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A theoretical calculation of the collision-induced far-infrared absorption, which has been observed in

rare-gas mixtures, is carried out using the quantum-mechanical expression for the absorption coeffIcient.

Using a simple empirical form to describe the variation of the collision-induced dipole moment with inter-
nuclear separation, and using plane-wave eigenstates (i.e., assuming straight-line collision paths), an analytic
expression is obtained for the spectrum which agrees well with the experiments. Comparison with a previous
classical calculation based upon the same model shows that quantum eGects are sma11 at room temperature
except in th.e high-frequency wing of the spectrum. A number of analytic integrations allow us to derive

simple expressions for the correlation function, relaxation time, static dielectric constant, and other spectra
invariants.

I. INTRODUCTION

~COLLISION —INDUCED far-infrared absorption in~ mixtures of helium-neon, helium-argon, and neon-
argon was discovered by Kiss and Welsh, "who also
suggested its physical origin. More recently, the inter-
ferometric experiments of Bosomworth and Gush' have
located the peak of this absorption and measured much
of the wings for both helium-argon and neon-argon
mixtures, although these experimenters were unable to
see the helium-neon spectrum.

Previous work on the theory of these spectra has
appeared. Poll and van Kranendonk4 gave an analytic
theory for the integrated absorption, and Tanimoto'
has carried out a numerical calculation of these spectra.
More recently, Levine and Birnbaum' presented an
analytic theory of these spectra, based upon classical
radiation theory. Despite the fact that the observed
spectra do not entirely satisfy the apparent criterion
Aco/kT&(1 for the applicability of a classical approach,
the latter authors were able to obtain good agreement
with experiment.

It is of interest to see in a clear way what role quan-
tum eRects play in these spectra. To do this, it is neces-
sary to carry out a calculation based upon the general
expression for the absorption coefFicient derived in
quantum mechanics. Such a calculation is carried out
in this paper, using the same model for the variation of
the dipole moment with internuclear separation, and
the same assumption of straight-line collision paths as
was used by Levine and Birnbaum. It is found that the
spectra can be expressed in a simple analytic form.
Examination of this form then shows that quantum
eRects are unimportant at room temperature except
in the high-frequency wing. At lower temperatures the
range of frequencies over which quantum eRects are

' Z. J. Kiss and H. L. Welsh, Phys. Rev. Letters 2, 166 (1959).' R. Heastie and D. H. Martin, Can. J. Phys. 40, 122 (1962).
'D. R. Bosomworth and H. P. Gush, Can. J. Phys. 43, 729

(1965).' J. D. Poll and J. van Kranendonk, Can. J. Phys. 39, 189
(1961).

'O. Tanimoto, Progr. Theoret. Phys. (Kyoto) 33, 585 (1965).
6 H. B. Levine and G. Birnbaum, Phys. Rev. 154, 86 (1967).
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unimportant diminishes, but possibly except for helium-

neon mixtures below about $50 K it appears as if this

range is sufficiently broad so that as a practical matter
quantum effects can be ignored.

In Sec. II we derive the absorption coefficient. In
Sec. III, we derive analytic expressions for several

spectral invariants. In Sec. IV we discuss the evalua-

tion of the parameters of the model. In Sec.V, we derive

analytic expressions for the correlation function and
relaxation time. In Sec. VI, we compare the classical
and quantum spectra, and make some concluding com-

ments. A number of mathematical details are contained
in four appendices.

II. DERIVATION OF THE LINE SHAPE

An expression for the absorption coeKcient may be
derived from the quantum-mechanical "golden rule. "
It reads

where V is the volume of the sample, E is the statistical
probability that the sample is in the initial state a,
Ace, ~=8~—E, is the energy difference between a Anal

state b and an initial state a, and c is the speed of light.
The matrix element (is,),t, is for the s component
(chosen arbitrarily) of the total dipole moment of the

system. By a straightforward procedure, outlined in

Appendix I, Eq. (2.1) may be reduced to a form which

expresses n(co) in terms of transition matrix elements

for two-molecule systems. For a system without bound

states, or for which the equilibrium population of the
bound states is small enough to be neglected, this re-

duction leads to

4z' cps
cr(co) = dk exp( —P is'k'/2')

