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For reactions in which the initial and final states in the t channel contain equal-mass particles (e.g.,
37iV —+ ~w) of masses m and m', we show, using analytic continuation and Lorentz invariance, that the
on-mass-shell helicity amplitudes in the region t =0, (m —m')'Ss& (m+m')' are invariant under the group
O(4). Decompositions of the amplitudes in irreducible representations of O(4) (four-dimensional partial-
wave expansions) are obtained and related to conventional partial-wave expansions. Poles classified ac-
cording to the O(4) group are shown to lead to in6nite families of Regge poles. The formalism is developed
for arbitrary spins, and the case of nucleon-nucleon scattering is studied in detail. Our results for the Regge-
pole structure in NN scattering are stronger than those of the conspirator theory.

I. INTRODUCTION

SURPRISING result of recent work on Regge-
pole theory is that Regge trajectories really occur

in families with definite requirements on the spacing
of members of a family and on the behavior of residue
functions at zero values of the invariant mass. Such
results have been derived explicitly for unequal-mass
spin-zero scattering amplitudes' ' and for nucleon-
nucleon scattering. ' 4

Although analyticity properties of scattering ampli-
tudes at zero values of the Mandelstam invariants are
the essential ingredients in the arguments of Refs. 1—4,
we would like to focus our attention here on an al-
together different method by which similar results can
be derived. This method involves the association of the
Regge-pole structure with a group-invariance property
of scattering amplitudes closely connected with the
underlying Lorentz invariance of the theory.

Physical theories are required to be manifestly in-
variant under transformations of the Poincare group.
Partial-wave expansions of scattering amplitudes from
which the Regge-pole classification is derived should be
regarded as decompositions in irreducible representa-
tions of the little group of the Poincare group which
preserves the total energy-momentum vector E:& in the
direct channel. In the physical region, E& is positive
timelike and the familiar partial-wave expansion is
expressed in terms of the representation functions of
the corresponding little group O(3). When E&=0 the
little group is enlarged to a group of four-dimensional
transformations isomorphic to the homogeneous Lorentz
group O(3,1).In order to incorporate the full symmetry
of the amplitude at this point one should really expand
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in representation functions and classify poles in terms
of the four-dimensional group. This is the standpoint
adopted in this paper.

Consider the process in which momenta pi+ps-+
pt'+ps', and define t=It'= (pi+ps)', s= (pi —pi')'. If
the masses pis= pss=m' and pi's= ps's=mls are pairwise
equal, the point E&=0 corresponds to forward scatter-
ing in the s channel. In this paper we restrict ourselves to
mass configurations of this type.

In more general mass configurations the vector E|"is
lightlike whenever t=0 and the four-dimensional sym-
metry does not strictly apply to the mass-shell ampli-
tude. An o6-shell continuation appears necessary in
order to formulate the symmetry. It also seems that
analyticity arguments similar to those of Refs. 1 and 2
can be used to show directly that the Regge-pole spec-
trum of the mass-shell amplitude exhibits the sym-
metry. ' There is then the curious circumstance that in
pairwise equal-mass configurations, as previously de-
fined, group-theoretic assumptions are strictly necessary
and lead to stronger results than analyticity arguments, '
whereas in more general mass configurations analyticity
arguments yield as much information as group™theoretic
methods. '

In our treatment of the four-dimensional syirunetry
we obtain the compact group O(4) as the invariance
group of the mass-shell amplitude in the unphysical
region t=0, (m —m')'(s( (m+m')'. Contrary to pre-
vious use of the group O(4) in similar connections, we
no where make use of the Wick rotation' or an oG-
mass-shell continuation. Our treatment applies to all
spins, and the use of a compact group leads to con-
siderable simplification over previous formulations. We
are specifically interested in the case of nucleon-nucleon

5 This has been proven in Refs. j. and 2 for spin-zero amplitudes.
But the question remains whether the analyticity argument based
on unequal-mass kinematics determines the spectrum uniquely
when spins are present. G. Domokos LPhys. Rev. 159, 1387
(1967)g has emphasized the difficulty of formulating the symmetry
on the mass shell in the general mass case.

'For equal-mass spin-zero scattering, analyticity arguments
are mute on the question of Regge-pole families, while the group
theory predicts the existence of infinite families. In the nucleon-
nucleon case, the analyticity argument gives an important con-
straint, but the group-theoretic results are far stronger as we
shall see.' G. C. Wick, Phys. Rev. 96, 1124 (1954).
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scattering and in comparing our results with the con-
spirator theory of Volkov and Gribov. '

In the next section we summarize work on the subject
previous to this year, and briefly discuss the group 0 (4)
in Sec. III. Section IV is devoted to the establishment
of the 0(4) symmetry of the scattering amplitude at
t=0. The development of general four-dimensional
partial-wave decompositions and their relation to con-
ventional three-dimensional partial-wave amplitudes
are given in Sec. V, and in Sec. VI we consider explicitly
nucleon-nucleon scattering. In Appendix A properties
of 0(4) representation matrices used in the text are
derived, and in Appendix B analytic continuations of
the four-dimensional partial-wave amplitudes are ob-
tained using techniques similar to those of Froissart
and Gribov.

II. PREVIOUS WORK

A four-dimensional symmetry at the point E&=0 has
long been known to be associated with amplitudes which
satisfy a Bethe-Salpeter equation. This synimetry was
discovered and utilized in the early papers on the Bethe-
Salpeter equation by Wick' and Cutkosky, ' and its
consequences for complex angular momentum in the
equal-mass case were 6rst obtained. by Domokos and
Suranyi' and by Nakanishi. ' For unequal-mass spin-
zero Bethe-Salpeter amplitudes it was shown in Ref. 1
that this symmetry implies that Regge trajectories
have exactly the properties found via the analyticity
argument.

