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High-Energy Consistency Conditions and Superconvergence Sum Rules
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High-energy consistency conditions in the form of superconvergence sum rules are presented for three
cases: (1) combinations of partial-wave amplitudes in potential scsttering; (2) a 6xed-angle dispersion
relation in relativistic theory; (3) partial-wave amplitudes in n.N scattering. Resonance saturation of the
last is attempted. In this approximation, one class of sum rules involving combinations of fi(w) agrees
roughly with experiment; two which are more sensitive to approximation disagree.

I. INTRODUCTIOÃ

will also satisfy

Im f(s)ds= 0

where Imf(s) may include residues of poles. Equation

(2) is satisfted, provided there is no essential singularity
at inanity and all integrals converge.

Since total cross sections approach a constant at high

energy, or at least vanish very slowly, one has to con-
struct carefully amplitudes which satisfy Eq. (1).There
have been several ways of constructing such amplitudes.
The origina1 superconvergence paper' considered a
double helicity Rip amplitude in px scattering. The
double helcity exchange in the t channel was sufBcient
to reduce the Froissart bound4 by two powers of s, thus
giving a superconvergent function. 5

A second approach to the construction of super-
convergent amplitudes stems from symmetry con-

' M. Kugler, Phys. Rev. Letters 1?, 1166 (1966). Referred to
as I.

'V. de Alfaro, S. Fubini, G. Rosetti, and G. Furlan, Phys.
Letters 21, 576 (1966).' L. D. Solov'ev, Yadernaya Fiz. 3, 188 (1966) LEnglish
transl. : Soviet J. Nucl. Phys. 3, 133 (1966)g.' M. Froissart, Phys. Rev. 123, 1053 (1961).

' For a general discussion of superconvergence due to helicity
Qip see T. L. Trueman, Phys. Rev. Letters 17, 1198 (1966).
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' 'N a recent paper' we have introduced a set of high-
s - energy consistency conditions for partial-wave scat-
tering amplitudes. These consistency conditions were

in the form of superconvergence'' sum rules. The
purpose of this paper is threefold: (i) generalize these
sum rules to the case of scV scattering, (ii) produce
analogous sum rules for potential scattering, and (iii)
establish superconvergence sum rules for Axed-angle

scattering.
Most of the recent successful sum rules are derivable

from a low-energy theorem. This theorem is then used
in conjunction with dispersion relations to produce a
sum rule. In a similar spirit the superconvergence sum

rules establish a high-energy theorem. Generally this
is done by having a function vanish rapidly at high

energy. A real analytic function satisfying the high-

energy condition:
lim s'+'f(s) =0

siderations. The scattering amplitude can be decreased
by considering the I=2 contribution' or the 27 of SUs
in the t channel. ~ This approach su6ers from a serious
drawback, since superconvergence sum rules are ex-
tremely sensitive to symmetry breaking. Instead of
satisfying Eq. (I), f(s) constructed that way may
contain terms proportional to ~s with 0.(1 and e of
the order the symmetry breaking. In the presence of
such terms, the integral in Eq. (2) would diverge, how-
ever small e may be. For this reason superconvergence
sum rules are extremely sensitive to symmetry breaking.
Their validity is thus restricted to a "model world"
only. 8

In I we have considered partial wave amplitudes.
These are bounded from unitarity by a constant. In
order to achieve superconvergence the nonsupercon-
vergent terms had to be canceled o6 between several
partial waves. This could be done exactly without
resorting to approximations, since the l dependence of
these terms was known.

As an illustration to our approach Sec. II discusses
potential scattering. A high-energy theorem in this case
is provided by the approach of the partial wave ampli-
tude to the erst Born approximation. Sum rules similar
in form to those discussed in I are derived. The reader
may skip this section if he has no interest in potential
theory, as the rest of the paper is a self-contained unit.

Section III establishes the high-energy conditions
we are using and connects these with Regge pole theory.
It is shown that 6xed-angle dispersion relations are
superconver gent.

In Sec. IV we formulate sum rules for partial-wave
amplitudes and construct several families of super-
convergent functions.

Section V presents an attempt to saturate some of the
low-l sum rules by a small number of Regge poles and

' P. Babu, F. J. Gilman, and M. Suzuki, Phys. Letters 24B, 65
(&967).' B. Sakita and K. C. Wali, Phys. Rev. Letters 18, 29 (1967).
G. Altarelli, F. Bucella, and R. Gatto, Phys. Letters 24B, 57
(1967).

Appearance of energy denominators which limit the range of
integration make sum rules stemming from low-energy theorems
much less sensitive to symmetry breaking. Since the range of
integration is finite in practice, a reasonable criterion for appli-
cability would be &&I' ~here ~ is the fraction of symmetry
breaking, E the range of integration, and F a typical strong-
interaction width. This makes electromagnetic breaking (e=a)
unimportant and SUe breaking (e—0.1) crucial.
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resonances. Rough agreement with experiment is indi-
cated for one class of sum rules. The other two, it is
argued, are more sensitive to our crude approximation
and disagree badly with experiment when such crude
approximations are used.

An Appendix discusses the high-energy behavior of
partial-wave amplitudes.