Itc 2mmkT

dk' ((is, &"")q,q
~

'(1—e e""')&(co'—&), (2 2)
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HELIUM-ARGON MIXTURE 295'K Generally speaking, the function

(82r') '~2 exp(ik r)Xk(r)

which appears in Eq. (2.4) is the relative coordinate
wave function for a pair of colliding atoms. If the system
has a nonvanishing central potential, it is natural to
rewrite this in polar coordinates. However, in our model,
where we take the potential to be zero, we have Xk(r) —= 1,
the wave functions are plane waves, and it is more con-
venient to remain in Cartesian coordinates. Introducing
the induced-dipole function

f
IOO

I
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Wave Number (cm Ij
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lr, (r) =pgs exp( —ysr2) (2.5)

where

Iro)'= (k"—k')
2m

(2 3)

is the energy difference between an initial scattering
state of energy )ksk2/22)2 and a final scattering state of
energy Ask"/22)2, 2)2 is the reduced mass of a colliding
Pair, P=1/kT, and n~, 22' are the number densities of
the two species. In Eq. (2.2), the matrix elements are
for the dipole moment of a pair of atoms in the relative
coordinate system, and these may be written as

(p ("'))k k
——(Sm') ' exp)i(k —k') rj)(k*(r)

FIG. j.. Absorption coeKcient for a helium-argon mixture at
295'K. Points are experimental data of Ref. 3; solid line is theoreti-
cal curve based upon Eq. (2.16) and constants of Table I.

into Eq. (2.4), the integral is elementary and we have

ZP, p

(~ ( I)& (k.—k,') '
~6~»2~4

(k—k')'
Xexp—

4~2
(2.6)

Then, replacing ~()u, (""&k.,k~' in Eq. (2.6) by

a{l(~.'""&',
k I '+

I ( 2'"")'
k I '+

I (~ '"")'.k I ')

which is clearly equivalent, we see that we can write

2 I(k.""&'.kl'~(~' —~)
k/

Pp 8
e—2(kv—2k 'k+'k)vg(~~ ~)dk~ (2 7)

768''vr' Bq

where
&& Xk(r))u, (r)dr, (2.4) V—= (2v') '. (2.8)

where (82rs) '~2 exp(ik. r))(k(r) is the scattering-state
wave function in terms of the relative coordinate r
written as a product of a 8-function normalized plane
wave and a correlation part Xk(r). Equation (2.2) was
used by Tanimoto' numerically to derive a line shape
for rare-gas mixtures. He assumed exponential forms
for both tk(r) = tu(r)r/r and for the potentiaL

In the calculation which follows, we have not used
exponential functions, but instead have resorted to a
simple model: (1) straight-line collision paths, i.e.,

zero interatomic potential; and (2) a dipole function of
the form p(r)=p()yr exp( —ysr2). The reasons for this
choice have been pointed out previously. ' These include
mathematical convenience, the provision of a basis
from which one might judge the sensitivity of the cal-
culation to the forms assumed for p(r) and for the
potential, and a simplicity which nonetheless contains
all the important physical features. The classical theory
based upon this model leads to spectra which are ex-
pressible in a simple analytic form and which are in
quite good agreement with the measurements. As we
shall see, this model, in the quantum case as well as in
the classical case, enables us to obtain a simple analytic
expression for the spectrum.

Fixing the direction of k and writing k' in polar form,
the integral in Eq. (2.7) is elementary:

e 2(kv —2k k'+k'2)g(~—' o))dk'

where

Le
—q(v —k)2 e

—2(v+k)vf (2 9)
Agk

2rlo)) '12
s—=s(k) =

I
k'+ k) (2.10)

U(o)) = kdk e "k'{L1+q(s—k)2/e «~k)'

—$1+q(2)+k)'$e 2'"+"'), (2.12)

ifferentiating the right side of Eq. (2.9) with respect
to q, as required by Eq. (2.7), and combining these
results with Eq. (2.2), we obtain

x'G0SgÃgpp m h
~(~) = (1 e k(a/kT) P(o)) (2

—11)
12A2cy4 2xmkT

where
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with e'=Pcs/2m. In Appendix II, we show that

[exp(r Phoi) ]xslt 2[x(1+82) I /2]

~(~)=
4es(1+8s)

where

x= (co/y) (pm) "'

(2.13)