The daughter trajectories correspond. to what were
called abnormal solutions of the Bethe-Salpeter equa-
tion in the older literature. "The daughter trajectory
results show that the "abnormal solutions" cannot be
dismissed. as peculiar features of the Bethe-Salpeter
equations as often suggested"; they are necessary for
the analyticity of the unequal-mass amplitudes. Al-

though conclusions about the Bethe-Salpeter equation
follow most easily from theWick rotated form, 7 it wouM
seem that most results concerning the four-dimensional
symmetry can also be derived in the original Lorentz
metric"

Expansion theorems in terms of the four-dimensional
group can be proven in general using the techniques
developed in this paper. However, the corresponding
classihcation of poles in the equal-mass case can only be
established. in the context of specific dynamical models.
To date, Bethe-Salpeter equations with simple ladder
kernels are the only dynamical models in which this
pole classi6cation can be established. More general
Bethe-Salpeter kernels are usually too diKcult to study
mathematically, but in the cases which have been

R. E. Cutkosky, Phys. Rev. 96, 1135 (1954).' G. Dotnokos and P. Suranyi, Nucl. Phys. 54, 529 (1964).
'

¹ N'akanishi, Phys. Rev. 136, B1830 (1964).
"For a list of references about abnormal solutions see ¹

Nakanishi, Phys. Rev. 138, B1182 (1965)."S.Nussinov and J. Rosner, J. Math, Phys. 7, 1670 (1966).

treated, /-plane singularities have the structure sug-
gested by the four-dimensional group. In this paper, we
have to assume that the pole structure given by the
four-dimensional group is fundamental at 1=0. This
assumption is motivated by the results in the Bethe-
Salpeter models and in the unequal-mass case.'

Toiler' " has given an elegant formulation of the
four-dimensional symmetry. He studies the forward
scattering amplitude in the crossed s channel and
obtains expansion theorems for the amplitude in terms
of the continuum of irreducible unitary representations
of the noncornpact little group 0(3,1).He assumes that
asymptotic terms corresponding to Regge poles are
classified according to this 0 (3,1) expansion, and
explicitly obtains the pole structure of nucleon-nucleon
scattering.

Toiler's formulation involves new and perhaps very
useful ideas. It features a group-theoretic interpretation
of the Regge background integral and. the association of
the signature of a Regge pole with the eigenvalue of the
TCI' reQection operation. A difhculty of the theory is
that the expansion theorem in terms of the noncompact
group 0(3,1) seems to apply rigorously only to ainpli-
tudes which have no Regge poles to the right of l= —1
at t=0. A difhculty of this type is avoided in our treat-
ment, because the 0(4) group is compact. It also seems
that the 0(4) formulation is considerably simpler than
that based on the noncompact 0(3,1).

III. THE GROUP O(4)

The Lie group 0 (4) of rotations in a four-dimensional
Euclidean space has six in6nitesimal generators, a set
J&, J2, J3 which generate ordinary rotations in the ys, x2',

and xy planes, and a set E~, E2, E3 which generate
rotations involving the fourth axis, which we call
"boosts" in analogy with standard Lorentz-group
terminology. It is convenient to parametrize Qnite
transformations of 0(4) in the form

g=2t.'(y, 8,0)1s(8)R(a,P,y)

where a standard Euler-angle parametrization has been
assumed for rotations. The only boost which need be
considered explicitly involves the s axis. In this parame-
trization the invariant volume element on the group
manifold is

dg= d&pd(cosg) sin'8d8dnd(cosP)dy. (2)

It is well known that the generators A;= rs(J~+K;)
and 8;= sr (J;—E';) satisfy independently the cornmuta-
tion relations of ordinary angular momentum and. that
there therefore exists a correspondence between 0(4)
and SU(2))&SU(2). In the direct product group, pure
rotations take the form (U, U) and pure boosts the form

'3M. Toiler, Nuovo Cimento 37, 631 (1965); University of
Rome Reports No. 76, 1965 and No. 84, 1966 (unpublished).

'4 A. Sciarrino and M. Toiler, University of Rome Report No.
108, 1967 (unpublished).
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(V,V '), where U and V are arbitrary elements of
SU(2).

Matrices of the four-component representation can
be constructed from the expression

(')p
3'+s' x' i—y'q p t+s x i—y~

kx'+iy' 1' s' J— (x+iy t s—)

It will be convenient at a later stage to introduce the
quantities ri=u+b and M=a f—i and to label I.R.'s
and representation matrices by the pairing (e,M)
instead of (a,b).

IV. O(4) SYMMETRY OF SCATTERING
AMPLITUDES

For a boost along the s axis we take

(e
—is/2 0

V=U '
k 0 e+'"s)

and obtain

(4)

We start by considering t-channel center-of-mass—
frame helicity amplitudes" Ti;q„,z,z, (p&'ps', p&ps) for
which we assume conventional analyticity properties"
in the variables t= (pi+ps)' and s= (pi' —pi)'. The
Lorentz transformation law

tl.~

x'

y
l

-8'.

cosh
0
0

.i sinb

{} 0 i sin5'
0 0 x

0 1 0 y
0 0 cos8 . .s

where the D~ are the ordinary representation matrices
of &U(2), and the boost matrix is found. by transforma-
tion from the A3,83 basis to be given by the trigono-
metric polynomial

d8 -' "(~)=z C( &~,j;P, m 1)—
&&C(&, b, j';), m p)e '"— -(7)-

in which ordinary Clebsch-Gordan coefficients appear
as coefficients. The polynomial (7) can be expressed in
terms of Gegenbauer functions (see Appendix A). The
normalization of the boost matrices is

dh sin'hd ' ' '(&)d" " '
(~)

~(2j+ 1)(2jy1)
2 (2a+1) (2b+1)

The boost matrix obtained in this way diAers from the
standard form by a unitary transformation. However,
the form (5) is best adopted to our configuration where
spatial components- of four-vectors are imaginary.

Irreducible representations (I.R.) of O(4) are de-
noted by the pair of numbers (a,b), where a and fi

are eigenvalues of the Casimir operators A'=a(@+1),
Bs=g(b+1). There are two convenient basis sets for
an irreducible representation, one in which the operators
A3 and 83 are diagonal and the other in which the total
angular momentum J and its third, component J3 are
diagonal. Transformation between the two bases is
simply done by adding angular momenta A and B to
make J, and it is easy to see that the I.R. (a,b) contains
ordinary angular momenta j in integer intervals fromj; =~a—b~ toj .=a+b

In the basis
~
(ab) jm) the representation matrix of

the transformation (1) can be written as

' "(g)=Z D--'(v»80)

Til'Xs';ilies(pl p2 P Pip )s

=Z» ' "L&='(A,Pi') jD-~"-. "P='(A,Ps') j

R„(A,p) =L '(Ap)AL(p),
L (P) = e '&~'e "~' exp (

—i8K—s), (10)

where the J; generate rotations and the E; generate
boosts. The angles 6, 8, p specify the orientation of
momentum four-vectors p according to

p'=m cosh', p=m sinh8 r(8, p), (11)

where r(8, y) is a spatial unit vector of polar angles
(8,y). For physical (positive timelike) momentum
vectors we adopt the convention that B~O for particle
1 and 6~0 for particle 2. In the c.m. fraine in the
physical region of the t channel,

'pl 'gs 81 8s 81 82 sinh 'f L(t/4m') —1)"').
These conventions are completely equivalent to those
of the second paper of Ref. 15.

