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Radiative Decays of Hadrons and Current Conservation
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Using electric current conservation, it is shown that in the series expansion of the amplitudes of radiative
decays (with two particles at most in the Gnal state, apart from the photon) in powers of the photon four-
momentum, terms of order zero vanish unless they belong to photon pole diagrams.

I. INTRODUCTION
' N the present paper, ' we derive from electric current
~ - conservation a low-energy theorem for radiative
decays of hadrons. The theorem says: If the number of
particles in the 6nal state of the radiative decay is two
at most, excluding the photon, then terms of order
zero in the series expansion of the amplitude (in powers
of the photon four-momentum k) are zero unless they
belong to the photon pole diagrams

L Fig. 2(a) and
2(b)$. It thus applies to the decays

It+ ~ zrk+zr0+p

Z+ —& p+zr'+y,
Z+ ~ st+ zr++y,

but rot to

We use the method developed by Low in 1958.''
Low has shown that the amplitude for any collision
process describing emission of a photon (bremsstrah-
lung) of for four-momentum k has terms of order k '
(infrared divergent term) and of order zero in k, which
depends only on the corresponding amplitude without
bremsstrahlung and on the electromagnetic constants
of the participating particles. This result comes from
the fact that the divergence of the electric current is
measurable. '

Let us consider the radiative decay

A -+ B+y,
where 2 and 8 are hadrons. The corresponding 5-
matrix element

(Bq)S(A)=ze(2~)'8&'&(P, P~ k)(—2w)-—s't( 2k)- t'

XN~Ntse"M„(k) . (1)

Here pg, ptz, and k are the respective four-momenta of
A, 8, and y; E~ and EI; are the normalization factors
of the particles represented by A (e.g., E+) and B
(e.g. , zr++zrs); e„ is the photon polarization, e is the pro-
ton electric charge, and ez'M„(k) is the bremsstrahlung
matrix element.

*Postal address: Centre de Physique Nucldaire, Pare d'Aren-
berg, Universite de Louvain, Heverle, Belgium

' We use the conventions of J. D. Bjorken and S. D. Drell,
Relativistic Qzzantzznz Mechanics (McGraw-Hill Book Company,
New York, 1964).

~ F. E. Low, Phys. Rev. 110, 974 (1958).' S. L. Adler and Y. Dothan, Phys. Rev. 151, 1267 (1966).
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M„(k) can be divided in two parts:

M (k) =M '"'(k) yM '"'(k) . (2)

M„'"' is the sum of those terms when the photon is
emitted from an external charged line LFig. 2(a) and
2 (b)].M„' '(k) is the sum of the other terms [Fig. 2 (c)].
As k —+0, M '"' k ' and M '"' is a constant inde-
pendent of how k -+ 0. Therefore, if M„(k) is expanded
with respect to k, then

M 'az(k) =M ' '(0)+O(k).
M '"'(k) = (terms of order k ')

+ (terms of order zero)+O(k). (4)

Terms of order k—' come from the propagators of the
charged hadrons. M„' '(k) has no term of the form k ',
because here the photon vertex is never on a free line.

From the electric current conservation,

k "M„(k)=0,
and the relations (2), (3), and (4), the theorem already
quoted follows. This will be proved in detail in Sec. II.

First, we shall treat radiative decays of E mesons
when no difficulties from the spin arise. We will point
out the difference between systems with two and three
bodies (apart from the photon) in the final state, that
is, here, between E+—+ m+w'y and K+ —+ ++m'x y.
Afterwards, we shall treat the radiative pionic decays
of hyperons. In Sec. III, we relate the pure radiative
decay matrix elements to the corresponding weak. vertex
(e.g. , Z+-+ py to Z+ —& p; Figs. 3 and 4) in the limit
of soft-photon emission, 4 ' and we relate the pion photo-
production to the corresponding strong vertex (e.g. ,
N+y —+ N'+zr to N~ N'+sr) in soft-pion emission. '
The conclusions of the present paper are summarized
in the last section.