(2.14)
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NEON-ARGON MIXTURE 295 K

is the dimensionless frequency variable of the classical
theory, E~ is a modified Bessel function of the second
kind, and

IOO 200 300
Wave Number (cm I}

400

8=-'~h(p/~)'~' (2.15)

is the correction factor for quantum eGects. It should
be observed that 8 is proportional to the ratio of the
thermal de Broglie wavelength to the range of the dipole
moment, and expresses the dynamical e6ects of quan-
tum mechanics. Combining Eqs. (2.11) and (2.13), we
have

hold:
IJ, p nri~tig '7r)

e'(0) —1= —
l

Fs(8),
2~ hT 2)

(3.4)

FIG. 2. Absorption coefficient for a neon-argon mixture at 295'K.
Points are experimental data of Ref. 3; solid line is theoretical
curve based upon Eq. (2.16) and constants of Table l.

ps'a'mme~ 2) '~'

n(M) =
6hcys m)

( h~ xsEs[x(1+8s)'Isj
X»nhl . (2.16)

1+8'

and

where

4po'~si~~s~ f'

I Fi(8),
3ys ~2mkT

SPp 7I Sgg~
Ps = — Fs(8),

Symc 2

(3.5)

(3.6)

In the limit A —+ 0, this reduces to the classical result'

pp'~'sea 2
A M ~(Xp G7 x4Ks(x) . (2.17)

12cy' mmkT

F.(8) = (1+s8')(1+8')-' (3 7)

Fi(8) =-'[(5+48')(1+8')-'+38-' tan-'8) (3.8)

GI. INTEGRALS OF THE ABSORPTION
SPECTRUM

F,(8) = (1y8')'~s

are the quantum correction factors.

(3.9)

Before proceeding with a discussion of the spectrum,
Eq. (2.16), it is convenient to write down some integrals
of the absorption coefficient, as we did in the classical
analysis. ' It proves possible to obtain these integrals
in terms of elementary functions, although the mathe-
matics is somewhat more dificult than in the classical
case. We consider the Kramers-Kronig transform

IV. EVALUATION' OF PARAMETERS

As was done in the classical analysis, ' we have deter-
mined the parameters pp and y for He-Ar and Ne-Ar

by fitting the theoretical expression, Eq. (2.16), to the
height and frequency of the experimental peaks ob-
served by Bosomworth and Gush. ' For He-Ne, the

2C Q(M)dM
e'(0) —1=—

p

(31)
-I8-

and in addition the Grst two moments of this transform,

1=c (3.2) b—-20

and
oo

ps=
2Ã Q

rr(co)dre. (3.3)

The coeflicients on the right sides of Eqs. (3.2) and (3.3)
have been chosen to conform with definitions used by
Poll and van Kranendonk4 in their work on integrated
absorption. In Appendix III, we show that the following

22 100 200 300
Wove Number (cm')

400 500

FIG. 3. Initial-state averaged transition probability for a helium-
argon mixture at 295'K. Points are experimental data of Ref. 3;
solid Hne is theoretical curve based upon Eq. (2.16) and constants
of Table I.
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TABLE I. Dipole moment parameters (r in A '; pp in debyes).

Formula used

~(~) LEq (216)j

~o(~) LEq (2»)j

He-Ne

1.870
pp 0.121

1.920
pp 0.121

1.338
0.166
1.357
0.166

¹Ar
1.443
0.223
1.446
0.223

-2I

-23 1

IOO

I f

200
Wave Number {cmi}

I

300

Fro. 4. Initial-state averaged transition probability for a neon-
argon mixture at 295'K. Points are experimental data of Ref. 3;
solid line is theoretical curve based upon Eq. (2.16) and constants
of Table I.