By the Hall-Wightman theorem, '~ Eq. (9) can be
extended analytically to any transformation A of the
complex Lorentz group. Further, Eq. (9) still specifies
the I orentz transformation law in unphysical regions
of the variables s and t. Continuation in t and s is done
via the c.m. frame helicity amplitudes, and Eq. (9) then
specifies the transformation law to any frame connected.
to the c.m. frame by the transformation A. of the com-
plex I orentz group.

The first step in obtaining the O(4) syxnrnetry is to
continue the t-channel helicity amplitud, es from the

' M. Jacob and G. C. Wick, Ann. Phys. (N.&.) 7, 404 (1P59);
G. C. Wick, ibid. 18, 65 (1962)."Y.Hara, Phys. Rev. 136, 8507 (1964);L. L. Wang, ibid. 142,
1187 (1964); H. P. Stapp, ibid. 160, 1251 {1967)."D. Hall and A. S. Wightman, Kgl. Danske Videnskab,
Selskab, Mat. -Fys. Medd. 31, No. 5 (1957); H. P. Stapp, Uni-
versity of California Radiation Laboratory Report No. UCRL-
10843 (unpublished) .

sl's2 s1s2( Pi APs i APiAPs)

&&D, ~ "P-(A,Pt)Ã-„-~*"E&-(A,Ps)j, (9)

tells how to transform to an arbitrary I orentz frame.
The Wigner rotations are given by
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p'=m cos8,
p=im sin8 r(8', q'), (13)

where 8, 8', p' specify the polar coordinates of an
arbitrary point on the surface of a four-dimensional
Euclidean sphere.

By starting from center-of-mass —frame relative mo-
mentum vectors (for initial and final states) of variable
spatial orientation, we apply transformations g of 0(4)
and use Kq. (9) to obtain scattering amplitudes for
relative momentum vectors p' and p with arbitrary
orientations on the sphere. This set of on-mass-shell
amplitudes is obviously invariant under the group 0 (4).

Variation of p and p' over the sphere corresponds to
variation of s in the interval (m —m')s&s& (m+m')s,
where m and, m' are the masses of particles in the initial
and the final state of the t channel, respectively. In this
interval, the amplitude is analytic except for possible
poles due to bound states in the s and u channels and.
possible annihilation cuts at which the amplitude is
bounded. For example, in EE scattering there is the
deuteron pole in the s channel and a pion pole and multi-
pion and kaon annihilation cuts in the I channel.

Ke subtract out the pole terms and. treat them
explicitly later. This subtraction is done in a Lorentz-
invariant manner so that the underlying group theory is
not destroyed. The amplitude T&„.&„z,x, (p', —p', p, —p)
remaining after the subtraction is square integrable as
a function of the orientation of p and p' on the sphere.
It is therefore a bounded, integral operator in search of
a Hilbert space, and we now define the Hilbert space as
the set of functions f&„&„(p) defined on the sphere
through Eq. (13) with norm

(14)

"The choice of phase in the square-root argument of the in-
verse sine is immaterial if it is adhered to consistently. See. T.L.
Trueman and G. C. Wick& Ann. Phys. (N.Y.) 26, 322 (1964).

physical region to t=0, defining

8,- B,—=sb=i sin —'I (1—tj4m')"'j

so that" 8=~/2 at 1=0. We see from (11) that the
vector Z& vanishes at t=0, and that the amplitude there
depends only on the relative momenta p=-', (p&

—ps)
and p'=-', (pq' —ps'). After the continuation process
just described the relative momentum vector has
components

0 0
p=imr(8, q),

with arbitrary spatial orientation at t=0. This form
defines the center-of-mass frame at 1=0

The covering group of the complex Lorentz group is
SL(2,C)XSL(2,C) and we restrict ourselves now to
transformations g of its compact subgroup 0(4) or
rather SU(2) XSU(2). Such a transformation takes the
relative momentum vector (12) into a vector of the form

I P) &) s) = e '&~'e 's~'e "K'I pa&Xs) (16)

We have introduced, the unit vector e(88q) of polar
orientation (88q) in the four-dimensional space, and our
kets are normalized by

(p'Xg'Xs'I phd'As) = 5 (e'—e)8g, )„5g, g, .

The kets transform under 0(4) according to

U(g) Ip, kgh, )= p D„,„,"(R„(g,p))

XD-.s-~s"(R (a, —p)) Igppi, ~s), (Ig)

where U(g) is the unitary operator in the Hilbert space
corresponding to the transformation g of 0(4). In-
variance under 0(4) is expressed simply by the equation.

U( ')TU(g) = T.

V. O(4) DECOMPOSITION OF THE
AMPLITUDE

(19)

Our goal is to obtain the four-dimensional partial-
wave expansion of the amplitudes (15), and we do this
by decomposing the Hilbert space into finite-dimen-
sional subspaces whose basis states transform according
to definite irredicible representations of 0(4). The in-
variance (19) ensures a corresponding decomposition
of the matrix elements of the operator T, and this
decomposition is the desired partial-wave expansion.
Our procedure is well known in ordinary quantum
mechanics "

VVe study first the behavior under ordinary rotations
of the north-pole helicity ket

I pX&) s). For an ordinary
rotation R(n, P,y) the Wigner rotations (10) are given by

R-(R(,P,V),I )=R(,P,V),
R (R(is p ~) p) —s iwKsR(~ p

—~)e+ixKs

=R(u, —p, y).
(20)

The relation —p=e+' ~3p is implied by previous con-
ventions. "The last equality in (20) follows from the
group structure of 0(4).

' E, P. Wigner, Group Theory and its APPlication to the Quantum
Mechanics of Atomic Spectra (Academic Press Inc. , New York,
1959).

where dQ= sin'8dbd(cos8)dq& is the surface element of the
four-dimensional sphere. The introduction of a Hilbert
space makes it very easy to obtain the group-theoretic
decomposition of the amplitude.

YVe change to bra-ket notation and write

Tx, x, x,~, (p —p; p —p) =(p'4'~s
I TI p») s) (13)

The ket
I pX~) s)—= I8(Mq)X~Xs) is an improper basis ket

of the Hilbert space. It is defined in terms of the ket
I p) gas) with momentum P in the direction of the north
pole of the sphere by
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Using (18) and. (20) we obtain

&(,P,v) IP& & )= 2 (—1)" "'D. ~ "(,P,v)
Itt 1it 2

XD „,, 1,"(n,P,~)IPt a 2) (21)

We define a new set of kets by the equation

Ipse)= p (—1)s~"'C(srs2ss X» X2) Ip, X1X2), (22)

of which the riortk pole bet I p-sX& transforms under rota-
tions according to the I.R.s of SU(2),

U'(~(tv)) I p»&= Z D'~'(aPv) I
p»'& (23)

The unitary transformation matrices

(p'&l&2I p»)= b'(e' —e)bx, L, 1,
)&C(srs2s& X» —X2)(—1)" "' (28)

(ps' I
ab jms') = b N "Dm1,'(st O,Q)*d;s1's "'(b)

which can easily be obtained from (22) and (25), are
very useful in deriving the decomposition theorems we
need.

