT)V/2 is the value of the dimension-
less frequency variable x at the peak frequency wo. The
coefficients in Eq. (6.3) are related to the numerical
solution of an equation involving Bessel functions.
From Eq. (6.3) we see that quantum mechanics shifts
the peak frequency upward, the fractional change
approximately being given by 262/3. A 59, shift will
thus occur when 622(3/40)/2220.27. From Table II, we
see that this occurs at 7=2100°K for He-Ar and Ne-Ar,
and perhaps at 72=2150°K for He-Ne.

In Fig. 12 we show the correlation function B(¢)/B(0)
versus reduced time 2¢/37o, where 7o=2y1(m/kT)1? is
the relaxation time in the classical approximation. The
curves use the values of 6 for He-Ar given in Table II
at T=75°K, 150°K, 295°K, and 600°K. The curve
labeled §=0 is the classical approximation to the cor-
relation function, and is independent of temperature
when plotted versus the reduced time 2¢/37,. The
curves show that the primary effect of quantum me-
chanics is to introduce a small effective reduction in the
relaxation time, as indicated also by Eq. (5.7).

We shall not attempt to analyze other parameters of
the spectrum. They can in all cases be studied numeri-
cally from Egs. (2.16) and (2.17), both of which are
easy to evaluate. The general conclusion of this analysis

TaBLE II. Quantum correction factors as functions of 6=%v#
X (B8/m)!'2 for various temperatures 7" and pairs of gases.

T (°K) Pair 0 Fo6) Fi(0)  Fa(0)
75 HeNe 0410 0774 0876  1.081
He-Ar 0282 0881 0934  1.039
Ne-Ar  0.158 0960 0979  1.012
150 HeNe 029 0875 0931  1.041
He-Ar 0199 0937 0968  1.020
Ne-Ar 0112 0979 0990  1.006
295 HeNe 0207 0933 0964  1.021
He-Ar 0142 0967 0983  1.010
Ne-Ar 00799 0990 0995  1.003
600 HeNe 0145 0966 0983  1.010
He-Ar 00996 0984 0991  1.005
Ne-Ar 00560 0995 0998  1.002
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F1c. 11. Ratio of the theoretical absorption coefficient a(c)
computed by Eq. (2.16) to the theoretical absorption coefficient
ao(o) computed by Eq. (2.17) versus wave number o for a neon-
argon mixture at various temperatures. The vertical mark on
each curve indicates the peak frequency for that temperature.

is that down to temperatures of the order of 100°K,
or perhaps slightly higher for He-Ne (provided the
He-Ne parameters of Table I are reasonably accurate),
quantum mechanics plays a small role in determining
these spectra, except well out in the high-frequency
wing. This wing, however, is less readily observable

1.0
[:] T°K
0.9 o] Classical, all temps.
0.8 0.0996 600
0.142 295
0.7+ 0.199 150
0.282 75
0.6~
G
= O0.5F 6:0.282
X 6=0.199
= 04+ 6=0.142
6=0.0996
0.3 6=0
0.2+
0.l
1 L 1
o 0.5 1.0 1.5 2.0 25
21/3,

Fi16. 12. The reduced correlation function for a helium-argon
mixture at various temperatures versus reduced time. The 6=0
curve is the classical result for all temperatures, the classical
temperature dependence being contained entirely in the reduction
factor for the time.
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experimentally since the intensity falls off exponentially.
It should also be pointed out that the condensation
temperature of Ar being about 87°K, the observa-
tion of these spectra in the gas phase below about
100°K is likely to be possible only for He-Ne. Thus,
we can conclude as follows: With the possible exception
of He-Ne below about 150°K, the use of collision-
induced absorption spectra to characterize parameters
for the dipole moment, or possibly the interaction poten-
tial in more refined calculations, will be satisfactory
if done by classical theory, correlated with experi-
mental data at or near the peak intensity, for all
temperatures and gas mixtures.
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APPENDIX I: DERIVATION OF EQ. (2.2)

We introduce the Born-Oppenheimer approximation
for the wave functions, in terms of which the matrix
element in Eq. (2.1) becomes

(uz)ap= /‘I’b*(Rh' -, Ry)u(Ry,- - -, Ry)

XWo(Ry,- -+ Ry)dRy- - -dRy, (AL.1)

where u.(Ry,- - -, Ry) is the total dipole moment of the
system expressed as a function of the nuclear positions
Ry, -+ Ry, and the ¥’s are wave functions for the
nuclear motion. This is the starting point for many
analyses of collision induced absorption, including quite
general virial expansions.*? In the present paper, only
the simplest approach is necessary. Thus, for the
dipole moment, we write