V. CORRELATION FUNCTION AND
RELAXATION TIME

According to the theory of Kubo, ~ the imaginary
part of the complex dielectric constant e=e' —ie" is
given by

1 (kpp
e"((p) =—tanhI

2k &2kT

cos&it(P(0) P(t)+P(t) P(0)), (5.1)

determination of parameters is more difficult because
the only available data are those for the high-frequency
wing of the spectrum, as seen by Kiss and Welsh. '
Figures 1 and 2 show A(o) =o.(o)(msn~) '(Ep/Up)'
(fV p= Avogadro's number, Up ——22413.6 cm'; o =~p/2e. c)
for He-Ar and Ne-Ar, respectively. Figures 3 and 4
show the quantity G(o) =a 'A(o) L1—exp(—kco/kT) 1 ',
which falls oR exponentially with 0-, as observed by
Bosomworth and Gush. ' Figure 5 shows A(o.) for
He-Ne, with the parameters chosen to fit the experi-
mental data at two points: 500 cm ' and 575 cm '. As
was discussed previously, ' the data below 475 cm ' are
probably not reliable; above 575 cm ', the absorption
has become so vreak that the accuracy of the data
prohibits a very meaningful fit. The derived parame-
ters, and hence the over-all spectrum, for He-Ne, is
therefore to be thought of as only roughly correct. In
Table I, we list the parameter values we have obtained
from the quantum line-shape formula Eq. (2.16). We
also give the values obtained previously using the clas-
sical formula, Eq. (2.17).The small differences between
these values indicate the relative unimportance of the
quantum eRects at the temperature of the experiments.
This will be discussed further in Sec. VI.

where ( ) denotes a Boltzmann average and P(t) is the
Heisenberg representation of the total moment of the
system. Combining this equation with our expression,
Eq. (2.16), for the absorption coefFicient, and using the
relation e"(&v) =cn(rp)/pp, we can obtain the correlation
function B(t)=s(P(0) P(t)+P(t) P(0)) by a Fourier
inversion:

tip s's~sn /2vrBs)
&(t) =

6y4(1+0') & kT )
00

Aco

&( cosh x'EsLx(1j8') 't ] cos&otdoi, (5.2)
o 2kT

where x is given by Eq. (2.14).Since Ks(y) is asymptotic
to (vr/2y) 'i' exp( —y) at large y, the integral in Eq. (5.2)
is always convergent. It is evaluated in Appendix IV,
where we obtain

po psAp1B 2vr8$

&(t) =
32'' kT

X{(C'+t'+2t'Ct8) '"+(C'+t' —2iCt8) ' '} (53)
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FIG. 5. Absorption coefficient of a helium-neon mixture at
295'K. Dashed line is experimental data of Ref. 1; solid line is
tht:orqtical curve based upon Eq. (2.16) and constants of Table I,

C=y '(ns/kT)"'. (5.4)

r R. Kubo, J. Phys. Soc. Japan 12, 570 (1957).

This function behaves like a Gaussian at small times
and falls oR as t ' at long times. We have previously
derived the classical limit of this function. ' Because of
the excellent agreement between the theoretical and
computed spectra, the correlation function at 295 K
is for all practical purposes a Fourier inversion of the
experimental spectrum, and hence is the true correla-
tion function for He-Ar. In Appendix IV, me also derive
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experimentally since the intensity falls off exponentially.
It should also be pointed out that the condensation
temperature of Ar being about 87 K, the observa-
tion of these spectra in the gas phase below about
100'K is likely to be possible only for He-Ne. Thus,
we can conclude as follows: With the possible exception
of He-Ne below about 150'K, the use of collision-
induced absorption spectra to characterize parameters
for the dipole moment, or possibly the interaction poten-
tial in more reined calculations, will be satisfactory
if done by classical theory, correlated with experi-
mental data at or near the peak intensity, for all
temperatures and gas mixtures.
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APPENDIX I: DERIVATION OF EQ. (2.2)

We introduce the Born-Oppenheimer approximation
for the wave functions, in terms of which the matrix
element in Eq. (2.1) becomes

where the&'s are normalized free-particle wave functions

@,(R) = V "' exp(ik; R), (A1.4)

with k, chosen to satisfy periodic boundary conditions
in the volume V, and X,;(R,,) is the part of the wave
function expressing the correlation between particles i
and j. This correlation part depends in general upon
the wave vectors k; and k;, but we suppress this de-
pendence in the notation for the sake of brevity.
It is clear that X,, (R;,) —+ 1 as R,;—+~, the range of
X;; being determined by the intermolecular potential.
The wave function (A1.3) is not the most general one
possible, but it is sufficient to account for all binary
effects due to collisions of unlike atoms. Also, we have
not symmetrized or antisyrnmetrized the wave function,
because symmetry properties can play no role in a
theory of an effect due to collisions between unlike
atoms. This wave function is not normalized to unity,
but to O(N~X~) renormalization would not change
the absorption coefficient.