Before obtaining these expansion theorems it is useful
to study the behavior of the states (25) under the dis-
crete transformations corresponding to parity and
charge conjugation. To do so it is simplest to introduce
the direct product notation

The phase factor (—1)"—"' is very important to the
final results. The quantum number s, although a purely
rotational quantum number, differs from the total spin
normally defined for two-particle systems. Total spin is
usually defined by coupling the two spins in the center-
of-mass frame, whereas our spin s is defined in the
"north-pole frame. "These frames are connected by the
boost e '~~3~' which does not commute with rotations.
Hence the relation between the two total spins is not
simple.

The integral over the group

dZ D;-.,'- '"'(a) ~(Z) I1»& (24)

Ia,bj,ms)=N ''Q dQ

XD,t(q 80)*d;s~*& '&(b)
I pA), (25)

either vanishes or defines a state transforming according
to the I.R. (a,b). Using (1), (6), and (23), one can
easily integrate over the anglesn, P, and p, and fin that
the integral vanishes unless j'=s, m'=X and that it is
independent of X. It also vanishes unless the angular
momenta j and s are contained in the representation

(a,b), so that Ia bI $j,s&a+b Th—erefor. e, (24) re-

duces to the set of states

c
I
p~rx2& = (—1)'"(e'sx'I ~2))g I ~1&

=e+' xsIp, —X2, —X1).

From (22), we easily obtain

Zle(beg)sz&=( 1)2 g,—g, le( b, S, y—)u,&,

C Ipse&= (—1)'+"e+' x'Ipse).

(31)

(32)

Using the syrrnnetry properties (A2) and (A3) of the
boost matrices we finally 6nd

I'
I
ab jms) =1trrt2( —1)'&s+'+ss' 1 'I baj ms), (33)

in which the diBerent transformation properties of
particles 1 and 2 are manifest. The individual kets

I X1&

and
I X2& transform in the same way under the group.

The parity operator commutes with rotations and
anticommutes with boost generators. Therefore

&IP~1~2&=n1n2I~1)3e ' x'I —~2&

= (—I)'"nrn~
I P~1~2&, (30)

where q~ and g2 are the intrinsic parities of particles
1 and 2.

Charge conjugation is useful only for particle-anti-
particle channels, so we take sj=s2. It commutes both
with parity and with transformations of the proper
group 0(4), and is equivalent to a factor (—1)"' times
the exchange operator of the two particles. Therefore

for which u, b, j, and s satisfy the inequality above, and
the set of states (25) is complete in the Hilbert space.
For fixed a, b, and s, the states Ia,bj,m, s) transform
according to the I.R. (a,b). The spin index s plays a role

similar to the helicity in the treatment of Jacob and
Wick. '~ A state with a given value of s contains 0(4)
representations with

I
M

I

=
I
a—b

I
~s.

The normalization constant, which is fixed by the
requirement

C
I abj ms) = (—1)'s '

I abj ms) (34)

The reduced matrix elements (abjms'I TI abj ms) are
diagonal in a, b, j, and m, and independent of j and m,
because of Schur's lenuna and 0(4) invariance. We
introduce the notation

T, ,"~=(abj ms'
I
T

I abj ms), (35)

(a'b'j'm's'
I
abj ms) = B, ,bp t,brtbm mbs's

where n=a+b, M=a b Parity con—serv. ation (33)
(26) implies that

is given by Ts's~'~ —g1 1t2 q11t2(—1)2ss+2ss' s sTs~s~~ ~. (36)——

(N, '1')2= (2'') '(2s+1) '(2a+1) (2b+1) . (27) For identical particles or for particle-antiparticle
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channels, this implies that

T, m, M —( 1)s+s'T, n,—sr
)

T;," '=0 if (—1)'+*'=—1 (37)

These relations restrict the number of independent
reduced matrix elements.

The transformation matrices (28) can be used to
construct expansion theorems in terms of the T..."~ for

amplitudes &p's') 'I Tl ps') or &p'Xt'Xs'I Tl pkt4& with
arbitrary orientation of p and p' on the four-dimensional
sphere. These expansions converge in the L2 topology on

the sphere. We write explicit expansions only for the
amplitudes necessary for the further development of the
theory.

The conventional c.m.-frame helicity amplitude at
t=0 is given by

fm'

», i, i i (e) = 'I —,&p»'& 'I r
I 'I - p o 1~~~2) (»)

k2' ' k2' ')
Inserting complete sets of states (25) and using (27) and
(28), we obtain

sy+sg el'+e2' min (s, s')
Ti i x i, (S)=(2s') '(—1)"' ""+' "' P g g Q g E(2s'+1)(2s+1)j 't'

s=[ e1—sgl s'=[sj.'—s2'] 3f min(s, s') n min(s, s') j=)Mj

XC(st', ss', s'; Xt', —Xs')C(st, ss, s; Xt, —Xs)E(e+1)'—3IIs)T;,"~d;,.i fs ~l'(s/2)di, ), ™(s/2)dye.&(8), (39)

T". (~)=(—1) 'T. . .(b) (42)

for identical particles or particle and antiparticle. These
amplitudes have the simple decomposition

T ~ g(8)= (2s') 'E(2s+1)(2s'+1)g "'

)t,'Q Q E(n+1)'—3Pjd i,
"~*(5)T "~ (43)

where the sums have the same limits as in (39). T;,"~

where X=) 1—X&, X'='A1' —P 2'. The partial-wave helicity
amplitudes" &Xt'Xs'ITtlkiXs& can be identified as the
coefficients of dpi '(8) in Eq. (39). Parity-conserving
helicity amplitudes, the amplitudes which are Regge-
ized, can be obtained by forming suitable linear
combinations.