NA Np

uz(Rh' . ,RN)= Z Z MZ(Rii) )

=1 j=1

(A1.2)

to indicate that (to the approximation we require) the
dipole moment in a rare-gas mixture arises from
binary collisions between unlike atoms. We assume V4
atoms of type 4 and Np atoms of type B in the volume
V. No terms involving like atoms are included, since
such binary collisions do not give rise to a dipole mo-
ment, and ternary and higher-order terms are omitted,
because the experiments have not been done at den-
sities high enough to show ternary absorption. For the
wave functions, we write

Z.(Ry,- -, R) =T #:(Ry) i:I &/(R)

- N4 NB
X {1+ gl :% xR —17},  (AL3)

9 J. van Kranendonk, Physica 23, 825 (1957); 24, 347 (1958); 25,
337 (1959).
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where the ¢’s are normalized free-particle wave functions
(ﬁ,(R) = V—l/2 exp(zki- R) y (A14)

with k; chosen to satisfy periodic boundary conditions
in the volume V, and X;;(R;;) is the part of the wave
function expressing the correlation between particles ¢
and j. This correlation part depends in general upon
the wave vectors k; and k;, but we suppress this de-
pendence in the notation for the sake of brevity.
It is clear that X;;(R;) — 1 as R;;—, the range of
X;; being determined by the intermolecular potential.
The wave function (A1.3) is not the most general one
possible, but it is sufficient to account for all binary
effects due to collisions of unlike atoms. Also, we have
not symmetrized or antisymmetrized the wave function,
because symmetry properties can play no role in a
theory of an effect due to collisions between unlike
atoms. This wave function is not normalized to unity,
but to O(N4Npg) renormalization would not change
the absorption coefficient.

If we combine Egs. (A1.2), (A1.3), and (A1.4), then
to O(N 4N ), {u:)as reduces to a double sum of terms of
the form

Ng Np
<ﬂz>ab=z Z (ﬂz(2)>iji’j’

=1 j=1

N4 N
X[ H 53(km_km/) H Bs(kn_kn,)]y (Al.S)
m=1(m>1) n=1(n7j)

where (u.®);;» is a matrix element for a transition
between two states for a pair of particles, and the &
functions arise from the orthogonality of the free-
particle eigenstates (A1.4) with differing wave vectors.
The matrix element {u,®)q, is given by

(e ® )i jrij= / ¢ * (R0 *(Ro) X7 * (Ruz) = (Rus)

X ¢:(R1)p;(R2)X;;(Ri2)dR1dR,.  (A1.6)
In Eqgs. (A1.5) and (A1.6), we have used primed indices
to indicate eigenvalues and wave vectors in the final
state, and unprimed indices to indicate eigenvalues and
wave vectors,in the initial state.

Following Eq. (2.1), we must square the sum in
Eq. (A1.5). When this is done, three classes of terms
arise:

(1) Two-particle terms

Nao Np
2 2 [P )i |2

=1 j=1

X[ ff 83(kn—kx") Iﬁ 8 (k,—k.") . (A1.7)

m=1(m>£1) n=1(n7j)
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(2) Three-particle terms, the number of which is
O(N 42N 5)+O0(N 4N 57).

(3) Four-particle terms, the number of which is
O(N 42N 5%).

We do not write out the type (2) and (3) terms ex-
plicitly here, since they do not contribute to binary
absorption.

The type (1) term, Eq. (A1.7), is a sum of N4Np
terms, each of which contributes identically to the
absorption. We therefore take one such term (1=1,5=2),
multiply it by N 4N g, and obtain

I <Mz)if 1 2
N4 NB
=NANB[H H aa(km_km’)a?’(kn—kn,)]
m=2 n=1(n%2)
X <ﬂz (2)>1'2'122 .

Going over to relative and center-of-mass coordinates,
we can write

(@) vror1e= 8%kt + o' — Ky — ko) (s D Y

where

(@D o= V1 / exp[i(k—K) 1]

(A1.8)

(A1.9)

XX * ()X (O)u(x)dr  (r=r12) (A1.10)

is the matrix element of the dipole moment of a pair
of atoms between states of the relative-coordinate
Hamiltonian. Finally, the summation over the center-of-
mass velocity distribution and the § function of
Eq. (A1.9) can be ignored, since this amounts to taking
the center of mass of each colliding pair as stationary.
Inasmuch as the only effect of center-of-mass motion is
to give rise to an extremely small Doppler broadening
at thermal velocities, the error introduced in this step
is negligible. We then obtain

412(.0%,4113 hZ 3/2 Bh2k2
) Tl
fic 2amkT k 2m

X [0 Yr | 21— FT) 3 (' — ), (A1.11)
kl

a(w)=

where o’ is given by Eq. (2.3). Finally, we can replace
the summations of Eq. (A1.11) by integrals, if in the
definition of the matrix element, Eq. (A1.10), we replace
the plane-wave states Eq. (A1.4) by é-function nor-
malized states!® (87%)~1/2 exp(ik-r). The result of this
step is Eq. (2.2).