II. POTENTIAL SCATTERING

In this section we discuss high-energy consistency
conditions in potential scattering. We restrict our
discussion to a superposition of Yukawa potentials:

00

V(r) = o—(p)e ""dr; its) 0 (3)

o(ii) will be restricted in Eq. (10). Our purpose is to
discuss the high-energy behavior of the scattering
amplitude and use it to obtain relations between various
partial waves. In a sense, such consistency conditions
are redundant. We could in principle solve the inverse
scattering problem. ' Knowing one partial wave we could
obtain the potential. Once the potential is known, a
solution of the Schrodinger equation would produce all
partial-wave scattering amplitudes. This procedure is

by no means an easy task. A simple consistency con-
dition may be a substitute, though a weak one, avoiding
the difficulties of solving the inverse scattering problem.
Such a consistency could in principle be used to "detect"
the presence of exchange forces by comparing odd and
even values of angular momentum, or the presence of
an l dependence of the potential.

The high-energy behavior of potential scattering has
already been discussed in detail. The leading term in
the high-energy behavior is given by the first Born
approximation. The higher corrections to the full
scattering amplitude were discussed by Hunziker. '
For our purpose it is sufFicient to consider the high-

energy behavior of a partial-wave amplitude. Kohn"
has shown that at high energy the Born series for a
partial-wave scattering amplitudes converges. From
his work we also learn the magnitude of correction terms
needed. The high-energy behavior of a partial-wave
amplitude u&(s) is given by

We now consider u&&(s), which is given by

Gi&($) — din o(p)Q&l 1+
2s „, E 2s)

where y is the Euler constant and f(l+1) the loga-
rithmic derivative of the F function. " Using this
knowledge we can find the l dependence of the leading
terms of a~(s):

00 A
«(~) =— dl ~(~)» —

I

—h+y(i+ 1)j
4s 4si 2s

X dp o.(ii)+O(s ' '). (7)

Once this dependence is known we can pick a linear
combination of three partial waves which, provided all
integrals converge, cancels the leading behavior of
a~(s) and leaves a superconvergent function.

We have outlined this way of constructing a super-
convergent function, in order to stress the similarity
between potential scattering and the relativistic case
discussed in Sec. IV. In potential scattering it is easier
to use a relation between the associated I.egendre
functions. "

(2~+1) Q (s)=(~+1)Q ()+~Q- () (8)

Using this relation. and Eqs. (5) and (6), we have

(2l+ 1)ai(s) —(3+1)ate+i(s) lai i(s)—
2l+1

(2s)'
d~ ~(i )i 'Q~l 1+—I+O(s-'- ). (9)

2s)

The right-hand side of Eq. (9) converges provided

At infinite s the function a&&(s) does not vanish rapidly
enough for our purpose. There are two terms in the
high-energy behavior of a&& (s) which decrease too
slowly. One behaves like s 'lns and the second like s '.
For our approach the important fact about these terms
is that their dependence on / is known exactly. The
leading behavior of Q&(s) near s= 1 is given by

lim Q~(s) = —
srln(srs- rs) —y —P(l+1)+O(s—1), (6)z~l

a~(s) =atij(s)+O(s s" lns"), (4)
dy o (p') p' in'& ~ .

where s=k' is the energy and u&&(s) is

approximation. Since we are looking
vergence sum rules the correction terms
of no importance to us.

the first Born
for supercon-
in Eq. (4) are

We will restrict our discussion to potentials satisfying
this condition.

For these potentials we define

9 See, for instance, V. de Alfaro and T. Regge, Potential Scat-
tering {Interscience Publishers, Inc. , New York, 1965)."W. Hunziker, Helv. Phys. Acta 36, 838 (1963)."W. Kohn, Rev. Mod. Phys. 26, 292 (1954).

~&(s) ~&(s) ~&+1(s) &l—1(~) . (11)
2l+1 2l+1

"Higher Transcendental Functions, edited by A. Erdely
(McGraw-Hill Book Company, New York, 1953).
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By virtue of Eq. (9), hq(s) is superconvergent, and
satisfies the usual superconvergence sum rule

of these conditions, namely, fixed-angle dispersion
relations are superconvergent and give rise to super-
convergence sum rules.

Imh~(s)ds+P R;=0, (12)
A. High-Energy Conditions

where R; are the residues of Ag(s) at its poles. The
integrals over the cuts in Eq. (12) will involve both the
physical, right-hand cuts and the unphysical, left-hand
potential cuts.

Considering the first Born approximation to the
scattering amplitude we note that it contributes only
to the left-hand cut in Eq. (12). Because of our can-
struction the first Born approximation will contribute
only superconvergent terms to A&(s). It will therefore
satisfy the sum rule in a trivial way. This is analogous
to the vanishing of the "one Regge-pole exchange"
contribution discussed in I and in Sec. V. Only the
second and higher Born terms will contribute to Eq.
(12), and only for these terms does our sum rule con-
stitute a real constraint. Our discussions of the Born
expansion does not imply that our sum rule depends
on the convergence of the Born expansion at all energies.
The sum rules are valid even when the Born expansion
does not converge at low energies as in the presence of
bound states.

In exact evaluation of our sum rules, the appearance
of left-hand cut discontinuities is a major drawback.
These are not easy to calculate even in potential theory.