To project out the O(4) partial-wave amplitudes
T, ,"~ we dehne the amplitudes

T;,i(B)= &e(8,0,0),s')
I
T

I e(0,0,0),sX&, (40)

observing that invariance under rotations about the s
axis implies that these amplitudes are diagonal in X, and
that invariance under the mirror reQection I'e—"~2

implies

T... (S)=~,'q, '~,~,(—1) + ~ '+"+- T... ,(g), (41)

which reduces to

can be projected out using Eq. (8), and we obtain

min (e', e)
nM

A=min (e', s)
df'i sin'8 T;,q(b)d. ..i"~(b). (44)

The O(4) partial-wave amplitudes, defined for physical
tt by Eq. (44) can be continued to complex I using
techniques" similar to those of Froissart and. Gribov.

Vt:. NUCLEON-NUCLEON SCATTEMNG

At this point we restrict ourselves explicitly to the
process Eg ~Xg, the simplest spin configuration in
which the O(4) symmetry leads to interesting results.
In this process s and therefore M are restricted to the
values 0 and 1. Parity conservation, (37) and (42),
implies that s=0 and s= i states do not couple. There-
fore we can simplify the notation by setting T, ,"~
—=b, ,T,"*~. There are three independent amplitudes
To T1 f and T1 ' for a given m.

We write expressions for the parity-conserving
helicity amplitudes of GGMW "

fo'=(-: pl T'ls l&
—&-: slT'I —

s
——:&

f-'=(-:,—:IT'I-'„l&+&-:,—:IT
I
—:,—:&, (43)

f»'=2&l ll TIl —
l&

We identify the partial-wave helicity amplitudes in (39)
and use (37) and (A11) and (A12) to write

f &+=pE3 '(2sj+1)7 'EP (j+K+1) Id(]pr'i" (t/2) I
Ttr't

«=1
016

+»(j+x)(j+a+2) I
dt»~" '(~/2) I'Tt~*'+Q, (46)

«=0
even

mo The normalization of these amplitudes is given by
2'), ~, &.,&. (e) =Z(21+1)A,~~t(e)(4'O'ITs(44).

~' This is shown in Appendix 3 for Ãg scattering.
~M. L. Goldberger, M. T. Grisaru, S. W. MacDowell, and D. Y. Wong, Phys. Rev. 120, 2250 (1960). Our amplitudes differ

from GGMW by a factor of gt
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ft'+= 2f3n'(2j+1)j 'f Q (j+Ir+1)'I d'art' "'(s/2) I'Tt~" '+
a 0
even

+ & 2(j+~)U+«+2) I&j»~"'(~/2) I'Tt~" '+3 (4&)
If 1
Odd

frt"=f~'(2j+1)j ' 2 (j+~+1)'I%so'+"'(~/2)I'To~"",
It; =0
even

f '+ = f3s'(2j+1)1 ' P 2 (j+Ir) (j+«+ 2) I
d tP " '(w/2)

I

'T&&+" '+ .

even

The ~ superscripts refer to signatures and, should, be
disregard. ed until we discuss them explicitly below.
Amplitudes Tt'+" with Ir even do not contribute in (46)
because the corresponding d, ts'+" e(n/2) vanish. Similar
remarks apply to the other terms. From (48) and (49)
we see that only 3f=0 couples to the parity-conserving
helicity state 1, and only M=1 couples to the helicity
state 2. Therefore the amplitude f»' which couples
these two states must vanish, a result which is also
obtained, in the conventional theory. "

Formulas (46)—(49) relate the conventional parity-
conserving partial-wave helicity amplitudes to the O(4)
partial-wave amplitudes for integer values of j. In
Appendix 8, we study the problem of obtaining the
appropriate continuation of these relations to complex j.
We summarize here the results of that study, and then

go on to examine the structure of Regge-pole families.
There are subtle points involved in the treatment of
Appendix 8, and the reader interested in the detailed,
implementation of these ideas is urged, to read it.

For convenience, we use the generic symbols T" and
f& to den'ote any one of the set of corresponding ampli-
tudes. In Appendix 8 it is shown that there exist
separate continuations T"+ away from even and. odd
integer n, respectively, which are holomorphic in the
half-plane Ren&E, where E is the number of subtrac-
tion necessary in the forward dispersion relations in
nucleon-nucleon scattering. A simple multiple of T"+
satisfies the requirements of Carlson's theorem and
therefore T"+ is the unique holomorphic continuation
in Ren&E with reasonable asymptotic behavior. In
particular, asymptotic behavior in Ren assures the
convergence of (46)—(49) uniformly in j. We refer to
the T"+ as the amplitudes of even and odd Jorents
si gno, ture, respectively.

When the continuations T"+ are inserted in Eqs.
(46)—(49), these equations may be used to define
continued partial-wave amplitudes" f'+ away from
even and odd integral j which are holomorphic in
Rej)X. A simple multiple of the f&+ defined in this

~ The absolute-value signs and complex conjugates in (46)-(49)
refer speci6cally to integral j.1t is a simple matter to remove them
and define continuations of products of two d, ,&,

&&'+& ~& (s /2l which
are analytic in j.

way satis6es the hypotheses of Carlson's theorem, and
the theorem assures us that these P'+ coincide with the
conventional continuations away from even and odd
integers with the same analyticity and, asymptotic
properties.

In the region Ren&S very little has been proven
about the analyticity properties of the T"+. We adopt
as a working hypothesis the assumption that the T"+
have only simple poles in the region Ren&X. This
corresponds to the assumption of j-plane meromorphy
usually made in phenornenological applications of
S-matrix theory. Other kinds of singularities —branch
points, for example —would yield families of similar
singularities equally spaced in the j plane at t=0, In
this paper we study only poles.

A pole in T"+ is called. a Lorentz pole, following
Toiler. Since the three independent amplitudes To"'+,
T~"'+, and T~"'+ correspond to transitions from states
which transform according to different I.R.'s of the
invariance group O(4) combined with parity, the
Lorentz poles of each amplitude will be independent.
Each Lorentz pole, at n=n+, gives rise to an infinite
family of Regge poles whose structure can be deduced,
from Eqs. (46)—(49).