APPENDIX II: EVALUATION OF U(w)

In this appendix, we evaluate the integral U(w) in
Eq. (2.12). We write

U= U1'- U2, (A21)

1. I. Schiff, Quantum Mechanics (McGraw-Hill Book Com-
pany, New York, 1949), p. 51.
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where
Ur= / dk B[+ q(—F)*]
’ Xexp[— ethi—g(o—PE)?], (A2.2)
Us= / dk k[1-+q(o+k)?]
’ Xexp[— ek?—q(+k)?], (A2.3)

and v=1v(k) is defined by Eq. (2.10).
In Eq. (A2.2), we introduce as a new variable
t=k+v(k), which leads to

. 1 /“ (242 (22— pD) (1+gqt?)

=
» 73

4

62P2 62?4
X exp[ —(q+L1ed)2+ — —]dt , (A24)
4 442
where
p2=2mw/h. (A2.5)
In Eq. (A2.3), we introduce as a new variable
t=—k+v(k),
which leads to
1 /“’ @+ 1) (*— 1) (1+¢%)
2 . P
e2P4
X expl:— (q—}—%ez)tz-l—%e?pz—z]dt , (A2.6)
22

with p again given by Eq. (A2.5). Combining Egs.
(A2.4) and (A2.6) gives

1 /” (' —1)(1+¢%)

0 3

4
Xexp(— (+Ee)+iypi—yipt/ 4yt

s
—tesrp) [ (4T —1-m)
0

u?

B
X exp(—Au——)du , (A2.7)
u

where
A=q¢+iv?, (A2.8)
and
B=1y2pt. (A2.9)
Starting with the formula!!
® du
f e AutBlw_—=2K(2412BV?) | (A2.10)
0 U

11'W. Grobner and N. Hofreiter, Integraltafel (Springer-Verlag,
Vienna, 1950), Vol. 2, p. 66.
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we can obtain the terms of the integral in Eq. (A2.7)
by partial differentations with respect of 4 and B.
Using the recursion relations for the derivatives of the
modified Bessel functions of the second kind?® K, gives

U=%e*721’2{2p4A 1/2B—1/2K1(2A 1/231/2)
+2qp4K0(2A1/2B”2)—ZBll2A"1/2K1(2A1/2B1/2)
—2gBA7K,(2412B1/2)}y,  (A2.11)

Then, using the recursion relation® which expresses K1
in terms of K, and K, and the definitions Egs. (A2.5),
(A2.8), and (A2.9), we finally obtain Eq. (2.13).

APPENDIX III: EVALUATION OF ABSORPTION
INTEGRALS

We compute here the absorption integrals ¢ (0)—1,
B1and B defined in Egs. (3.1), (3.2), and (3.3). Consider
first €(0)—1. Upon substituting Eq. (2.16) into
Eq. (3.1), we find that we must compute an integral of
the form

00

Il=/ (e — 9K o(bw)dw , (A3.1)
0

where a=1/2kT and b=[a~%(m/kT)+a?]"/2 Using the
recursion relation®
Ko(x)—-K2(x) = ——2x"1K1(x) (A32)

to write K, in terms of K, and K;, and the relation®
Ki(x)=—K'(x), we find that

a 00
I=2— / cosh(aw)K o(bw)dw
da 0

4 = . '
+ fo sinh(aw)K1(bw)deo. (A3.3)

The two integrals in Eq. (A3.3) can be evaluated in
terms of elementary functions,!? and we find

d 4ra
Ii=2r— (02— a®) V2 ]+—(b2—a»)~ V2. (A3.4)
da b?

Differentiating and substituting the definitions of «
and b then leads to Eq. (3.4).