If we combine Eqs. (A1.2), (A1.3), and (A1.4), then
to O(1V~1Vs), (p,).t, reduces to a double sum of terms of
the form

(pg). g —— @)*(Rg, )R~)p, (R,, ,Rg)

X@,(Rg, )R~)dRg. . dR~) (A1.1)

NA NB

i=1 j=l

where p, (R~, ~,R~) is the total dipole moment of the
system expressed as a function of the nuclear positions
Rq, ,R~, and the 4's are wave functions for the
nuclear motion. This is the starting point for many
analyses of collision induced absorption, including quite
general virial, expansions. "In the present paper, only
the simplest approach is necessary. Thus, for the
dipole moment, we write

NA NB

NA

Xj IT 5'(k —k ') IT 8'(k —k.')j, (A1.5)
NB

m=1(mgi) m=1(n~~)

where (p, &'~),,;; is a matrix element for a transition
between two states for a pair of particles, and the 8
functions arise from the orthogonality of the free-
particle eigenstates (A1.4) with differing wave vectors.
The matrix element (y, &'&)...,. is given by

p„(Rg, ,R~)= Q P p, (R;;),
i=1 j'-1

(A1.2)
( *"')'v'~= 4' '(R~)4»'*(R~)&'~'*(R»)~.(R»)

to indicate that (to the approximation we require) the
dipole moment in a rare-gas mixture arises from
binary collisions between unlike atoms. Ke assume ÃA
atoms of type A and Eg atoms of type 8 in the volume
V. No terms involving like atoms are included, since
such binary collisions do not give rise to a dipole mo-
ment, and ternary and higher-order terms are omitted,
because the experiments have not been done at den-
sities high enough to show ternary absorption. For the
wave functions, we write

NA

NA NB

x I1+ 2 2 p;;(R', )—13I,
i=1 j 1

J. van Kranendonk, Physica 23, 825 (1957); 24, 347 (1958);25,
337 (1959l.

Xy, (Ri)y, (R2)x;,(R»)dR, dR, . {A1.6)

NA NB

'-I j=l

NA

x L II &'(k-—k„) II y(k„—k„'))'.(AI. r)
m=1 (m&i) n=i(n~~)

In Eqs. (A1.5) and (A1.6), we have used primed indices
to indicate eigenvalues and wave vectors in the final
state, and unprimed indices to indicate eigenvalues and
wave vectors, 'in the initial state.

Following Eq. (2.1), we must square the sum in
Eq. (A1.5). When this is done, three classes of terms
arise:

(1) Two-particle terms
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(2) Three-particle terms, the number of which is
O(Xg'JV B)+0(EgXB').

(3) Four-particle terms, the number of which is
OPV~PXBP)

where

dk kL1+q(t/ —k)'j

We do not write out the type (2) and (3) terms ex-
plicitly here, since they do not contribute to binary
absorption.

The type (1) term, Eq. (A1.7), is a sum of /V~iVB
terms, each of which contributes identically to the
absorption. We therefore take one such term(i= 1,j=2),
multiply it by %~X~, and obtain

I( ) rl'
Ng

=/V 1V Lg g s'(k -k„')s'(k„-k„')1
m=2 n=l(n&2)

X (/&, "')1'2'lp . (A1.8)

Going over to relative and center-of-mass coordinates,
we can write

XexpL —e'k' —q(tt-k)'), (A2.2)

dk kL1+q(t/+k)'g

XexpL —eek2 —q(t/+k)P7 (A2.3)

and v—=n(k) is defined by Eq. (2.10).
In Eq. (A2.2), we introduce as a new variable

t=k+t(k), which leads to

1 "(t'+p')(t' —p')(1+qt')
Ug=—

t3

e2P2 e2P4-

Xexp —(q+ er e') «P+ — dt, (A2.4)
4t2

(/&. &'&)i p i2 ——5'(ki'+k2' —ki—k2) (/e, &"'&)/,~, /, ) (A1.9)

where

(t& &"»)a. /,
——V ' expLi(k —k') r$

PP= 2//t&p/A.