Type I.Loreels pole of Te" e+ (M =0, s=0).Near such
a pole the amplitude behaves like

To'+"'+=y+/(j +~ n+) . —(50)

This amplitude couples only to fn~+, and from (48) the
Lorentz pole yields a series of Regge poles spaced. by
two units of angular momentum at j=e+, 0.+—2,
with residues P'+, P'", . The ratio of the residues of
the parent and daughter poles can be computed from
Eq. (48). We obtain, for example,

0'/P'= (2~+ 1) I d-I"(~/2) I'/(2~ —3) I ~=sw"'(w/2) I'
= (2a+1)/4cs. (51)

All Regge poles in this family have signature (—1)&'

equal to Lorentz signature and P= (—1)'=C. An
additional series of poles with opposite signature and
parity but the same charge conjugation would, appear
at j=o.~—1, a+—3, ~ in the unequal-mass case. '

Type II. Lorents pole of T,"e+ (M=O, s=1). This
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Lorentz pole leads to Regge poles of fi'+ at j=a+,
a+—2, ~ with residues Pt'+, Pr'~, and to Regge
poles of fs&+ at j=n"—1, a+—3, with residues
Ps'+, Ps +, ~ .From Eqs. (46)—(47) and Eqs. (A7)-(A8)
we calculate the ratio

ps'+/pre+=2(2a+1) ~da-l, l, s ' (rl/2)
~ /

(2a—1)
~
d~, » '(s-/2) ~'= (2cr+1)/a(a+1) . (52)

All Regge poles in this family have a common charge-
conjugation value opposite in sign to the Lorentz
signature. The Regge poles of fi&'+ have P= —(—1)&'= C
and those of fs&+ha've P= —(—1)&'=—C.

Type III.Loremts Pole of Ti" '+ (M= 1).This Lorentz
pole yields Regge poles of fs&+ and f»'" at j=n+,
a+—2, , and poles of fr'+ at j =n+ 1, a+——3,
The ratio of residues of the leading members of the
singlet and coupled triplet series is, from Eq. (46), (49),
and (A10),

(53)

All poles of this family have charge conjugation equal
to Lorentz signature. The poles of fs'+ have P= —(—1)&'

= —C, those of fss&'+ have P= (—1)'=C, and those of
fr&~ have P= —(—1)'=C.

The variation of the discrete quantum numbers C and
E within a Regge family can be understood, easily. The
charge-conjugation operation commutes with all the
transformations of the O(4) group, and its eigenvalue
within a given irreducible representation depends only
on the Casimir operators of O(4) and not, for example,
on the j value of the individual state in the representa-
tion. For this reason a Lorentz pole and all the Regge
poles to which it gives rise have the same charge con-
jugation. The same remarks apply to all internal
quantum numbers such as isospin.

Parity does not coiiunute with O(4) transformations
containing boosts, and a Lorentz pole does not therefore
have a definite parity. In an M =0 representation there
is a definite correlation between the parity of a basis
state and its j value, Eq. (33). The parity of a Regge
pole in an M=O family is therefore correlated with the

jvalue of possible physical states on the trajectory, and
this structure is exhibited in families I and II.The basis
states of M/0 representations are not parity eigen-
states, and, in general have nonvanishing coupling to
angular-momentum helicity states of both parities.
Parity doubling, the occurrence of opposite-parity
states of the same j value, should, be expected, in Regge
families corresponding to M/0 Lorentz poles; this
phenomenon is exhibited in family III.

A given Lorentz pole can couple to many different
channels at f= 0. Because of O(4) invariance it couples
to states of the same M value in all the different
channels. '4 Therefore 3f is a universal quantum number

~As discussed earlier, the 0(4) symmetry does not strictly
apply to two-body unequal-mass channels. However, the pole
structure in the unequal-mass case would still exhibit the sym-
metry (see Ref. 5), so that the quantum number M would be
meaningful even in unequal-mass channels.

of trajectories at t=0. If M=O, then the quantity
PX (—1)', the product of parity and signature, is the
same in all channels to which the trajectories of the
corresponding Regge family couple.

All Regge trajectories with nonvanishing residues at
f=0 must be classified in O(4) families. Trajectories
which couple to pseudoscalar-meson pairs at t= 0 must
correspond, to Lorentz poles with 3f=0 and s=O, since
these are the only O(4) states which contribute in the
t-channel process X+ltr -+ PS+PS because of the final-
state spins. "Therefore I', I", and p which couple to mx
and co, y and A g which couple to EEmust be the leading
trajectories of O(4) families of type I.

The quantum numbers of the A& trajectory suggest
that it be identified with the leading member of an
O(4) family of type II."'r The next leading member is
a trajectory of the singlet fs&'+ amplitude. This trajectory
lies one unit below the A & at t=0, and its first physical
manifestation would be a J~o=O particle. The O(4)
symmetry at t=0, of course, does not require that the
subsidiary trajectories of a family rise high enough to
make physical particles. We merely observe here that
the rr(1640) ineson" is a possible candidate for the 0-
meson just described.

The 7r, r), and 8 trajectories couple to the fs' ampli
tude. If their residues are nonvanishing at 1=0, the
trajectories are presumably associated with Regge
families of type III. This assignment requires the
existence of a trajectory of the f»' amplitude with
intercept at t=0 equal to that of the original trajectory.

Since the 0+ parity partner of the m meson is not ob-
served at low mass, the f»' trajectory of the pion
family would have to have an extremely shallow or even
a negative slope. The ratio P»(0)/P (0) of the residues
of triplet and singlet trajectories is negative if n (0)(0,
and this may be connected with the behavior of the
triplet trajectory suggested above. The rr„(1030)meson"
is a possible candidate for the 0+ state on this trajectory.

The M=1 classification of the ~ meson is consistent
with the PCAC hypothesis which requires that the
m-meson mass extrapolate smoothly to zero. The ENm
coupling vanishes at t=0 for a zero-mass pion. This
vanishing is automatically incorporated into the group-
theoretic coefficients in Eq. (46) since an &=1 repre-
sentation of O(4) does not contain states with j=0.

The O(4) classification of the s., rf, Ar, and 8 trajec-
tories can in principle be verified in detailed Regge-pole
analyses of processes to which these trajectories couple.

' This argument should be compared to the conventional argu-
ment based on angular-momentum conservation, crossing, and
factorization which shows that the iVN residue P» of any trajec-
tory which couples to pseudoscalar-meson pairs must vanish at
t=0 (see Ref. 2).

~'Assignment to a type-III family is possible, but unlikely,
since it requires the existence of high-lying trajectories of the fo&
and f&s~ amplitudes.» L. Durand (Ref. 4) has suggested an A~ conspiracy of this
type."A Rosenfeld et al. , Rev. Mod. Phys. 39, 1 (1957).