II. RADIATIVE PIONIC DECAYS

(a) E+(P) ~ r'(q z)+ r( fzr)+tys(k) We have. written
in parentheses the respective four-momenta. Let
T(E',Qts, ess) be the generalized amplitude for the cor-
responding monradi a(i ve decay:

The amplitude T conserves momentum and energy but
' G. Calluci and G. Furlan, Nuovo Cimento 21, 979 (1961).' J. C. Pati, Phys. Rev. 130, 2097 (1963).
6 N. M. Kroll and M. A. Ruderman, Phys. Rev. 93, 233 (1954).
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FIG. i. Nonradiative decay with X+=A and m, 7f+=B.

not mass. Then T is expressed as a function of general-
ized masses. The physical nonradiative decay amplitude
is T(m, mt', ms') (Fig. 1), where m, mi, ms are, respec-
tively, the masses of E+, m, m+. The nonradiative part
of the process in Fig. 2(a) is described by T((p—k)',
mrs, mss) which is off the mass shell. In Fig. 2(b), the
corresponding amplitude is T(m', mt', (qs+k)').

Now M '«'(k) in terms of T(P'Q 'Q') becomes

(2qs+k) „
M '«'(k) =& T(m', mrs, (qs+k)')

(qs+ k)' —mss

(2p —k) „+T((p k)2 mls m22) . (6)
(p —k)' —m'

Here we use & for E+ decay. If we expand M, &"(k)
with respect to k and use the conditions k'=0, k &=0,
we And

M''(k)=+ — iT( ' ' ')
qsk pk)

8 T (ms, mrs, gss)
+2qs~

A+(p)
8T (Ps,mrs, mss)

+2pF
QP2

+O(k) . (7)

From (2), (3), (5), and (7), we obtain

3II„' '(0) =+ —2qs„
~g ' os'=-"

and

2ps
Z'=m'-

(c)

FIG. 2. (a,b) Photon pole diagrams of radiative decay with two
bodies, excluding the photon, in the final state. (c) Direct con-
tribution to the same decay.

M (k) =~ — T(ms mrs mss)+O(k) . (9)
qs. k p k

(k) E'+(p) —+ s+(qt)mo(qs)rro(qs)y(k). Again, we write
the generalized amplitude of the nonradiative process
E+(P) ~ rr~(gt)x'(Qs)vr'(Qs):

T(,= (Pyg, )s ~= (gs+g, )s, Ps, g,s, gss, gs ).
Here there are other variables besides the masses. In
the same way as in Sec. II(a), we can find the terms of
order k ' and order zero:

M„(k)= ~ ~ T((p+qs)', (qs+qs)', m', m, ', mt', mt')+
qik pk

2ps
(tg k—2(t2~

k

8T((P+Q.)', (qs+qs)', m', mrs, mrs, mrs)
X +0(k) . (10)

8$ ~=(y+n) '

m and mi are, respectively, the masses of K+ and rr. We see that, in (10), terms of order zero appear, because
(b) has three particles, excluding the photon, in the final state.

(c) Z+(Pz) —+ N(P )+rr+(q)+p(k). M„' '(k) is expressed as a function of T(P„s,Pz', Q'), the nonradiative decay
amplitude oR the mass shell (it is here a 4X4 matrix):

M '"'(k)=N(p )
zo yak p~ 2q.+ks

T((p +k)2 m 2 m2)+ T(m s m 2 (q+k)2)
2m„(p„+k) —m„(q+ k)' —m

+T(m„', (pz —k)', m')
(pz —l'r) —mz

zfT„„k"Pg
~(ps) (11)

25k g

mz, m„, and m are, respectively, the masses of Z+, m, and m+; p, „and p, z are the anomalous magnetic moments of
e and Z+.



.I6O RADIATIVE DECAYS OF HAD RONS

Let us note that T(P ',Pz', Q') contains terms which do not contribute, in the limit k -+ 0, when multiplied by a
spinor. The most general form for T can be written:

T(P. ,P",Q) = P„+W„ Pz+Wz P„—+W„ Pe+ Wz
TA(P 2 Pz2 Q2) + TB(P 2 P 2 Q2)2W„2$'y 2S'„25"y,

W (P 2)1/2 W (P 2)1/2

P+W —Pz+ Wz
To(P 2 P 2 Q2) (12)25'„2' y

N(p„) T"(m„s,mzs, m2)u(pz) is the physical matrix element of the nonradiative process. On inserting (12) into (11)
and using the energy projection operators, the last term of the second member of (11) becomes

(pz —k)+ Wz —(pz —k)+ Wz
T(m„', (pz —k)', m') T"(m, „', (pz —k)', m') +To(m„', (p„—k)', m')

(pz —k) —mz 28'y 2$y
—

(pz —k)+ W'z mz —Wz pz —0+mz
= TA(m„', (pz —k)', m') + (remaining terms of order zero at least). (13)—2pz k —2pz k —2pz k

The remaining terms have eo singularity in k=0 because

my —Rg
+O(k) .