In Eq. (A2.3), we introduce as a new variable

t= —k+e(k),
which leads to

(A2.5)

X&~ *(r)x/, (r)/e, (r)dr (r=—rip) (A1.10)

is the matrix element of the dipole moment of a pair
of atoms between states of the relative-coordinate
Hamiltonian. Finally, the summation over the center-of-
mass velocity distribution and the 8 function of
Eq. (A1.9) can be ignored, since this amounts to taking
the center of mass of each colliding pair as stationary.
Inasmuch as the only effect of center-of-mass motion is
to give rise to an extremely small Doppler broadening
at thermal velocities, the error introduced, in this step
is negligible. We then obtain

4a'&aright/B k' )"' f ph'k')
n(&e) = P expl-

hc 27r/r/k Tl & & 2m &

XP 1(/e, &"'i)a,pl'(1 —e ""'/~ )8(&p' —&p), (A1.11)

"('+P')(P' —t')( +qt')
U2=-

t3

2 4-

Xexp —(q+-,'e')t +p-' pe'—
4t'

dt, (A2.6)

with p again given by Eq. (A2.5). Combining Eqs.
(A2.4) and (A2.6) gives

" (P'—«') (1+qt')
U=-

4

Xem{—(q+ ee')t'+ 2q'p' —q p /4«)dt

" ip' qP'= -', exp(-,'y'p')
1

—+ —1—ql
l

p ice I )
where pp' is given by Eq. (2.3). Finally, we can replace
the stnnznations of Eq. (A1.11) by integrals, if in the
de6nition of the matrix element, Eq. (A1.10), we replace
the plane-wave states Eq. (A1.4) by 8-function nor-
malized states' (87r') '/'exp(ik r). The result of this
step is Eq. (2.2). and

A =q+ep', (A2.8)

B~
Xexp —AN ——dN, A2.

NP

r~pp4 (A2.9)
APPENDIX II: EVALUATION OF U(&a)

In this appendix, we evaluate the integral U(&e) in
Eq. (2.12). We write

U= Ug —U2, (A2.1)
"L. I. Schiff, Qeantzcm 3fechaeics (McGraw-Hill Book Com-

pany, New York, 1949), p. 51.

Starting with the formula"

dQ
e &Au+B/u) 2g (2g—1/2+1/2) —(A2 10)

r' W. Grobner and N. Hofreiter, In4egraltafel (Springer-Verlag,
Vienna, 1950), Vol. 2, p. 66.
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, ral in Eq. (A2.»we can obtain
th respect «g andby partial diQerent o
f th derivatives of theUsing the recursion relations

inds g „givesmodi6ed Bessel functions oof the secon

4 1/2Ii —1/2K (2A1/2Ii 1/2)U=-p, e» 2' (2P A
1/2 —1/2E (2A 1/2Ii1/2)'Ep(2A' '8"')—281/2A '

'K (2A'/28'/2) ) (A2 11)—2qM. —'K2

LF INK

First we write

00

I =— (e'"+e '")p/E2(bpp)dpp2=-
BC p

2
(e "+e ") Ep(b4p)+ —Ei(bip) dpi

I6O

' which expresses Eye recursion re ation
h definitions Eqs. (A2.5),andE2, andt e e n''

(A2.8), and (A2.9), we fina y o

ENDIX IQ: EVALUATION OF ABSORPTION
INTEG~LS

the absorption integrals e 0 —,W ompu e here

P andP2de6nedin qs.E s. (3.1), (3.2), ang a 2

fi t '(0)—1. Upo q.
Eq. (3.1), we find that we must compu
the form

slilll(asap)E p(b(p) d(d

cosh(m&)Ep'(bpp)dpi. (A3.6)
b 8

d the same relationsform we have use
~ ~ ~

To obtain this orm,
an use the limitingE . 3.4). We t en can u

l eh'tan elementary relation' to eva
E . (A3.6). In particularcontaining Eo in Eq.

s lnh (api)Ep(b p/) d&)

(e "—e '")4pK2(brp)d4p, (A3.1)
L

' '(/b)j
v~p

=A/2kT and b= Ln 2(2/2/kT)+a2)1/2. Using thevrhere a=A an
recursion relation'

=(b' a') '/ s—in '(a/b).