29 This argument was erst suggested by G. F. Chew (private
communication).



1568 D. Z. F REED MAN AND J.—M. WANG

Simultaneous analysis of the processes 22p ~ pn,
yP ~2r+I, and 2r P-+ po22 WOuld be impOrtant fOr a
better understanding of this subject. It is only for the
6rst process that reasonably successful analyses have
been obtained. "

In the conspirator theory' ' of EX scattering roughly
similar results are obtained from. the identity"

2—1
fo~' fo~—' —f22~'

j+ , j++ f22 fl O (54)
j+1 j(j+1)

which must be satis6ed at t=O in order to avoid a kine-
matic singularity of the pseudoscalar invariant ampli-
tude. Near a Regge pole the identity can be satisfied
either by a vanishing residue or by correlation in
position and residue of the Regge poles of the three
partial waves which participate in Eq. (54). Such
correlations are called conspiracies. ' There are an
in6nite number of conspiring families which can satisfy
the identity (54). Gribov and Volkov' admit only two
possible conspiracies. Because they reject the possibility
of daughter trajectories, their solution must be regarded
as inadequate.

Since the analyticity requirements are built into
our theory the partial-wave identity is automatically
satisfied. The predictive power of the 0(4) syminetry is
much stronger than that of Eq. (54). Indeed we find on
the basis of group-theoretic requirements that families
II and III are the only possible conspiracies.

Although calculation of ratios of Regge-pole residues
within a given 0(4) family usually requires explicit
evaluation of the coefficients in Eqs. (46)—(49), the
ratio of residues of the leading members can be obtained
very simply from Eq. (54). In fact the moment of truth
in our calculation came when the requirement of agree-
ment between both methods of calculating the ratio of
residues was checked. It is easy to see that the values
(51) and (52), calculated group-theoretically, are
exactly the values required by Eq. (54).

In both the conspirator and 0(4) theories, there is no
requirement (contrary to older theories) that residues
of trajectories of the fos' and flj amplitudes vanish at
t=O. From our point of view the vanishing of such
residues would be purely accidental.

APPENDIX A; PROPERTIES OP d,j ~("~)(S)

All properties of the boost representation functions
needed in the text can be derived from the defining
equation

fn+M n M—
'(~)=ZcI » j, j, ) j I—

2
'

2
''' )

f 22+M n —MxcI, , s, js, )(—js Ie
'(2&-")' (A1)

2
'

2
''' i

by using known properties of the Clebsch-Gordan
coefficients. We note 6rst the properties

(~,sr) *(g)
—( 1)j—sd „(n—M) (g) (A2)

„(~2r)(3) , d. „(n, sf (g)—
(~,sr) ($) = (—1)~+3r—~d. (~,j)r) ($—sr) (A3)

The boost functions can be expressed in terms of
Gegenbauer functions by using recursion relations for
the Clebsch-Gordan coefficients and the basic relations

C„'(cosB)= sin(22+1) i)/sini),

(d"/dms) C„'(x)= 2"I I'() +0)/I'()~) jC„'+"(x) . (A4)

The case 3EI=s= X=O has been treated by Bander and
Itzykson. "Their result can be written as

(2j+1)I' (l2—j+1)
(n, o) (g)

(22+1)I ()2+j+2)
X (2i) jl'(1+j) sinjf)C +j(cosh) . (A5)

More general cases can be treated using the recursion
relations of Bander and Itzykson, si Eq. (3.7.13) of
Edmonds, "and the relation

L(J—js)(J+tu+1)jt"C(j, j',J;m, js—m+1)
= I:U' j+m)(j'+j m+—1)j"'C(j,j', J—; m, j —m)

XI (j—m+1)(j+m)j'"C(jj'J, m 1, js—m—+1).
(A6)

We list the results
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s—1 ) 1/2-
(s, I) (g) —

!),(&+2)(~+&+1)(~ —q)i
())+2) cosh+sin() —d;ii" "(i)),

d5
(A9)

d
d~ii(" i)(p)= +j(j+])] ) 3e 's+e's+2 sinI) —i)s ! d;is'" "(b),

dS
(A10)

for the functions which contribute in XE scattering.
To derive Eqs. (46)-(49) one needs the following

symmetry properties of boost functions of argument s-/2
which can be obtained from (A5) and (A7)—(A10):

d i(" ') ()r/2) = (—1)" '+'+"d ),
("')(ir/2) (A11)

d»'" "(~/2) = (—1)" '+"dj»'" "(~/2)
( 1)s—/+id. $(n, , l) (~/2) (Al 2)

These relations are valid for complex j and e with
e—j= a a non-negative integer. These relations can be
derived more simply by taking ()=7r/2 in (A2) and (A3)
and using Carlson's theorem to extend the result to
complex j, e with n —j= ~.

For use in Appendix 8 we list the boost functions
with j=s:
dooo'"" (b) = ()s+1)-'C '(cosI)),

dlls "(5)=3Ln()s+ 1)()s+2)g
X $)ssC '(cosI)) —4C„ss(cosi))j,

diii(" ') (8)=6L)s(n+1) (I+2)j—'C„ is(cosio

d11-1 "(&)
(s,l) (g)

dii, (" ') (io+dii i(" ')(())=3Lt)()s+1)()s+2)j '

X ()s(I+1)C„'(cos())—2C„ss(cosi)) ) . (A13)

These formulas can be derived from (A5) and (A/)-
(A10) using recursion relations for the Gegenbauer
functions.

APPENDIX 8: COMPLEX O(4) ANGULAR
MOMENTUM

particles at threshold is characterized by two param-
eters, the scattering lengths.

The projection formulas (44) which define the O(4)
partial-wave amplitudes for integer m can be written

dh(1 x')"'—T,g(x)d„i™(b). (85)

2m '
xo= = —1+

2' gf 28ZN

A, ),(x') is the s-channel discontinuity and B,z(x') is the
I-channel discontinuity to which pion annihilation
contributes.

%e wish to obtain a continuation in e of T,"~ by
substituting the dispersion relation (86) in (85) and
using arguments similar to those of Froissart and
Gribov. This substitution leads to the result

dx A ),(x)E„),"~(x)

Using an explicit expression for the cVg scattering
amplitudes in terms of Fermi amplitudes, '2 one can
show that the amplitudes T,), (x) are free of kinematical
singularities. They therefore satisfy dispersion relations
which may be written, ignoring subtractions, as

1 " A,g(x') 1 " B,),(x')
T,),(x)=— dx' — +— dx', (86)

x T +Q x x

where"

In /VE scattering Eq. (42) implies

T;g, (i)) = 8. ,Tg, (x),

Ti~(x)=Ti i(x),

(81) where

(82)

+ dh B,), (x)E.,i"~(x), (87)
XQ

1 ' dx'(1 —x")')'
g, „ssr(h)— d...),"'(x') . (88)

where x=cosb, so that there are three independent
amplitudes of the form (40). O(3) invariance gives

T /+i (x= 1)= {e(000)sX!J TJp!e (000)s)()
XLs(s+1)—) (X+1)j '= T,),(1). (83)

U'sing J+e '" '= —e ' ~QJ+, the relation

T ~+i(-1)=-T.~(-1) (84)

can be similarly obtained. Relations (83) and (84)
which restrict to two the number of independent ampli-
tudes at threshold in the s and I channels reQect the
well-known fact that the scattering of two spin--',

8„&,"sr (x) can be evaluated using (A13) and the follow-
ing formulas:

C '(x')
dx'(1 —x")')s

x—xI

=D„'(x)= Lx—(x'—1)"'$"+' (89)
33 Actually because only M =0 s =0 states couple to pseudoscalar

pairs at t=0, only TQQ(x) will contain the ~m and ER' branch
points. The annihilation threshold for Tio(x) and T&& (x) is actually

xp= (9m.'/4s)nr ) —~.