It is of interest to compare the standard E/D ap-
proximation with our sum rules. In most of these
approximations the left-hand cut discontinuity is
chosen to be the first Born approximation. The high-

energy behavior of the solution of such E/D equations
is not necessarily identical to the first Born approxi-
mation, thus our sum rule will not necessarily be satis-
fied. This is not surprising since the approximations
used are supposedly good for low-energy scattering
even at the expense of mutilating the high-energy
behavior.

In conclusion, we have constructed a sum rule for
potential scattering. Our main aim was to illustrate a
similar construction in the relativistic case. The sum
rules described here do not apply to concrete physical
problems, since nowhere do we expect potential scat-
tering to be valid in the high-energy region. They are,
however, of some importance as an additional tool in
the so-called "theoretical laboratory" of potential
scattering, in which a high-energy theorist hopes to
gain experience and motivation for treating relativistic
theories.

III. HIGH-ENERGY CONDITIONS AND
FIXED-ANGLE SUM RULES

In this section we will formulate the high-energy
conditions in which our sum rules are based. We will

also explore brieQy one of the more direct consequences

We will present our high-energy conditions, on the
basis of Regge-pole theory. Only a very small part of
Regge-pole theory will be used in the form of bounds
on scattering amplitudes. The bounds we assume, are
much less restrictive than Regge-pole theory and will

indeed hold on the basis of other high-energy models,
even if detailed Regge behavior is inconsistent with
experiment.

In treating mE scattering we will treat the ampli-
tudes A(s, 1) and B(s,t) which obey the Mandelstam
representation. We use s, t, and I the usual Mandelstam
variables. First consider the forward region near t=0.
In this region we assume

iA(s, t) i
(Cs 'ln's,

( B(s,t)
~

(Cs~o ' in's.

(13)

(14)

From the Froissart bound, 4 which has now been shown
to follow rigorously from axiomatic field theory, " we
know that no&1 for elastic scattering. Experimentally
it seems that no= 1, but the possibility that no is slightly
less than one cannot be ruled out."For charge-exchange
scattering we have trs(1. The bound (14) is thus a
consequence of all reasonable high-energy theories,
and is not a severe assumption. Considering Regge-pole
dominance would just omit the logarithmic factors in

Eq. (14).
In the backward region near t= —4k' the exchange

of baryon Regge trajectories will dominate the ampli-
tude. "Using this behavior we are motivated to assume

(15a)

(15b)

From an experimental fit to the high-energy back-
ward scattering" we learn that n~, which is the value of
n(u=0) for baryon Regge trajectories, is bounded by
n~(-,'. This bound on n~ is far below the one we can
prove from axiomatic theory. Ke will, however, make
use of this bound.

Our last bound will concern the region of large
momentum transfer. It is an experimental fact, that
all large momentum-transfer amplitudes vanish rapidly
with momentum transfer. Electromagnetic form factors
seem to vanish like t ' at high t.'~ Scattering seems to

'3 A. Martin, Nuovo Cimento 44, 1219 (1966).
n N. Cabibbo, J. J. J. Kokkedee, L. Horwitz, and V. Ne'eman,

Nuovo Cimento 45, 175 (1966).
"V.Singh, Phys. Rev. 129, 1889 (1963l.
' V. Barger and D. Cline, Phys. Rev. Letters 16, 913 (1966};

Phys. Rev. 156, 1522 (1967)."For a discussion see S. D. Drell, in Proceedings of the Thirteenth
international Conference on High-Energy Physics, Berkeley, 1966
(University of California Press, Berkeley, California, 1967).
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vanish exponentially with t or N. ' Our next bound will
give a mathematical formulation of this fact. We
assume that for 3($p and N(lp, tp and 2bp one Axed
numbers, the following bound holds:

I
A (s, t) I

(Cs &[—t &+I, &g (16)

with crr+y)1+e, and a similar bound for B(s,t),
where rrr+y)pP+e. This bound follows from Regge-
pole behavior. To prove this statement consider the
contribution of a Regge pole in the t channel to A (s,t):

A, (s,t)=P(t)s. &'& (17)

Khuri" has shown that in order to maintain crossing
symmetry we must have

~P(t)
~

(ct-'&' (18)

for large t. Without this bound, Regge poles in the t
channel would infiuence the high-energy behavior in
that channel. This runs counter to the basic assumption
of Regge behavior at high energies. It is then sufficient
to choose tp so that n(tp)( ——', in order to satisfy Eq.
(16) for A (s,t). Equation (16) for B follows in a similar
fashion from the Regge behavior of B. Note that we
have avoided the region near n= —1 where essential
singularities may exist. A similar discussion will hold
for the contribution from Regge poles in the I channel
and for the background integral. If there exist fixed
Regge poles or Regge cuts, one would have to assume
a suKciently rapid decrease of P(t) associated with
these for Eq. (16) to hold.

It should be re-emphasized that Eq. (16) can hold
even if Regge-pole theory is not valid. A rapid decrease
of the scattering amplitude o6 the forward region is
the common feature of many of the currently suggested
modelsPP so these too may justify Eq. (16).