Consider next 8;. Upon substituting Eq. (2.16) into
Eq. (3.2), we find that we must evaluate the integral

I2=/‘” (20— e799)w?K 5 (bw)dw. (A3.5)

2 1. S. Gradshetyn and I. M. Ryzhik, Tables of Integrals, Series
and Products (Academic Press Inc., New York, 1965), 4th ed., p.§726.
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First we write

a 0
Iy=— / (%4 &) wK o(bw)dw
da 0
9 2
=— / (eso4-g—av) I:K o(bw)+—K 1(bw) :ldw
da 0 bOJ

32 0
2 / sinh(ae)K o(bw)dew
602 0

4 9 r*
-2 / cosh(aw)K ¢ (bw)dw.  (A3.6)
b da 0

To obtain this form, we have used the same relations
used in deriving Eq. (3.4). We then can use the limiting
form of an elementary relation!? to evaluate the integral
containing K, in Eq. (A3.6). In particular

/ i sinh(aw)K o(bw)dw

sin[ v sin—(a/b) ]
sin(yr/2)

= (b2—a?)~V2sin"Y(a/d).

= lin(} tr(b2—a?)~V
(A3.7)

We also use

a 00
— / cosh(aw)K ¢ (bw)dw
da 0

0

_2 %’:cosh (aw)Ko (bw)]

da 0

da r®
_— —/ K(bw) sinh (aw)dew
da b 0

19
— lim cosh (aw)K o (bw)
bda «°

Lo wK bw) sinh d A
bg;/; o(bw) sinh(aw)dw. (A3.8)

In the last form in Eq. (A3.8), it is easy to see that
the term involving the limit is equal to zero. Thus, ex-
panding cosh(aw)=1+4%(aw)?+ - - -, this term becomes
— (a/b) lim,,o[ w?K o(bw)], which vanishes since K (bw)
diverges only logarithmically as w— 0. The integral
in Eq. (A3.8) is elementary,!? and we obtain then

62

Iy=2—[(62—a%~"?sin"Y(a/b)]
da?

4 9
+— —[a(d?—0a®)~2sin"(a/b)]. (A3.9)
b% da



160

After carrying out the elementary but tedious dif-
ferentiations in Eq. (A3.9), and substituting the
definitions of ¢ and b, we obtain Eq. (3.5).

Consider finally 8.. Upon substituting Eq. (2.16) into
Eq. (3.3), we find that we must evaluate the integral

I3= f sinh(aw) K 2(bw)w3dew
0

82 ™ (A3.10)
-2 / sinh(ae) Ka(b)edes.
da? 0

Thus, since we see that 2I3=9%I;/da?, the evaluation of
I, then also leads to the evaluation of 7;. Differentia-
tion of Eq. (A3.4) and substitution of the definitions of
a and b thus leads to Eq. (3.6).

APPENDIX IV: EVALUATION OF CORRELATION
FUNCTION AND RELAXATION TIME

We evalute here the integral on the right side of
Eq. (5.2). We use Eq. (A3.2) to write

0 hw
I()= / COSh(——)sz o x(1462)1/2] coswidw
) 2-T

fuw 2x
= f cosh(—)[sz oF——K 1:| coswidw
0 2T (146212

2 e fiw
=—C 2—; cosh(Ek—T>K o[ x(14-6%)1/%] coswidw
a2 Jo

2C a ro o
+— cosh(———)
140012 ot J, 2kT.
XK [x(146%)1?] sinwtdw, (A4.1)
where

C=v"Ym/ET)"2. (A4.2)
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We then use the relations

cosh(a=1b) = cosha cosb=Fi sinha sind  (A4.3)
and
sinh(@-4=4b) =sinha cosb==¢ cosha sind  (A4.4)

to rewrite Eq. (A4.1) as

IBO=TJ@)+T*@) (A4.5)
where
9% hw
J(@)=—-3iC— / cosh<——+iwt>
o /o 28T
XK [ C(1+46%)20]dw
iIC 9 hw
—_——— sinh(—-———l— iwt)
(46112 ¢ J, 2kT
XK [C(1+62) 20 Tdw. (A4.6)

The integrals in Eq. (A4.5) are elementary.!? Substitut-
ing their values, and carrying out the differentiations
indicated in Eq. (A4.6), we find that

I(t) =3xC4(1+62)[(C*H12+4-2iCt0) /2

+(CH-12—2iCt0)~5/%].  (A4.7)
When this expression is substituted into Eq. (5.2), the
result is that given in Eq. (5.3).

From the definition Eq. (5.7) and from Eq. (5.2), we
see that the relaxation time 7 is given by

T= / I(8)dt/1(0). (A4.8)
0

The integral in Eq. (A4.8) is clearly elementary when

I(2) is given by Eq. (A4.7). Simple algebra leads to the

result given in Eq. (5.7).