1570 grANGFREEDMAN AND J.—M.D . Z ~

rite expl'c't ~(A13) and (»)- e can writ P

gx Boo(x)D (x)

(—1)"-2(xi) 1
g( ) (n+2)Dn —&

4 g 1 x+
, (*)j+-dx'(1 —* ) i 4(*'—1)

160

(810)

(811)

y' np—

n+

1(x)j)1)D 1(x)—(n+1)
dx

){(2 1)n D (x)fA ios' —1

n+ 1

c

, ( ) (n+2)D~ —~'(x)jjg„(—x)t: D-+& *

(—1)"
„(„+1)(n+ 2)

1)D. ()
) („+2)D„,(x)]j+8„(x)LnD ~+i

(„+1)D„,'(*)3
3

(B, (g) {(x —1)n D" (
g2 1(n+ 1)(n+ 2) xo

T' n&—
3

( 1)n
2n(n+ 1)(n+2)

dx
){nD +y (x) ( +2 D. i'(x))

x' —1

1 („+1)D„,(x)])

1

) t (n —1)Dn,+An( )((, 1)2n(n+1)Dn (*—
00 dg

/ ,'(x' )
3

2n(n+1) ("+2)
i x)—(n+2)trio(x)(n "&-' '

i()j)j (813)

1
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1
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0(4) SYMMETRY AND REGGE —POLE THEORY

positive infinitesimal, in order to obtain amplitudes
which satisfy the requirements of Carlson's theorem in
the form pertaining to continuation from alternate
integers. Similar asymptotic estimates can be derived
for the amplitudes T1" + and T1"'+.

By setting rt= j+tc and 2;"~+=T,s'+" ~+, it is a
straightforward matter to use the asymptotic bounds
just derived to show that the infinite series (46)—(49)
converge uniformly in j and therefore de6ne functions
ft+ analytic in Rej)1V which coincide with the
physical partial-wave amplitudes at even- and odd-
integral values of j.

The amplitudes e '«' " '&f'+ satisfy the asymptotic
requirements of Carlson's theorem and therefore coin-

f'+= +e 'ias-+(t=0) . (B17)

Conditionally convergent expansions of the form of
Eqs. (46)—(49) can be written for the bound-state pole
terms subtracted from the amplitudes in the group-
theoretic analysis. The pole contributions can therefore
be included in the final form of the 0(4) decompositions.

n A. Q. Sarker, Nuovo Cimento 30, 1298 (1963).

cide for all j with the conventional continuations away
from even and odd integers with the same asymptotic
properties. Amplitudes tzt+(t) defined by Froissart-
Gribov integrals fail to have the required. asymptotic
behavior near 1==0, but closely related amplitudes do,"
and one can show that

PH YS ICAL REVIEW VOLUME 160, NUM HER 5 25 AUGUST 1967

Production of 2+ Mesons and 8U(6) Symmetry
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The sum rules for production amplitudes of 2+ mesons near threshold in pseudoscalar meson-baryon
scattering have been studied within the framework of SU(6) symmetry. It is concluded that the nonet of
2+ mesons should be assigned to the 405 multiplet in view of the fact that some of the well-observed processes
are forbidden if these mesons belong to 189. The sum rules based on the assignment of 2+ mesons to the
405 multiplet of SU(6) are found to be consistent with the experimental data available at present.

I. Dt'TRODUCTIO5

& URING recent years there have been numerous
experimental evidences indicating the existence

of meson resonances (f',f,A E*s*) with spin 2 and
positive parity. Glashow and Socolow' calculated the
partial-decay widths of the 2+ mesons based on the
assignment of these mesons to the reducible nonet
representation of SU(3) with considerable octet-singlet
mixing. In this way the predicted decay widths were
found to agree well with the observed values. In the
present paper, we study the production of these 2+
resonances near threshold in pseudoscalar meson-
baryon scattering within the framework of SU(6)
symmetry. Although the lowest-possible multiplet of
SU(6) containing the nonet of 2+ mesons is 189, there
are a number of arguments' in favor of assigning these

* Present address: Department of Physics, University of
Colorado, Boulder, Colorado.

' S. L. Glashow and R. H. Socolow, Phys. Rev. Letters 15, 329
(1965).

'This has mostly been discussed in connection with the mass
formula; Dao Vong Duc and Pham Quy Tu, Yadernaya Fiz. 2,
748 (1965) /English transl. :Soviet J. Nucl. Phys. 2, 535 (1966)g;
D. Horn, J. J. Coyne, S. Meshkov, and J. C. Carter, Phys. Rev.
147, 980 (1966). However, it has also been shown that by taking
the most general form of symmetry breaking, 189 can also be made
to give correct mass relations; see S. Kitakodo, K. Ninomiya,
Y. Ohnuki, and A. Toyoda, Progr. Theoret. Phys. (Kyoto) 36,
1206 (1966).

mesons to 405. In the present calculations we oberves
the following important points.

If the observed 2+ mesons are assigned to 189, we
find that although all the production amplitudes can be
expressed in terms of a single parameter, some of the
experimentally observed processes with known cross
sections become forbidden. A reasonable conclusion,
therefore, is to assume that the observed 2+ mesons
should rather belong to the 405 multiplet of SU(6), in
which case the relevant production amplitudes can be
expressed in terms of four independent parameters. The
predicted SU(6) sum rules in this case, however, are not
amenable to accurate verification because of the lack of
extensive experimental data; but in some cases a crude
estimation is still possible and our results are found to
be quite consistent with experiment.

II. THE SUM RULES

As already mentioned in the preceding section, we
shall consider the processes

(0 meson)+ (~a+ baryon)
—+ (2+ meson)+ (q+ baryon), (1)

where the 0 mesons and the ~~+ baryons belong to the
35 and the 56 multiplets of SU(6), respectively. The
2+ meson nonet, namely (8,5) and (1,5), consisting of