B. Fixed-Angle Sum Rules

We now turn to the 6rst and most natural conse-
quence of our high-energy bounds. This involves fixed-
angle dispersion relations for ~cos0~ (1—e. For axed
cose in this region both t and I are proportional to s
at high s. Denoting either A(s, cos8) or B(s, cos8) by
F(s, cos8), we have as a consequence of (16) that

iF(s, cos8)
i
(s '-' (19)

F(s, cos0) is therefore a superconvergent function. We
can write a fixed-cos0 dispersion relation for F(s, cos0):

The appearance of a left-hand unphysical cut is the
general feature of fixed-angle dispersion relation. The
integral on the left should include all unphysical cuts.
Using Eq. (20) we can write a superconvergence sum
rule, provided all integrals converge and F(s, cos8) has
no essential singularity at s= ~.

Left
ImF (s, cos8)ds+

ight

ImF(s, cos8)ds=0. (21)

We will not exploit this sum rule further in the present
paper. Some of the diKculties should be mentioned.
This sum rule depends on the knowledge of the un-
physical left-hand-cut discontinuity. Even the dis-
continuity in the physical region is not easily deter-
minable. To find the imaginary part of a scattering
amplitude in a nonforward direction a partial-wave
analysis has to be performed. We prefer, thus, to
formulate our sum rules directly in terms of partial-
wave amplitudes, as we did in I. This is the subject of
the Sec. IV.

fi~(w) = d cos8LfrPg (cos8)+ fpP~~&(cos8) j. (22)

These amplitudes are functions of w=Qs and have a
kinematic branch cut in the s plane. We can also de6ne

where

-4k&

Ai(s) = P~i 1+ iA(s, t)
2e)

(23)

IV. SUPERCONVERGENT PARTIAL-
WAVE AMPLITUDES

In this section we construct superconvergent ampli-
tudes on the basis of the high-energy behavior discussed
in Sec. III. We treat the case of ~E scattering. Our
treatment follows that given in I for ~x scattering. It
is, however, more complicated because of spin and
unequal-mass kinematics. ""The procedure we use is
straightforward. We establish the l dependence of the
nonsuperconvergent terms in each partial-wave ampli-
tude. Once this is known we cancel these parts by
choosing a linear combination of partial waves.

The standard partial-wave amplitudes f~~ in prX
scattering are defined by

F(s, cos8) =
Left

ImF(s' cos8) ds'

s —s and

O'= —Ls—(m+p)']Ls —(m —p)')
4s

(24)

ight

ImF(s' cos0) ds'

s —sI
(20)

~P J. Drear, Phys. Letters 13, 190 (1964).
+ N. N. Khuri, Phys. Rev. Letters 9, 420 (1963); Phys. Rev.

132, 914 (1963).
'0 R. Serber, Phys. Rev. Letters 10, 357 (1963);T. T. Wu and

C. N. Yang, Phys. Rev. 137, B708 (1965).

(25)

"S.C. Frautpchi and J. D. Walecka, Phys. Rev. 120, 1486
(1960).

PP W. R. Frazer and J. R. Fulco, Phys. Rev. 119, 1420 (1960).

t= —2)pr (1—cos0) .

A similar definition holds for Bg(s) expressed. in terms
of B(s,t) Aq(s) and Bq(s) a.re functions of w' and have
no kinematic singularities in the s plane. We can express
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fi~(w) in terms of A i(s) and B((s);

The MacDowell symmetry which follows from Eq.
(26) determines the left-hand physical cut by

fW( —w) = —f(i+ii—(w) .

We will also consider

(27)

1
g((s) =—LBi-i(s)—B(+i(s))

kr

and

Lf((—i)+ f(&+ii—)
(w+m)2 —ti2

[f( fi+)-—(28)
(w —m)' —ti'

1
hi(s)= —LAt i—Ai~i —m(Bi i—Bi+i)). (29)

4x

Express hi(s) by

h, (s) = Lf(i—i)+—f(i+ii—)
(w+m)' —ti'

23)
Lfi-—fi+)

(w —m)2 —t(2
(30)

g((s) is essentially the coefficient of Pi'(cos9) in the
expansion of B(s,t) in terms of the fi(w). hi(s) is related
to a similar coefficient in the expansion of A (s,t). g~(s)
and hi(s) a,re by definition functions of s without
kinematic singularities.

In an Appendix we use the high-energy condition of
the preceding section to establish the l dependence of
the high-energy behavior of Ai(s) and B((s). The
relevant terms in this expansion are given by Eqs.
(A13) and (A14)

Ai(s) =~ (s)+lt(t+1)~ (s)+(—1)'~ '(s)
+O(s~o ')+O(s~~:)+O(s ' '), (31)

Bi(s)=Go(s)+ (—1)'Go'(s)+o(s" ')

+O(s ~—&)+O(s ' '). (32)

Ke have omitted logarithmic factors in the estimate
of the remainder terms. Again omitting logarithmic
terms, we have

I Fo(s)
I
&Cs ' '

I Go(s) I
&Cs

IFi(s) I
&Cs o-2 IG()'(s) I

&Cs ~'*, (33)

I
&o'(s)

I
&Cs"~&.