2pz k mz+Wz 2mz

The effect of the remaining terms may be treated as in M„' '(k). With the help of (2)—(5), (11),and the identity

we then find

M„(k)= u(p„)—

ku(pz) = —N(pz),
(pz —k) —mz

ZO pvk p~
TA(m 'mz'm')+ TA(m 2mvsm2)

2m„(P„+k)—m„q k

&pvk pz
+T"(m„',mz', m') i g(p„)+—O(k) . (14)

(pz —k) —mz 2mz

Following (9) and (14), we obtain the rule for finding radiative decay amplitudes M„(k) (with two bodies,
apart from the photon, in the final state) to order k ' and zero:

M„(k)= (photon pole diagrams with pkysica/ nonradiative decay)+O(k).

III. PURE RADIATIVE DECAYS OF HADROÃS AND PION PHOTOPRODUCTION

(a) T2oo body decays of-kyPeror2s: 8~ 8'+p, e.g., Z+(Pz) —& P(P„)+y(k). Using the same method as in Sec.
II(c) and replacing the generalized nonradiative amplitude T(P„',Pz', Q') by the weak vertex T(Pz'= P~2) (Fig.
3), it is easy to show that there is no direct contribution )Fig. 4(c)$ to order k ' and zero and that we have the
proper ty'

T"(mz') = T"(m ').
We obtain

M„(k)= (p ) ~
y„—

ZO pvk Pp 1 f zo yak"pz

2m~ (P„+k) —m„
TA(m 2)+ T"(m ') 22(p )+O(k) (16)

(Pz—&)—mzl 2m,

Thus a pole model4 ' ~ is justified in the limit of soft-photon emission.

' R. H. Graham and S.Pakvasa, Phys. Rev. 140, B1144 (1965); K. Tanaka, shed 151, 1203 (1966.).
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Now, we are going to use a model to show that, unlike pure radiative decays of hadrons (e.g. , Z+ ~ p+y), pure
pionic decays of hadrons [e.g., Z+(pz) W p(p„)+s'(k)] have a direct contribution [Fig. 4(c)].' Let us consider
the identity

d'», [o'" *&p. l T(~,(*),II-(0))
I p=&]=ik. d4*o'"'&P.

l TV.(*)»-(0))I pz&

y d, *s(„)&p,lp, (~),a„(0)]lp,&+ d'~."*&p,lT(a„~„(*),z„(0))lp,&=0,

where H„(0) is the weak Hamiltonian density represented by a product of Cabibbo currents and j„(x) is either
T~'„(x), the third component of the isoaxial current, or J„ei(x), the electromagnetic current. Now, if we use the
SU(3)QxSU(3) current commutation relations, the partial conservation of axial-vector currents (PCAC)

B„TP„(x)= cm'(x),

(w' is the neutral pion field), and the identity (17), then we obtain in the limit of soft-pion emission

ZC

&p„klan. (0) Ip,)(k) ='»mk„d *o"*&p„lT(T53„(*)e.(0)) I p,&+-, &p„la„(0)I p, &,

where &p»k I B„(0)I pz) is the decay amplitude of Z+ ~ p+s' in the soft-pion limit, and &p~l H~(0)
I pz) is equal

to the weak vertex N(p~) T~(mz')u(pz) (Fig. 3). We observe that the limit procedure is unambiguous because we
have seen that T"(mz') = T"(m~'). On the other hand, if we use the electromagnetic current conservation

B„J„"(x)=0,
the SU(3)QxSU(3) current commutation relations, and the identity (17), then we obtain

limk„d4x e"*&p,
I
T(J„"(z),EI„(0))I p„)=0,

which is nothing other than the electric current conservation relation [Eq. (5)] in the soft-photon limit.
We see that pure pionic decay amplitudes of hyperons [Eq. (18)]have contributions coming from pole diagrams

[Figs. 4(a) and 4(b)) as well as a direct contribution [Fig. 4(c)].The first term of Eq. (18) corresponds to pion
pole diagrams where the meson is emitted by the initial (Z+) or final baryon (p).' The second term is the direct
contribution given by current algebra. ' This latter appears because T5'0 does not commute with B„.We have no
such term in (19) because Jo' commutes with H . That is why we have no direct contribution in the soft-photon
limit [Eq. (16)].On the other hand, it has been shown' that (p~ I P„(0)I pz) is a scalar. So Z+ —+ p+y has only a
p-wave contribution in the soft-photon limit.