We also use

(A3.7)

cosh(aip)Kp'(b4p)dhp

8 1
=—— cosh(ap1)K p(b4p)

DabI = 2— cosh(aip)Ep(bpi)d4p1
BC p

Ep(x) E2(x) = —2—x-'Ei(x) (A3.2)

8 Qg pd E~ and the relationto write 2 iE n terms of Ep an
Ei(x)= —

p x,)= E'(x) we 6—nd that

sinh(acp)E1(b4p)d4p. (A3.3
b p

E . (A3.3) can be evaluated inThe two integrals in Eq. . c
termso eef lementary functions, "and we n

2 2)
—1/2j+ (b2 a )—Ii 22r [(b' a——'——

BG

substituting the de6nitions of aDifferentiating and su s i u
'

b t't t' E . (2.16)
t 1 tthit 1Eq. (3.2), we 6nd that we must eva ua

Ep(b4p) sinh(a4p)d(p
Dub

1 (9=———lim cosh (acp) Ep (b&p)
b8g" '

Ep(bip) sinh(acp)dip. (A3.8)

beau

p

in E . (A3.8), it is easy to see that
1 t.o o. Th1 in the limit is equa o

)' ~ hi bb, h'h ih Eo(b )
0 The integral

d b
'

hin Eq. (A3.8) is elementary, an w

I2= (e e )pp E2(bpp)dip.

82
L(b' —a') '/' sin '(a/b)$(A3 5) I2——2 —a

. R zhik Tables of Integrals Serfs"I.S. Gradshetyn and I. M. yz i, a ries
ged Prodri cts (Academy PI |;sgJnc., New or,

+——La(b' —a' — sin'—' —'/' sin '(a/b) $. (A3.9)
b' Ba
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cosh(a+ ib) =cosha cosh%i sinha sinb (A4.3)

sinh(a+ib) = sinha cosb+i cosha sinb (A4.4)

to rewrite Eq. (A4.1) as

After carrying out the elementary but tedious dif- %e then use the relations
ferentiations in Eq. (A3.9), and substituting the
definitions of a and b, we obtain Eq. (3.5).

Consider finally P~. Upon substituting Eq. (2.16) into
Eq. (3.3), we find that we must evaluate the integral

I3= smh(a(o)K2(ba))o) da)
I(t) =&(t)+&*(t) (A4.5)

sinh(are)K2(b(o)(odko.
88

where
(A3.10)

00

J(t)=—-'C'—
Bt2 0

kM

cosh +inst
~

zkr
Thus, since we see that 2I3——O'Ii/8am, the evaluation of
I~ then also leads to the evaluation of I3. DiRerentia-
tion of Eq. (A3.4) and substitution of the definitions of
a and b thus leads to Eq. (3.6).

APPENDIX IV: EVALUATION OF CORRELATION
FUNCTION AND RELAXATION TIME

iC 00

(1+1)»' gt

XKpLC(1+8')'"a)ada)

( h~
sinh~ +i)et

~

&2kr

XKi(C(1+8')'I'co jd(u. (A4.6)

I(t)=

where

( Aced)
cosh( [x'K2Lx(1+8')'t'j coscotdko

&ZkTj

th
cosh' — x'Ka+ Ey cosG0Ãco

~zk 2' (1+8') 'I'

8' " h(o
cosh KOLx(1+g')'"j cosa&td~

.832 0 2kT

2C 8 " ( Puo)
+ — coshi

(1+8')"' gt 0 &zk T)

XKit x(1+8')'t'j sincotdco, (A4.1)

C=y-'(m/k T)"'. (A4.2)

%e evalute here the integral on the right side of
Eq. (5.2). We use Eq. (A3.2) to write

I(t)dt/I(0) . (A4.8)

The integral in Eq. (A4.8) is clearly elementary when

I(t) is given by Eq. (A4.7). Simple algebra leads to the
result given in Eq. (5.7).

The integrals in Eq. (A4.5) are elementary. "Substitut-
ing their values, and carrying out the difterentiations
indicated in Eq. (A4.6), we find that

I(t) = ;~C'(1+-8') t,(C'+ t'+ziCtg) t-
y (C2+ t2 AC—tg) »2j -(A4.7)

When this expression is substituted into Eq. (5.2), the
result is that given in Eq. (5.3).

From the definition Eq. (5.7) and from Eq. (5.2), we
see that the relaxation time v is given by