Equations (30) and (31) are analogous to Eq. (7) in
potential scattering. A large number of supercon-

ft~(w) = (L(w+ m)' —ti')I A i+ (w —m)Bi)
32/'R

+I (w —m)' —ti')L —A )~i+ (w+m)Bi~i)) . (26)

vergent function can be constructed using the high-
energy behavior resulting from Eqs. (31), (32), and
(33). To construct such sum rules, the nonsupercon-
vergent terms have to be canceled between various
functions.

For the purpose of exact evaluations of these sum
rules, one is as good as the other. Such an evaluation
of these sum rules, is certainly far beyond our present
capability. %hen constructing our sum rules, we have,
thus, to keep an approximation scheme in mind. It is
quite reasonable that some of them will be much more
sensitive to approximation than the others.

Since the main approximations will enter in evalu-
ating unphysical cuts we will have to discuss these
brieQy. Most of the complications we discuss here are
due to spin and unequal mass which were not present
in I. Two regions will be discussed, the one near
s= (m —p)' and the second near s=0. Contrary to the
commonly held belief formulated in Refs. 21 and 22
the discontinuity near s= (m —p)' does not behave like
Ls—(m —t()')'+'*, but like Ls —(m —p)')'". This has
been shown 6rst by Frye and Warnock. '-' The physical
reason for this behavior is that the s-wave threshold
behavior in the I channel dominates the threshold
behavior of this discontinuity. Near s=0 it has been
shown recently by Freedman and Wang'4 that the
scattering amplitude behaves in the spinless case like
s—~(o&. n(0) in this context determines the high-energy
behavior in the t and u channels. It is given by t "'
and I ('1, respectively. n(0) is therefore the value of the
Regge trajectory in the s chanel. This is in contra-
diction to the behavior s ' for which arguments were
given in Refs. 21 and 22. In analogy to the proof of
Freedman and Wang, A i(s) will be given by

A (s) s ~("&+l

with similar behavior of Bi(s). Again n(0) is the s-
channel Regge trajectory intercept.

One of the most immediate consequences of this
discussion is that the amplitude q "f(+(w) which has
been used to discuss superconvergence" has very strong
singularities near s= (m —t()' where q' vanishes. It will
in fact behave like [s—(m —ti)') "+'. Such a strong
singular behavior makes this amplitude extremely
sensitive to approximations of low-energy phenomena
in the I channel, which are not due to Regge poles.

In discussing the sum rules for f~~(w) we must also
note that these functions have a, kinematical singularity
near w=0, resulting from Eq. (26). We could get rid
of this singularity by considering the function w fi~ (w)
For this function we cannot construct superconvergence

~g G. Frye and R. L. %arnock, Phys. Rev. 130, 4'tI'8 (1963). A
similar discussion was given by E. S. Abers and V. L. Teplitz,
Nuovo Cimento 39, 739 (1965).

24D. Z. Freedman and J, M, Dang, Phys. Rev. Letters 17,
569 (1966); Phys. Rev. 153, 1596 (1967l."If indeed Ot0(1 (see Ref. 14) would hoM for elastic scattering,
f~+(m) would be superconvergent. Even in this case, n0 is close to
unity and the sum rule would converge very slowly,
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sum rules because the contribution of the nonforward
region (in cose), to this function would. be of order w '
and no longer superconvergent. To overcome this we
could consider w'Ls —(m+p)s$ 'fi(w) for l&1 where
the vanishing of the denominator s—(sip+@)s causes
no trouble since it is canceled by threshold behavior.
This function would, however, be sensitive to all singu-
larities near threshold because of the smallness of the
energy denominator. It would also rule out the possi-
bility of getting information about I'g and S waves.
We consider therefore the original function fi~(w)
The smallness of A&(s) and B&(s) given by Eq. (34)
will make the kinematic singularity unimportant.

We now turn to the construction of superconvergent
functions. Using Eqs. (31), (32), and (33) we find the
high-energy behavior of f&+(tt):

f~(~) =
1 pl l8

Fp(s)+— Gp(s)+s. c.
1&r' m 16x2

(35)

V. APPROXIMATE SATURATION' OF SUM RULES

The purpose of this section is an attempt to approxi-
mate the sum rules derived in the previous section.
Admittedly we must use a rather crude method of
saturation for the sum rules in question. The reason
for this is twofold. In the physical region of xS scat-
tering, the phase shift are not too well known. For our
analysis we need information in the region where
phase-shift analysis is still very ambiguous or non-

~6 Sakita and Wali (Ref. 7) have considered a combination of
g~(sl for various SUs multiplets. Their derivation is, however,
incorrect. They do not notice that g&(s) is superconvergent for
gacb channel separately.

where s.c. are superconvergent terms. Denoting the
isospin in the s channel by a superscript I, we 6nd that
the functions:

fi+'(~) —fi+'(~) =~« '(~) (36)

are superconvergent. "The function Fipr(w) should be
considered in the complex m plane. The left-hand
physical cut will be given by the MacDowell symmetry
Eq. (27).

In a similar way we find that g&r(s) defined by Eq.
(28) is superconvergent. "We can also show that Hii r (s)
defined by

(37)

is superconvergent.
The functions gir(s) and E?ter(s) and functions of ws

and will satisfy superconvergence equations auto-
matically in the m plane. We will therefore consider
them in the s plane. Multiplying these functions by m,
and considering them in the m plane mould give the
same result.