(k) Pion photoprodlctioe: 1V+y ~ 1P+rr. Using the same method as in Sec. II(c), we can find the pion photo-
production amplitude in the limit of soft-pion emission (threshold), i.e., the @roll-Ruderman result. It is given
by the pole diagrams because there is no direct contribution (e.g. , no seagull term) to order —1 and zero in the
photon four-momentum.

Thus, if T(P„2,P„',Q') is the amplitude of the generalized strong vertex p(P~) —+ e(P )+s+(Q), then the
amplitude of

p(p.)+7(k) ~~(p.)+~'(q)
is written

kr k"
3E„(k)= u(p„)

2m (p„—k) —m„
T"(m ' m ' m') — T"(m ' m ' m')+ T (m ' m ' m')

q k
1 ztTppk tj~)

X y„+ I N(p„)+O(k), (20)
(P,+k)—m, 2m, )

where T"(m ',m~', m') is defined from the generalized
strong vertex, as in Eq. (12).

H. Sugawara, Phys. Rev. Letters 15, 870, 9N t', l965); M.
Suzuki, ibid. 15, 986 (1965);Y.Hara, Y. Nambu, and J. Schechter,
ibid. 16, 380 (1966); L. S. Brown and C. M. Sommer6eld, ibid.
16, 751 (1966).

IV. SUMMARIES AND CON'CLUSIONS

(1) We have proved that no terms of order zero,
excluding the photon pole diagrams, appear in the
radiative amplitudes with one or two bodies in. the anal
state, apart from the photon. Thus, this theorem is
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g t (p~) p(pp)

FIG. 3. Weak vertex Z+ —+ p. -k) p (pp)
(a)

valid for the following decays:

8 —+ 8'+rr+y,
r) or Z~rr+w+y,
w or Z~l+v~+y.

x (pz) p(pp+ k)
W

Ppj
(b)

(2) The physical nonradiative amplitude must be
used to construct the photon pole terms correctly. In
this way we have a radiative amplitude which conserves
the electric current and which is exact to order k ' and
zero.

(3) Direct computations' made independently by Li
and by Young, Sugawara, and Sakuma have shown,
that the radiative-decay matrix elements of hyperons
in the pole approximation of Feldmann, Matthews, and
Salam" become essentially the same as those obtained
from eGective weak-interaction Hamiltonians of non-
derivative or derivative type, " provided the photon
momentum is not too large. Equation (14) shows that
this result is completely general and model indepeed-eet
Therefore, because of electric current conservation, the
radiative pionic decays of hyperons can give information
about the structure of weak interactions only when the
photon momentum is nearly at its maximum.

(4) In the limit where the four-momentum of the
pion is zero, pure pionic decay amplitudes of hyperons'
have contributions coming from pole diagrams [Figs.
4(a) and 4(b)) as well as a direct contribution [Fig.
4(c)).On the other hand, for the soft-photon emission,

9 R. D. Young, M. Sugawara, and T. Sakuma, Phys. Rev. 145,
1181 (1966);Ming Chiang Li, r'Nd. 141, 1328 (1966).

'0 G. Feldman, P. T. Matthews, and A. Salam, Phys. Rev. 121,
320 (1961).

» S. Barshay and R. E. Behrends, Phys. Rev. 114, 931 (1959);
S. Iwa and J.Leitner, Nuovo Cimento 22, 904 (1961);S. Barshay,
U. Nauenberg, and J. Schultz, Phys. Rev. Letters 12, 76 (1964).

(pg p (pp)
(c)

Fro. 4. (a,b) Pole diagrams of Z+ decay; the wavy line represents
either vo or y. (c) Direct contribution to the same decay.

pure radiative decay amplitudes of hyperons have no
direct contribution. This has been shown in Sec. III(a).

(5) Because the decay r)-+w++w cannot occur
electromagnetically, but only weakly, the inner-
bremsstrahlung term gives only a negligible contribu-
tion to the amplitude of the decay r) ~ s.++w +p. Thus
the leading term is here proportional to the photon
four-momentum.

After completing this text, we found that H. Chew"
had already derived, by a slightly di6erent method, the
low-energy theorem cited in the Introduction, for
radiative decays of E mesons.
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