We have presented three in6nite series of sum rules.
The next section will deal with approximate evaluation
of these sum rules.

A (s) =AR,«, (s)+AR„(s) . (38)

It should be emphasized that AR,«, (s) contributes
both to the physical and unphysical cuts. The con-
tribution of AR,«, (s) to our sum rules vanishes, since
we have essentially constructed our sum rule so that
AR,«, will satisfy it automatically. This is analogous
to the vanishing of the contribution of the 6rst Born
approximation discussed in connection with the po-
tential scattering sum rule. The approximate form of
our sum rules is therefore given by

phys.

InlARes ($)ds= 0, (39)

where the integral extends over physical cuts.
It is this kind of approximation which we had to

keep in mind while constructing our sum rules. The
main point in the construction being to avoid empha-
sizing by small denominators unphysical cuts which

do not come from Regge-pole exchange.
In this approximation we now turn to discuss the

"B.H. Bransden, P. J. O'Donnell, and R. G. Moorhouse,
Phys. Letters 11, 339 (1964); Phys. Rev. 139, 81566 (1965);
Phys. Letters 19, 420 (1965); P. Bareyre, C. Bricman, A. V.
Sterling, and G. Villet, ibid. 18, 342 (1965); P. Auvil, A. Don-
nachie, A. T. Lea, and C. Lovelace, ibid. 12, 76 (1964); 19, 148
(1965). For a review and further references see C. Lovelace, in
Proceedings of the Thirteenth International Conference on Higli-
Energy Physics (University of California Press, Berkeley, Cali-
fornia, 1967l.

existent. ' An even greater difficulty is created by the
unphysical singularities which appear in partial-wave
dispersion relations. These are even less known then
physical phase shifts and thus are the major difhculty
in considering our sum rules,

Our approximation scheme is analogous to that of I.
We will approximate the amplitude by considering
Regge poles in the t and I channels, and a number of
resonances in the s channel. These two contributions
to any amplitude will be denoted by AR,«, (s) and
AR„(s), respectively.

AR,«, (s) will include a finite number of Regge poles
exchanged in the t and I channels. Each of these
trajectories will include the exchanges of all single
particles on this trajectory. Among these single-
particle exchanges the S and E~ exchanges in the u
channel and p exchange in the t channel are included.
Approximate dispersion calculations for partial-wave
amplitudes have shown these single-particle exchanges
to be the dominant nearby singularities. AR,«, (s) may
therefore be a reasonable approximation to unphysical
cuts. For AR,«, the full contribution of a Regge pole
should be taken so that it will satisfy a Mandelstam
representation. "

In our approximation,
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sum rules resulting from Eq. (36). We define Eq. (28). In the same approximation as before,

dw 1m'+, R,. (w) Imgl Res ($)ds= 0. (43)

dw 1mf(t yt) -, Res'(w) . (40)

In the narrow-resonance approximation we have

(41)

where k; and F;"refer to the values of k and the elastic
width of the ith resonance having j=t+s and isospin I.
Our consistency condition is satisfied in this approxi-
mation lf

(42)

where C is a constant independent of I,. Table I gives
results for various f~r from S to H waves. In evaluating
the width we have used recent phase-shift-analysis
results" and a compilation of mS resonance data given
by Barger and Cline."The large ambiguities in elastic
width of resonances is a major source of errors. It is
obvious that better data at higher energies would be
necessary for a more accurate evaluation of the reso-
nance contributions to f~r As w. e see it, the crude
agreements as expressed in Table I, are no more than
an AsdicuHoe that sum rules may be satisfied once
better data are available. "The data are, so far, not in
disagreement with our sum rule.

Now consider the sum rules for ger(s) as defined by

The major contribution to g~'t' would come from the
P» S~ resonance; this contribution is equal to 226.
The other contributions are small. There is no resonance
in Pe~, and the contribution of the D33 and S3~ reso-
nances are suppressed by factors p/m. We are therefore
forced to conclude that the sum rule for g&'~' is badly
violated in our approximation. In reconsidering the
reason why these agree much less with experiment than
the sum rules for f&(w), we note that in Eq. (28) which
defines g~(s) the denominators (w&m)s —ys appear.
These denominators, as we have argued before, seem
to make amplitudes more sensitive to the unphysical
thresholds because of their smallness. A similar analysis
can be carried out for the superconvergent amplitudes
Hg~ . Again, the presence of small denominators may
be the reason for the fact that these sum rules are not
satisfied in our approximation.

It is obvious from our saturation attempt, that the
weakest link in such a saturation is the treatment of
the unphysical singularities. Ke have approximated
them by a number of Regge poles, it is clear that some
of the sum rules are more sensitive to additional singu-
larities. These are the ones where we have divided by
energy denominators. Another sum rule w'here energy
denominators play an important role are the ones which
can be derived from unitarity and threshold behavior.
Consider

0
XQ 1

2
~2 3

0

3
1 4

Partial
wave

S81

&ss
Dss
~sv

S11
S11
+11
+11
&1S

D1S

Dls
+15
G1y

+19

Mass F,I Contrib.
(MeV) (MeV) to fear f~r

1693 100~30 1.75+0.5
1238 120 5.1
1812 c ?
1950 125~50 1.8 +0.7
1471 c ?
1561 72~40 1.5 ~0.8
938 —0.243

1471 120+20 2.9 ~0.5 )3.1~1.2
1658 c ?
1519 75~15 1.6 +0.3 & 1.6~0.3
1652 54~20 1.0 ~0.4 2.0+0.9
1672 70~30 1.0 ~0.5
2190 50~? 0.6
2220 100~? 1.1

1.7~0.5
5.1

?
1.8~0.7

TasLE I. Values of g~r for various partial waves. Masses and
estimated widths of resonances are taken from Refs. 27 and 28.
c denotes a cusp, the contribution of which could not be estimated. for l&1 this function is superconvergent as one can

easily convince oneself. "Saturation of this sum rule in a
manner similar to ours would give

ImJ ( (w)dw+
—(~+a)

ImJ((w)dw =0. (45)

These sum rules can obviously not be satisied since
ImJ&&0 on these physical cuts. Again the presence of
energy denominators seems to spoil our saturation
scheme. If left-hand-cut singularities are treated in a
better way these sum rules may yield important in-
formation. In cases where l&2 a larger number of sum
rules may be derived by considering $s—(m+p)sjJ&,
fs—(m+p)']sJt, etc. , the number of sum rules de-
pending on /. This approach was advocated by
Balachandran. "

"V.Barger and D. Cline, Ref. 16.
9 When evaluating physical-cut continuum contribution to our

sum rules, the Regge-pole contribution to the continuum should
be carefully extracted, and not included in Eq. (40). This again
leads to ambiguities,

s0 This has been noticed long ago. It has been analyzed for the
E» amplitude by Hyman Goldberg, Phys. Letters 24$, 71 (1967).
In this paper k~f1+(m) has been used; this introduces unwanted
singularities at 8"=&(m—p) as discussed (Ref. 23).

sr A. P. Balachandran, Ann. Phys. (N. Y.) M, 476 (1964),t
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In conclusion we emphasize, that our saturation
attempt depends entirely on Regge behavior. It is
possible that our sum rules are correct and Regge
behavior is not. In this case a diGerent approximation
scheme should be used.

VI. CONCLUSION

The fact that various partial waves are not inde-

pendent is evident in both potential and relativistic
scattering. In potential scattering the reason underlying
this is that the same potential determines all partial-
wave amplitudes. One reason for the relations among
various partial waves in relativistic scattering can be
Regge theory. If indeed it is true that analytic con-
tinuation in angular momentum is possible then all

physical partial waves are given by one analytic func-
tion. It is therefore not surprising that sum rules relating
various partial waves can be derived. Our sum rules
can be viewed consequences of such behavior. In
deriving the set of sum rules we have, however, used
much less than the whole Regge theory, or all of po-
tential theory. Our sum rules are therefore less

restrictive.
In relativistic theory we have presented a set of

high-energy conditions and formulated some of its
consequences, superconvergence sum rules for fixed-

angle scattering, and superconvergence sum rules for
linear combination of partial-wave amplitudes.

We have presented three classes of superconvergent
amplitudes for partial waves, Fii. , gi, and H~i . The
6rst set of these amplitudes when approximated by
resonances in the direct channel and Regge poles in
the crossed channel are not in disagreement with
experiment. Saturation attempts give very bad results
for the second and third sets of sum rules. We have
argued that the presence of small denominators in the
latter sets of sum rules renders simple approximation
schemes invalid.

In view of these facts it is evident that future useful-
ness of our superconvergence sum rules hinges on the
rather hard problem of better treatment of the left-
hand-cut singularities. Our approximation scheme,
depends crucially on Regge pole theory. It is impossible
to tell at the moment how exactly these approximation
schemes have to be modified. Some experience in this
direction may be gained from the potential scattering
sum rules we have presented. This experience might be
valuable in spite of the obvious differences between
potential scattering and relativistic theory.

We have left our fixed-angle superconvergence sum
rules unexploited so far. These share the main problem,
of unphysical cuts, with the partial wave sum rules.
Careful investigation of these sum rules may, however,
improve our understanding of the problems we have to
face. If these turn out to be less sensitive to approxi-
mations they may serve to increase our knowledge about
the consistency of strong-interaction physics.

In conclusion we also mention that the ~x scattering
sum rules discussed in I are analogous to the xlV sum
rules for fi(w) (because no small denominators appear
in both). Since these are not violated by simple satu-
ration schemes we have gained some confidence as to
the validity of the former sum rules. In spite of crude
approximations they may serve as an indication for the
existence of higher resonances.
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(A1)

Using this and Eq. (23) we can write

Ag(s)=g Ci~ (s),

Bg(s) =P Ci„G„(s),
where

to i ~
m

F„(s) =
i

A (s,t)
0 (2k' 2k'

to i [ ie
G„(s)= ( i B(s,t)

(2k') 2k'

(A2)

(A3)

(A4)

Using Eq. (14) we can prove

i
F„(s) i

(Ct ~s~o ' ~ ln's,

i G„(s) i
&Ct,"s~™"ln's.

(A6)

(A7)

In considering the region 2 we make use of our high-

energy condition expressed in Eq. (15). We use

i Fi(cos8)
i
& 1 the physical region and find the bounds

i
d P (s) i

(Cs—'—' (AS)

(A9)iBP(s) i
&Cs—*'.

APPENDIX

In this Appendix we establish the E dependence of
Ai(s) and Bi(s). This dependence is analogous to Eq.
(7) in potential scattering, and is the basis of our high-

energy consistency conditions. For this purpose we
proceed in a manner almost identical to that of I. In
Eq. (23) which defines A&(s) and B&(s) we split the
range of integration into three parts: 1, the forward-

peak region to(t&0; 2, the large-momentum-transfer
region defined by —4k' —No&t&to, and 3, the back-
ward-peak region —4k'&t& —4k' —No. We define the
contribution of these regions to Ai(s) by AP(s)AP(s)
)&A p(s), respectively Lsimilar notation will be used for
B&(s)j. In region 1 we use the bound in Eq. (14). We
also expand the Fi(cos8) around the forward direction
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A i'(s) = (—1)' P Ci„F„'(s), (A10)

The reason for the different behavior of A i2(s) and BP(s)
is in the bound on &&&+y in Eq. (16).The stronger bound
on 8~ is due to the appearance of s '" ' in the Regge
behavior of B(s,t).

In region three our treatment will be exactly parallel
to that of region 1. We will have, using similar
definitions,

and the bounds

iF„'(s)
i

&Cu&&"s ~I-" (A12)

and the same bounds for G„'(s).
We can therefore write

A i (s) =F&&(s) +-', l (l+1)Fi(s)+ (—1)'F,'(s)
+O(s~™)+O(s ')+o(s ' ') (A13)

Bi(s)= Go(s)+ (—1)'G&&'(s)+O(s ')
+O(s s I)+O(s ** '). (A14)

Bi'(s) = (—1) ' Q Ci„G„'(s),
We have used in these equations C«=1 and C&&

(A11) =-', l(l+1). The last term whose order we give results
from the contribution of A i2(s) and BP(s).

Applications of the Chiral U(6) U(6) Algebra of
Current Densities, J. D. BJoRKEN [Phys. Rev. 148,
1467 (1966)$. The conclusions of Sec. IX, which
considers the radiative corrections to vector P decay,
are incorrect. In addition to the divergent contribu-
tion to the corrections calculated there, there is an
additional divergent piece [which contributes to
3f„„&s& in Eq. (9.8)j coming from the equal-time
commutator of the space components of isoscalar
electromagnetic current with the axm, t current. This
contribution is model-dependent. In a model in
which the isospin current is carried by J=-'„ I=-,'
fields of charge Q&-'„ the total divergent correction
is [in place of Eq. (9.20)]

3G h.2

M=GF uy (1—ys)u 1+—(1+2/) ln-
8m. m2

My thanks go to Helen Quinn for finding the mis-
take. The details of this axial contribution will be
given in a forthcoming paper, in collaboration with
R. Norton, E. Abers, and D. Dicus.

Kinematic Singularities of Partial-Wave Scattering
Amplitudes, JERRQLD FRANKLIN [Phys. Rev. 152,
1437 (1966)j. The discussion of the crossed thresh-
old, W=m —ti (second paragraph on p. 1440) is
incorrect if both particles have spin, because
the energy of one of the particles is negative at
this threshold. The correct behavior of unitarity
corrections at the threshold S'= m —p if the
particle of mass p, has spin s„ is k~+~', where
I = Max(L —2s„; Min

~ J—s„—s
~ }with the added

coridition that L+L+2s„be even, which might

require increasing L by one unit. A similar result
holds for L' and also at the threshold S'=p —m
(with s„—+ s ). The above result for L follows from
the fact that as a particle's energy, 8, approaches
—m, the relativistic modifications of its spin tensor
can contribute a Y2, "(8,&) to the angular de-
pendence with no k factor. The azimuthal quantum
number n is related to the Z projection n of the
particle spin by n s&n&—n+s (See, f.or ex-
ample, footnote 13 of the paper. ) The behavior of
the amplitude at the threshold S'= —m —p remains
as given by Eq. (20), that is k~+~', where L =

t
J—5~

with the condition that L be increased by one unit
if necessary to make L+L+25 even. The addi-
tional threshold constraints at 8"=—p, —m still
follow from Eq. (20) with W ~ —W as in the
paper, as do threshold constraints at 5 =p, —m
lf s~(sm.

The above discussion requires Eqs. (26) and (27)
of the paper to be changed to

AI. s, i, s (W)
(W2 ss'(W m y) &~+~'— —
X(W my@) & —+ '&t'(Wym I&)

& + '&-"
&((W+m+ti) & + '&~'}Al, s, l, s (W), (26)

A z, s, s.s (s)
=s~s's[ (m+&1) 3 & +r &I

)& [s—(m p)'] & + '& "A I, —s. i,s (s), , (27)

with L and I' given as above for each threshold.
The following corrections should also be noted.
(i) Whenever As &, s&, (W) is , written, the addi-

tional argument 0 is to be understood.
(ii) The factor in front of Eq. (20) should be

[(2L+1)(2L'+1)3'"/(2 1+1).
(iii) The threshold described in the next to last

paragraph of Sec. IV as W= —(m' —ti')'» should
be S'= —m —p, .


